

Masato Yamanaka

### Long-lived charged massive particle

- Long-lived CHAMPs in many models beyond SM
- Various hunting
   (collider, neutrino telescope observations, etc)
- Cosmological constraints on its property
   (big-bang nucleosynthesis, large scale structure., etc)

One of the interesting objects for particle physics, astrophysics, and nuclear physics

#### Long-lived stau

Candidate of long-lived CHAMP: NLSP stau in SUSY models NLSP: Next lightest SUSY particle

- ☑ Illustrative example in this talk (same phenomenology also for other long-lived CHAMPs)
- Three scenarios of long-lived stau
  - Gravitino dark matter scenario (coupling suppression)
  - Neutralino dark matter scenario (phase space suppression)
  - Axino dark matter scenario (loop suppression)

# Long-lived stau

#### ☑ Similar but different in appearance

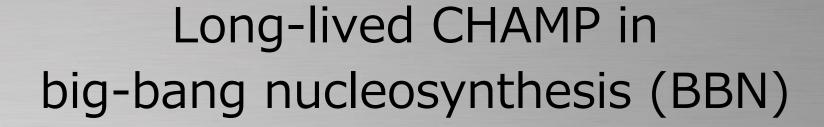
|                              | Neutralino scenario                                                         | Gravitino scenario                                                         |
|------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Why long-lived?              | Phase space suppression                                                     | Coupling suppression                                                       |
| Typical signals              | Missing E⊤ +<br>heavy charged track                                         | Heavy charged track $(\rightarrow \text{missing } E_T + \text{hard } tau)$ |
| Signal with flavor violation | Variations of lifetime and lepton p distribution                            | Energetic e (or $\mu$ ) with small BR                                      |
| Cosmological<br>effects      | <ul> <li>Solving Li6 (Li7) problem</li> <li>Over-production of D</li> </ul> | <ul> <li>Solving Li6 problem</li> <li>gravitino problem</li> </ul>         |

# Long-lived stau

#### ☑ Similar but different in appearance

|                              | Neutralino scenario                              |                                                                                                                          | Gravitino scenario                                                         |
|------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Why long-lived?              | Phase space suppression                          |                                                                                                                          | Coupling suppression                                                       |
| Typical signals              | Missing E⊤ +<br>heavy charged track              |                                                                                                                          | Heavy charged track $(\rightarrow \text{missing } E_T + \text{hard } tau)$ |
| Signal with flavor violation | Variations of lifetime and lepton p distribution |                                                                                                                          | Energetic e (or $\mu$ ) with small BR                                      |
| Cosmological<br>effects      | • Solving Li6<br>• Over-produ                    | Necessary to have correct pictures of<br>these signals and effects in each case<br>for precise understanding of the stau |                                                                            |

# Outline


☑ Long-lived CHAMP in BBN

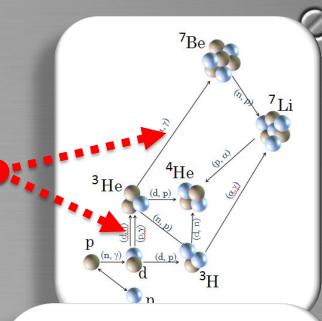
- Energetic decay
- Exotic nuclear reaction by bound state

