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Gluons are

like photons [massless (?)
and spin 1], but they carry
the SU(3) color charge.

Gluons carry no electric or
weak charge - they cannot
directly interact with photons.

We know their coupling to
quarks and self-coupling with
moderate precision.
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Gluons are weird particles

= Gluons, like quarks, never occur in isolation.

= So far, gluons have only been observed as short-lived,
virtual quanta.

» States solely made of gluons (“glueballs™) should exist,
but have never been unambiguously identified.

= Free space without glue fields is unstable against the
spontaneous formation of chromo-magnetic fields.

= WWe are constantly immersed in a gluon condensate,
similar to the Higgs condensate: (G%"4= 0.6 GeV.

* The detailed structure of the gluon condensate and the
mechanism by which it creates quark confinement is still
unknown - many different models compete.
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Gluon Ocean and Quark Sea
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The Quark “Sea” derives from the
Gluon “Ocean” by gluon splitting
iInto a quark-antiquark pair:
suppressed by factor Nros/x.

Clean separation of gluons and sea
guarks from valence quarks requires
experiments probing x <0.01, or
nucleon energies of order 100 GeV.

RHIC provides polarized protons

up to 255 GeV and nuclei up to
100 GeV/nucleon.
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Where are the gluons?

Proton Structure
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Where are the gluons?

Proton Structure

o o

) O Proton Neutron
antiproton ‘ ‘ antineutrc
- Charge on the proton Charge on a neutron
o o =2(2/3) + (-1/3) =213 + (-1/3-1/3)

© Buzzle.com

Lattice simulation with
artificially frozen quarks

D. Leinweber (Adelaide)
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Where are the gluons?

= Bag model:

* Field energy distribution is
wider than the distribution of
fast moving light quarks

= Constituent quark model:

* Gluons and sea quarks
“hide” inside massive quarks

e Sea parton distribution
similar to valence quark
distribution

= | attice gauge theory:
 (with slow moving quarks)

e gluons are more
concentrated than quarks

Bag
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Where are the gluons?

= Bag model:

* Field energy distribution is
wider than the distribution of
fast moving light quarks

= Constituent quark model:

* Gluons and sea quarks
“hide” inside massive quarks

e Sea parton distribution
similar to valence quark
distribution

= | attice gauge theory:
 (with slow moving quarks)

e gluons are more
concentrated than quarks

Bag

* -
o -
Ld *
L *
L4 .
- .
L] .
. .
. .
. .
. .
u .
. =
. .
= .
. .
. .
. N
. LA
. L
. L
. L
* L4
* R4
. .
* *
. o
.Q ’0
.. *
L4 *
.. “
a, .
LTI TTL LA

Boosted
Nucleon

BROOKHREVEN
NATIONAL ABORA RY



Partons at Q2 ~ few GeV?

Gluon
saturation

10N

Theoretically
under control
at weak coupling
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Partons at Q2 ~ few GeV?
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Formalism

» Wigner distributions:

W(x,b; ky)
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transverse momentum impact parameter (=- Form Factors generalized parton
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semi-inclusive processes g "“"“"‘”So,f - g2 gt ] } { { exclusive processes
- =10 GeV Q flT ! i % _ -
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f(x) F (1) / A, (1) +4EA, (D) + ...
parton densities e v w v | form factors generalized form
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lattice calculations

» EIC — 3D imaging of sea and gluons:

TMDs - confined motion in a nucleon (semi-inclusive DIS)

GPDs - Spatial imaging of quarks and gluons (exclusive DIS)

BROOKHEVEN
NATIONA LABORATORY

Brooknaven Science Associates



TMDs and GPDs

= The quantum state of the proton is an amplitude distribution with
phases among different configurations. Like a hologram versus a
photograph. Different “angles of view” i.e. different observables
weight the phases differently. There is not a single probabilistic
picture of the proton, but many, depending on the observable and
the frame of motion.

= The 3-gluon vertex enters not only into the structure of the rest
frame state, but also into the boost operator.

= Transverse Momentum Distributions (TMDs) probe the parton
transverse dynamics, while Generalized Parton Distributions
(GPDs) remain collinear, but measure the transverse distribution
of partons.