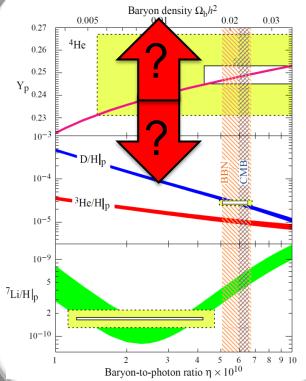
☑ Long-lived CHAMP at collider

- Flavor conserved stau
- Flavor violating stau

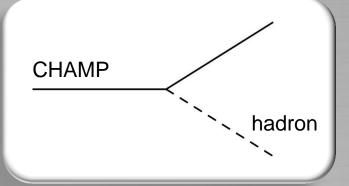
☑ Summary




# Various effects on BBN

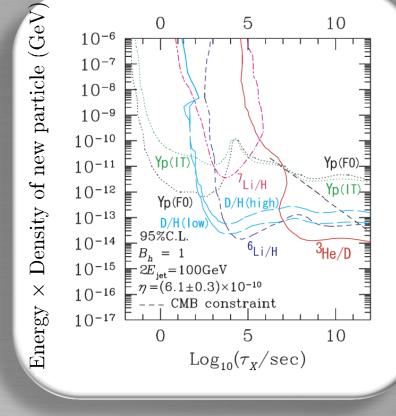

**Exotic interactions** 

Over-production (-destruction) of light elements by long-lived CHAMPs


Good accuracy of observations and calculations of light elements densities

☑ BBN is good prove to long-lived CHAMPs

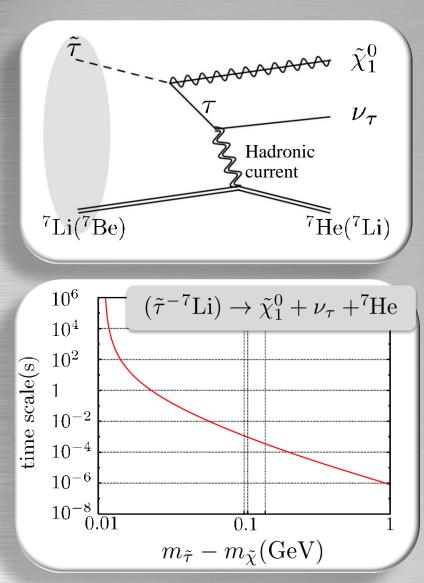





#### Ex. 1: hadronic energy injection



Over-production (-destruction)of light elements by decay products


Lifetime of hadronic decay and hadronic energy are constrained



[M. Kawasaki, K. Kohri and T. Moroi (2005)]

### Ex. 2: internal conversion process

[T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura and MY (2007)]



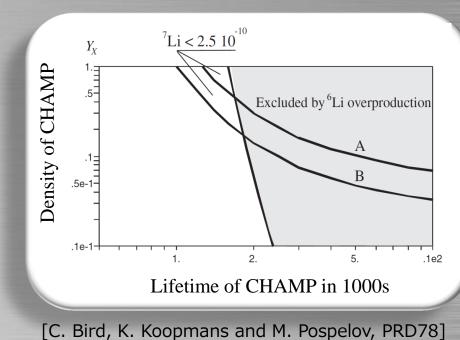
Bound state formation of nucleus and negative charged stau

Nuclear transformation in the bound state of nucleus and stau ( cf. muon capture

Solving the <sup>7</sup>Li problem by rapid reduction of <sup>7</sup>Li and <sup>7</sup>Be

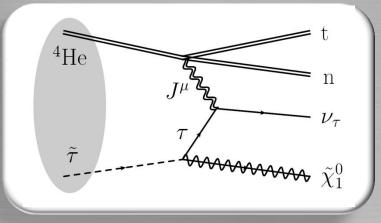
Discrepancy between calc. and obs. Calc.  $^{7}\text{Li}/\text{H} = (4.15^{+0.49}_{-0.45}) \times 10^{-10}$ Obs.  $^{7}\text{Li}/\text{H} = (1.26^{+0.29}_{-0.24}) \times 10^{-10}$ 

# Ex. 3: catalyzed fusion process


[M. Pospelov, PRL98]

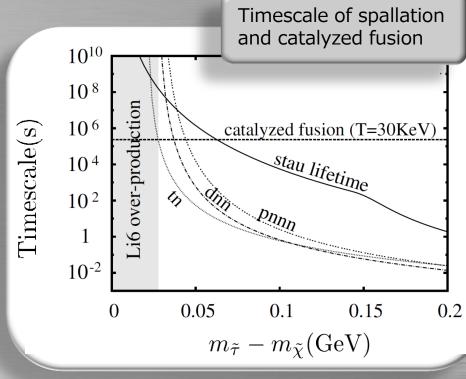
☑ Catalyzed fusion by the bound state of CHAMP ( $X^-$ ) and <sup>4</sup>He (<sup>4</sup>HeX<sup>-</sup>) + d → <sup>6</sup>Li + X<sup>-</sup>

Solving the <sup>6</sup>Li problem by enhancements of <sup>6</sup>Li production


 $\frac{\langle \sigma v \rangle_{\text{catalyzed}}}{\langle \sigma v \rangle_{\text{standard}}} \simeq 10^7$ 

Note: valid constraint only on gravitino dark matter scenario




# Ex. 4: spallation process

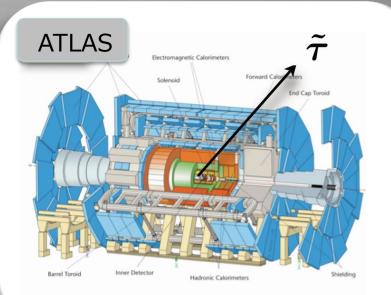
[T. Jittoh, K. Kohri, M. Koike, J. Sato, K. Sugai, MY, and K. Yazaki (2011)]



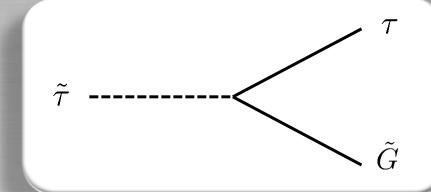
Spallation of He nucleus in the bound state, producing triton, deutron, and neutron

- Larger reaction rate than catalyzed fusion
- More stringent constraint to avoid over-production of deuteron






# Signal in gravitino DM scenario


#### Signal

- Heavy charged track
- Energetic tau + missing energy

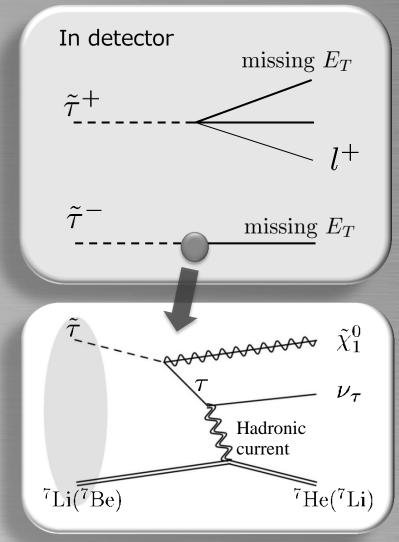
- Information from signals
  - Stau mass
  - SUSY breaking scale



☑ With flavor violation
 No variation of stau lifetime
 (■ Energetic e (or µ) with small BR )



# Signal in neutralino DM scenario


(flavor consrving)

Bound state formation of negative charged stau and material in detector

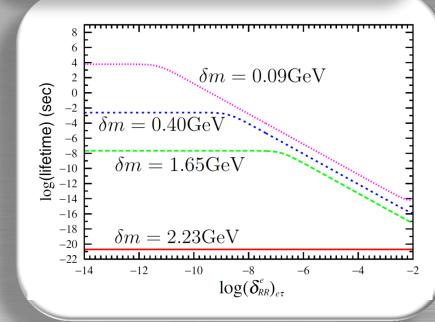
☑ Internal conversion before particle decay [cf. muon capture process]

☑ Signal: missing ET + positive track No negative charged track!

 Necessary to carefully search the signal to avoid misidentification [Now preparing to submit]



# Signal in neutralino DM scenario


$$\begin{split} \tilde{\tau} & \to \tilde{\chi} \mu \\ \tilde{\tau} & \to \tilde{\chi} \tau \\ \\ \tilde{\tau} & \to \tilde{\chi} e \end{split}$$

$$\begin{array}{c} \tilde{\tau}_{R} & \stackrel{(\delta_{RR})_{\alpha\tau}}{\longrightarrow} \tilde{l}_{\alpha R} & \stackrel{\rho}{\longrightarrow} \tilde{l}_{\alpha} \\ l_{\alpha} \in \{e, \mu\} & l_{\alpha} \end{array}$$

(flavor violating)

New 2-body decay channel via flavor violation

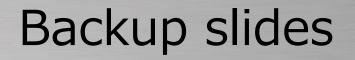
- Determination of flavor violating para. as a function of stau lifetime
- More sensitive to tiny violation than rare decay search experiments



[S. Kaneko, J. Sato, T. Shimomura, O. Vives, MY (2008)]

## Summary

☑ Long-lived charged massive particles in many models beyond SM


☑ Important for comprehension of long-lived CHAMPs and each model

- to identify what exotic reactions are induced by each type of CHAMP
- to understand what light elements are over-produced (-destructed) by each type of reactions