= TMDs at large kt probe parton correlations. Large kr behavior is
sensitive to short-range parton-parton correlations (similar to the
high pt response in nuclei, which probes NN correlations).

BROOKHREVEN
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The Electron-lon Collider:

An Attoscope for Gluons

7
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EIC: A color dipole attoscope

Free color charges (quarks, gluons) do not exist, but
C color dipoles do! Virtual photons are a good source.

Two resolution scales:
Ly E e momentum £k (longitudinal)
e virtuality QO (transverse)

= More powerful than an optical microscope!

4.0
: HERA was the 1st

generation color
1 |dipole microscope.

w‘%ii Limited intensity
) and no polarization.

The EIC will be the
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Proton mass and spin

mgy ~ 10 MeV
.
quark

» Proton mass puzzle: my ~ 1000 MeV

o
Quarks carry ~19, of the proton’s mass nucleon

How does glue dynamics generate the energy for the nucleon mass?

» Proton spin puzzle:

Quarks carry only ~309%, of the proton’s spin

How does quark and gluon dynamics generate the rest of the proton’s spin?

» 3D structure of nucleon:

Color Confinement Asymptotic freedom
! ! ! : > Q (GeV)
200 MeV (1 fm) 2 GeV (1/10) fm) Probing
R momentum
3"
¥ ‘
How does the glue bind quarks and itself into a proton and nuclei?
Can we scan the nucleon to reveal its 3D structure?
BROO
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Ag from #0 and jets

15 F Q*=10GeV?

QCD global fit

DSSV++
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Saturation

Gluon saturation at high energy
classical coherence from quantum fluctuations

With increasing energy
more and more gluons
are exposed until their
wave functions “overlap”

<® © @>

Wee parton fluctuations dilated on strong interaction time scales

Gluon density saturates at
" a maximal value of ~ 1/a, = gluon saturation

(Equivalent to perturbative unitarization
of cross-section in rest frame of target)

High Energy

1/Q22 Saturation scale Qs

Caveat: Weak coupling picture may not apply in the interesting range
(x>103, Q2 ~ few GeV?)

o BROOKHEVEN
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From nuclei to QGP - How?

Is the relevant component of the nuclear wave function that turns into
a quark-gluon plasma when nuclei collide a weakly coupled color
glass condensate? Or is it generated by the decoherence of strongly
coupled gluon fields surrounding colliding valence quarks (see recent
PHHENIX article, arXiv:1312.6676)? Or is something more akin to
the 4-D shadow of a 5-D gravitational shock wave?

A BROOKHEVEN
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Hadronization and Confinement

How do hadrons emerge from a created quark or gluon?
Neutralization of color = hadronization

» Femtometer detector/scope:

In vacuum

Nucleus, a laboratory for QCD

» Quark/gluon properties:

Initial-condition for hadronization

o |Inside the
Semi-inclusive DIS >-w-°. —%{,—jjﬂ-"”" nucleus

From the EIC White Paper

¢ How does the nuclear environment affect the distribution of
quarks and gluons and their interactions in nuclei? How does
the transverse spatial distribution of gluons compare to that in the nu-
cleon?” How does nuclear matter respond to a fast moving color charge
passing through it? Is this response different for light and heavy quarks?

Needs a probe to precisely control the initial condition!
BROOKHRVEN
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i
Requirements: Vs and Polarization

| 1 I

4 polarized
-1 ep, up,pp

10* = Current polarized DIS data:
£ OCERN aDESY oJLab-6 O SLAC

Current polarized BNL-RHIC pp data:
e PHENIX =" 4 STAR 1-jet ¥ W bosons

103}
— Starting up: JLab-12
AN
>
8 R luti
02l < esolution
6 10 20 attometer

10

@ Need to reach low-x where gluons dominate (AG, A range!)