☑ Necessary for detecting CHAMP signal at collider to arrange depending on

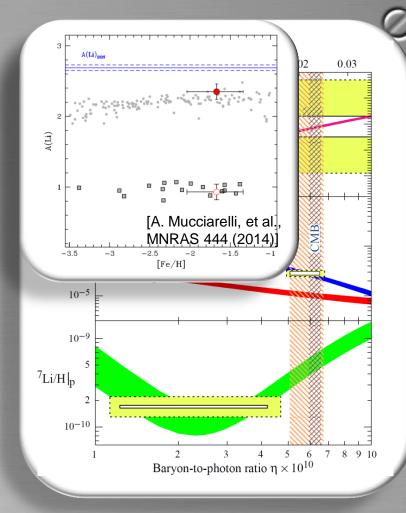
the reason of longevity

the flavor is conserving or violating



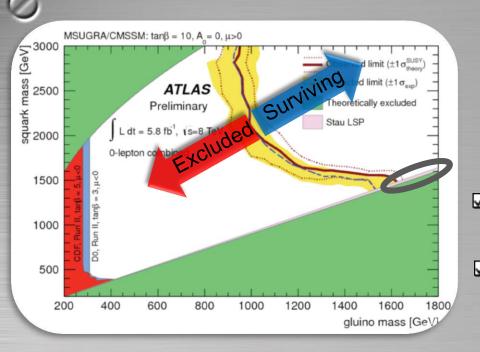


# <sup>7</sup>Li problem


Prediction

 $^{7}\text{Li/H} = (4.15^{+0.49}_{-0.45}) \times 10^{-10}$ 

☑ Observation


 $^{7}\text{Li/H} = (1.26^{+0.29}_{-0.24}) \times 10^{-10}$ 

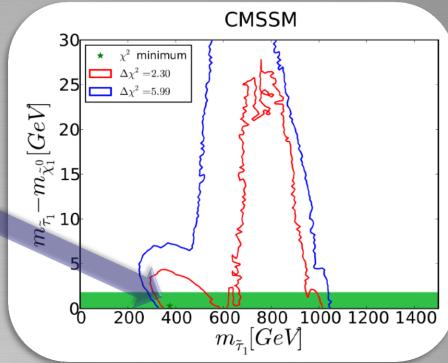
☑ Discrepancy:<sup>7</sup>Li problem



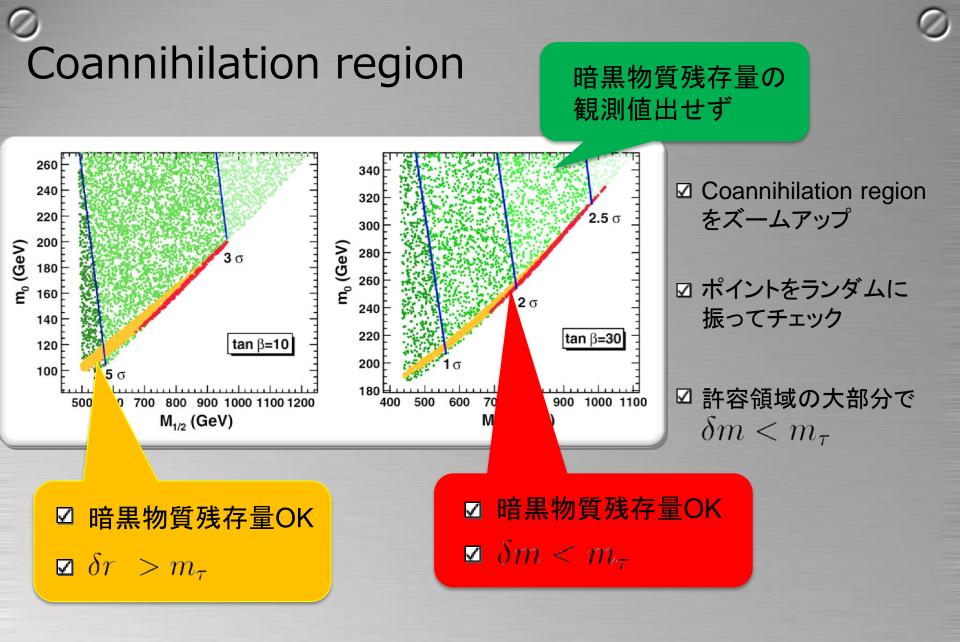
☑ No solutions by modifying nucleus reaction rates

☑ Find mechanism to reduce both <sup>7</sup>Li and <sup>7</sup>Be at the BBN epoch



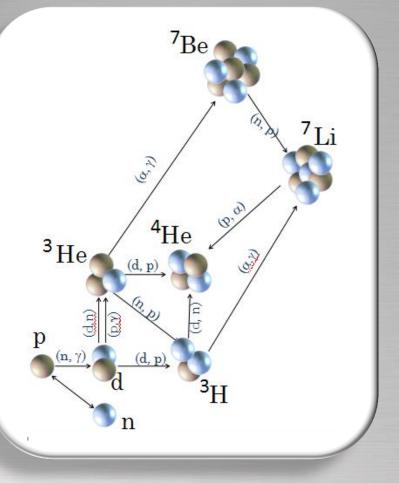

### Long-lived stau in CMSSM

Consistent with DM abundance


DM and stau are degenerated

Point favored from Higgs mass, DM physics, and so on

 $\square$  Requirement:  $\delta m < m_{\tau}$ 




[M. Citron, J. Ellis, F. Luo, J. Marrouche, K. Olive and K. de Vries (2013)]



 $\delta m = m_{\tilde{\tau}_R} - m_{\tilde{\chi}}$ :ダークマターとスタウの質量差

### Big-bang nucleosynthesis (BBN)

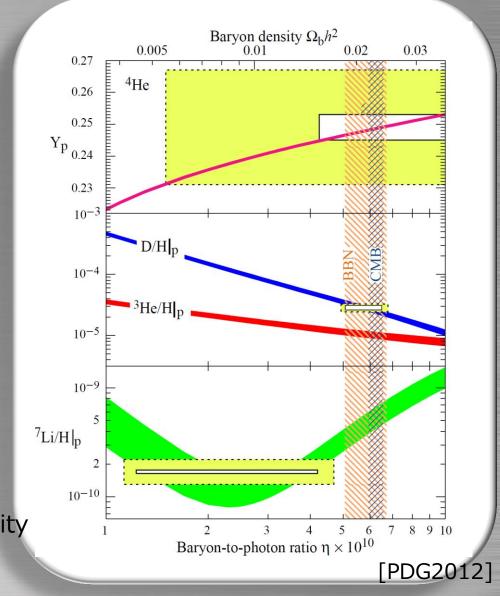


Production of light elements

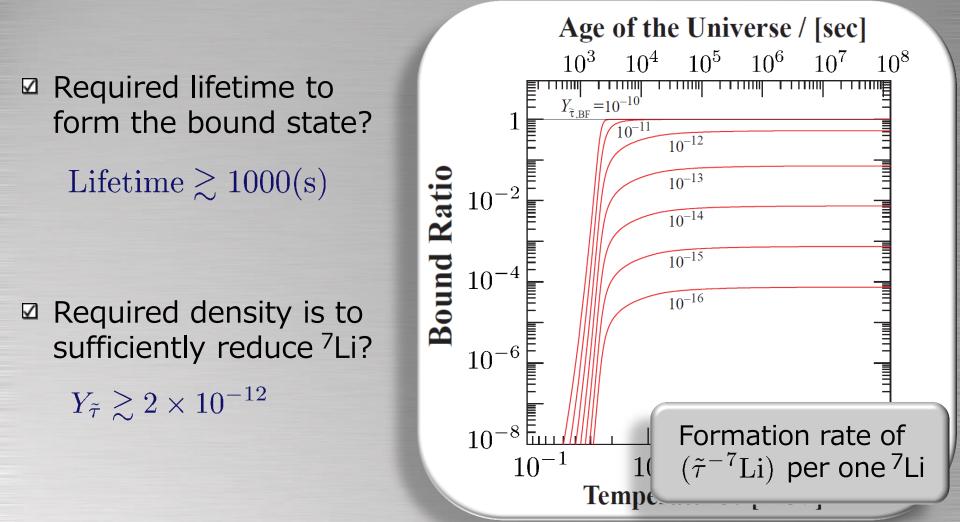
☑ Era: 1sec - 3min

Parameter: baryon density

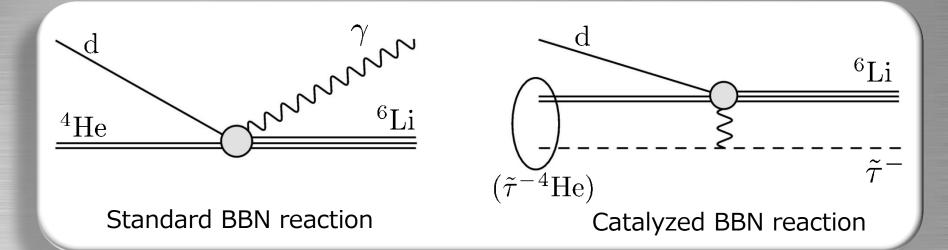
Densities of p and nRatio of p and n


Input: reaction rates of nuclei

# Big-bang nucleosynthesis (BBN)


 Light elements densities are predicted for a baryon density

Evidence for the success of the big-bang theory


Curve: theoretical prediction Box: observation Vertical band: observed baryon density



# Required lifetime and density



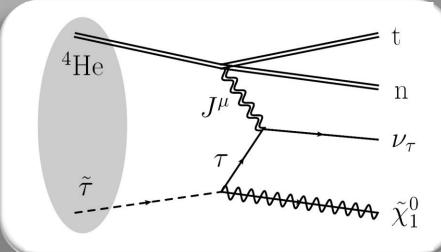
# Catalyzed fusion



 $\square$  Exotic reaction induced by the bound state ( $\tilde{\tau}^{-4}$ He)

☑ <sup>6</sup>Li over-production

$$\frac{\langle \sigma v \rangle_{\text{catalyzed}}}{\langle \sigma v \rangle_{\text{standard}}} \simeq 10^7$$


Standard: forbidden E1 transition Catalyzed:  $\alpha$  transfer reaction

# Spallation process

[T. Jittoh, K. Kohri, M. Koike, J. Sato, K. Sugai, K. Yazaki, and MY, PRD84 (2011)]

Origin of stau's longevity: phase space suppression

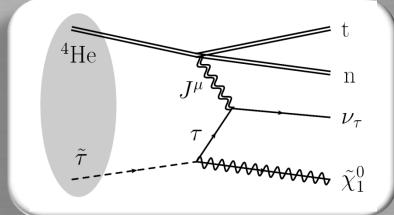
Spallation process after forming a bound state



Overlap of initial state wave function

Reaction rate 
$$\Gamma((\tilde{\tau}^4 \text{He}) \rightarrow \tilde{\chi}_1^0 \nu_\tau \text{tn}) = |\psi|^2 \cdot \sigma v_{\text{tn}}$$

Cross section of elemental reaction


# Cross section of elemental reaction

Cross section of elemental reaction

$$\sigma v_{\rm tn} = \frac{1}{2E_{\tilde{\tau}}} \int \frac{d^3 p_{\nu}}{(2\pi)^3 2E_{\nu}} \frac{d^3 p_{\tilde{\chi}}}{(2\pi)^3 2E_{\tilde{\chi}}} \frac{d^3 q_{\rm n}}{(2\pi)^3} \frac{d^3 q_{\rm t}}{(2\pi)^3} \\ \times \left| \mathcal{M} \left( (\tilde{\tau}^4 \text{He}) \to \tilde{\chi}_1^0 \nu_{\tau} \text{tn} \right) \right|^2 (2\pi)^4 \delta^{(4)} (p_{\tilde{\tau}} + p_{\rm He} - p_{\nu} - q_{\rm t} - q_{\rm n})$$

Amplitude

 $\mathcal{M}((\tilde{\tau}^{4}\mathrm{He}) \to \tilde{\chi}_{1}^{0}\nu_{\tau}\mathrm{tn})$ =  $\langle \mathrm{tn}\,\tilde{\chi}_{1}^{0}\,\nu_{\tau}|\mathcal{L}_{\mathrm{int}}|^{4}\mathrm{He}\,\tilde{\tau}\rangle$ =  $\langle \mathrm{tn}|J^{\mu}|^{4}\mathrm{He}\rangle\,\langle\tilde{\chi}_{1}^{0}\,\nu_{\tau}|j_{\mu}|\tilde{\tau}\rangle$ 



leptonic part; calculated straightforwardly

# Hadronic matrix element

☑ Building up wave functions of <sup>4</sup>He, t, d, and n

Requirement: anti-symmetric under the exchange of two nucleons

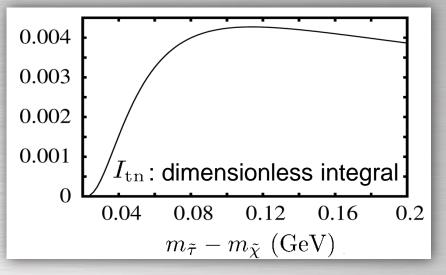
spin, isospin part
(anti-symmetric)

$$|^{4}\text{He}\rangle = \frac{1}{2\sqrt{6}} \left[ |\text{pnpn}\rangle \left( |\uparrow\uparrow\downarrow\downarrow\rangle + |\downarrow\downarrow\uparrow\uparrow\rangle - |\uparrow\downarrow\downarrow\uparrow\rangle - |\downarrow\uparrow\uparrow\downarrow\rangle \right. \\ + \dots + |\text{nnpp}\rangle \left( -|\uparrow\downarrow\uparrow\downarrow\rangle + |\uparrow\downarrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\downarrow\rangle - |\downarrow\uparrow\downarrow\downarrow\rangle \right) \right]$$

spatial part (symmetric)

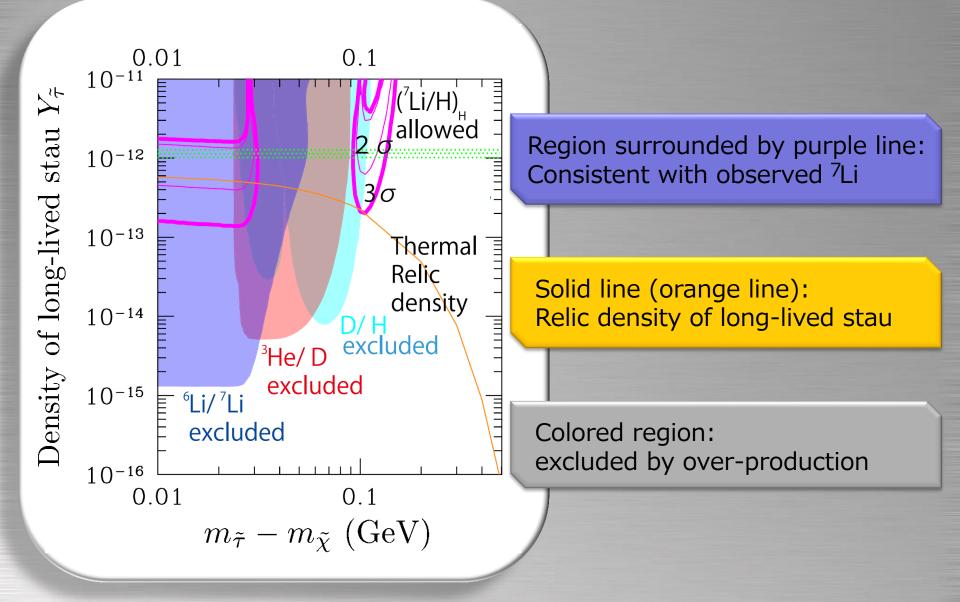
$$egin{split} \psi_{
m He}(m{r}_1,m{r}_2,m{r}_3,m{r}_4) &= \left(2rac{a_{
m He}^3}{\pi^3}
ight)^{3/4} \ & imes \expigg\{-a_{
m He}\Big[m{r}_1^2+m{r}_2^2+m{r}_3^2+m{r}_4^2-rac{1}{4}(m{r}_1+m{r}_2+m{r}_3+m{r}_4)^2\Big]igg\} \end{split}$$

011


9

$$a_{\rm He} = rac{9}{16} rac{1}{(R_{
m m})_{
m He}^2}, \ a_{
m t} = rac{1}{2} rac{1}{(R_{
m m})_{
m t}^2} \quad (R_{
m m}: {
m matter radius})$$

## Cross section

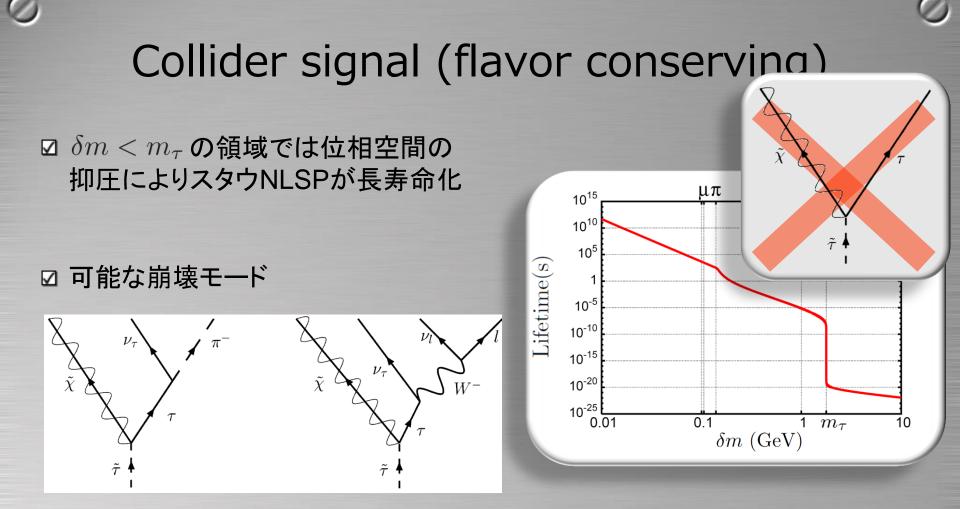

Cross section of elemental reaction

$$\sigma v_{\rm tn} = \frac{8}{\pi^2} \left(\frac{32}{3\pi}\right)^{3/2} g^2 \tan^2 \theta_W \sin^2 \theta_\tau (1+3g_A^2) G_F^2$$
$$\times \Delta_{\rm tn}^4 \frac{m_{\rm t} m_{\rm n}}{m_{\tilde{\tau}} m_{\tau}^2} \frac{a_{\rm He}^{3/2} a_{\rm t}^3}{(a_{\rm He}+a_{\rm t})^5} I_{\rm tn}$$



$$\Delta_{tn} \equiv m_{\tilde{\tau}} - m_{\tilde{\chi}} + \Delta_{He} - \Delta_{t} - \Delta_{n} - E_{b}$$
  
 $\Delta_{He} = m_{He} - 4A,$   
 $\Delta_{t} = m_{t} - 3A,$   
 $\Delta_{n} = m_{n} - A$   
A : Unified atomic mass unit

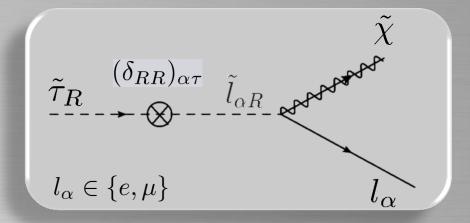
### Prediction of property of the stau




#### Prediction on the long-lived stau

550  $\delta m = 100 \text{ MeV}$ 500 Stau mass / [GeV] 450 3σ 400 350 300 0.5 0.4 0.6 0.7 0.8 0.9 1.0 Left-Right mixing of stau,  $\sin \theta_{\tau}$ 

Region in solid line: Consistent with observed dark matter abundance


Red cross points: Consistent with observed light elements abundance



☑ 期待されるシグナル:ほとんどのスタウは既存の検出器を突き抜ける もし検出器内で崩壊すれば、ソフトなレプトン

☑ 既存の検出器の外に、ストッパー兼検出器が必要となりそう

### Collider signal (flavor violating)



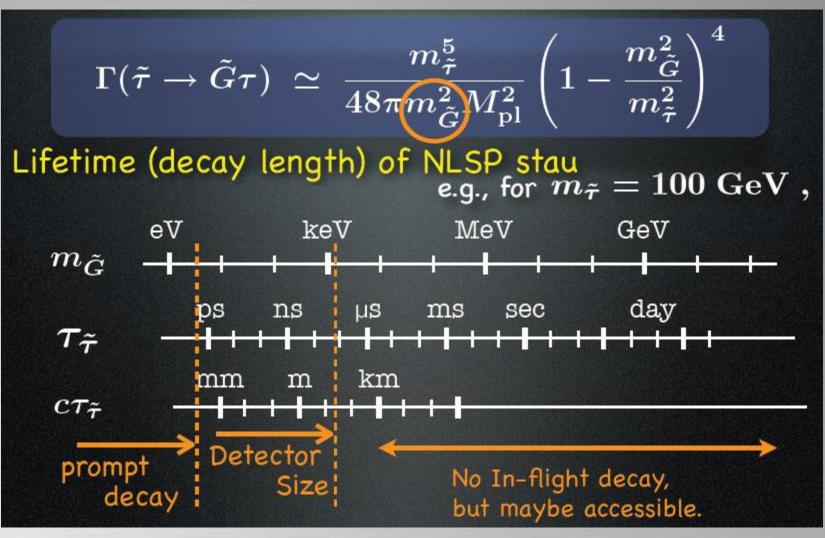
$$\Gamma(\tilde{\tau}_R \to \tilde{\chi} l_\alpha) = \frac{g_2^2}{2\pi m_{\tilde{\tau}_R}} |g_{\tau\alpha}|^2 (\delta m)^2$$

$$g_{\tau\alpha} = \tan \theta_W \frac{M_{R\tau} M_{R\alpha}}{M_{R\tau}^2 - M_{R\alpha}^2} (\delta_{RR}^e)_{\alpha\tau}$$

$$(\delta_{RR})_{\alpha\tau} = \frac{\Delta M_{RR\alpha\tau}^2}{M_{R\alpha}M_{R\tau}}$$

# Signal in neutralino DM scenario

(flavor violating)




#### ☑ 質量差がタウ質量以下の場合

寿命測定により世代混合を決定 かなり小さな世代混合も決定可能

検出器内のスタウ飛跡の数え上げ (ある距離までに崩壊する数)

#### Lifetime in gravitino DM scenario



From Hamaguchi-san's slide