@ Flexible energies (see also structure functions later)

@ Need sufficient lever arm in Q2 at fixed x (evolution along Q? or x)

@ Electrons and protons/light nuclei (p, He3 or d) highly polarized (70%)
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Current polarized DIS data:
O CERN aDESY o JLab-6 0 SLAC

Current polarized BNL-RHIC pp data:
e PHENIX =" 4 STAR 1-jet ¥ W bosons

Starting up: JLab-12

Resolution
20 attometer

4 polarized
-1 ep, up,pp

@ Need to reach low-x where gluons dominate (AG, A range!)
@ Flexible energies (see also structure functions later)
@ Need sufficient lever arm in Q2 at fixed x (evolution along Q? or x)

@ Electrons and protons/light nuclei (p, He3 or d) highly polarized (70%)
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Requirements: Vs and Polarization

| 1 I

4 polarized
-1 ep, up, pp

10* = Current polarized DIS data:
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Current polarized BNL-RHIC pp data:
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@ Need to reach low-x where gluons dominate (AG, A range!)

@ Flexible energies (see also structure functions later)

@ Need sufficient lever arm in Q2 at fixed x (evolution along Q? or x)

@ Electrons and protons/light nuclei (p, He3 or d) highly polarized (70%)
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Requirements: Vs and Beam Masses
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g o g = » a
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n I.I
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= Saturation physics needs low-x reach and wide range of nuclei
(A dependence) up to the heaviest A (Qs enhancement): d = U

= Needs sufficient lever arm in Q2 down to at least x = 10-3to verify
non-linear evolution equations of CGC BROOKHRVEN
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eRHIC:
EIC @ BNL

-
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eRHIC: Electron lon Collider at BNL

Add an electron accelerator to the existing $2.5B RHIC
including existing RHIC tunnel and cryo facility

‘T 70% polarized protons
Luminosity: 25 - 250 (275*) GeV

1033 —1034cm=2 s

Light ions (d, Si, Cu)
Heavy ions (Au, U)
10-100 (110*) GeV/u

80% polarized electrons: 4
6.6 —21.2 GeV

. Pol lightions (He-3)
| 17 -167 (184*) GeV/u

@ Center-of-mass energy range: 30 — 145 GeV
@ Full electron polarization at all energies

Full proton and He-3 polarization with six Siberian snakes
@ Any polarization direction in electron-hadron collisions:

protons

electrons > e «— —
- o = - o o =

* It is possible to increase RHIC ring energy by 10%




RHIC — Hadron & Nucleus Collider
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eRHIC - Polarized Electron-lon
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EIC Desi gn Detector Options

N

eRHIC ERL + FFAG ring design @ 103%/cm?2s CPHRENIX
21.2 GeV e~ + 255 GeV p or 100 GeV/u Au.

FFAG Recirculating Electron Rings ERL Cryomodules

A\
Y
TEana ey v Beam Dump : ' P

/ Energy Recovery
Coherent o o Polarized

Electron Cooler Electron Source

eRHIC

1.3:6.6 GeV

Detector |
hadrons ™ ?-l:‘:: :.:::
Detector |l
electrons
100 meters
\
From AGS
When completed, eRHIC will be the most advanced and .

energy efficient accelerator in the world

o
\' \l l I »
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Innovations and challenges of eRHIC

@ High intensity (50mA) polarized electron source
using multi-cathode gun (“Gatling Gun”)

@ Energy Recovery Linac with 98% recovery
efficiency (energy loss from synchrotron
radiation)

@ Up to 16 re-circulations of the electron beam -
through the same 1.32 GeV Linac

@ Novel FFAG lattice allows 16 beam re- .
circulations using only two beam transport rings g o

@ Permanent magnet technology is used for the o7
FFAG beamline magnets eliminating the need /~\
for power supplies, power cables and cooling. "

@ Strong cooling of hadron beams gives high
luminosity while minimizing electron beam
current and synchrotron radiation loss.

7
20
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eRHIC high-luminosity IR with * =5 cm

Horizontal Displacement (mm)

Distance from IP (mm)

@ 10 mrad crossing angle and crab-crossing xommi® twl Ll e wmees

@ 90 degree lattice and beta-beat in adjacent arcs 3
(ATS) to reach beta®™ of 5 cm with good dynamic ' /V D,

aperture B, f/\/

@ Combined function triplet with large aperture for B (m) <l O (m)
forward collision products and with field-free l
passage for electron beam

@ Only soft bends of electron beam within 60 m 7AW
upstream of IP BN S VA BN VSN

1730 1780 1830 1880 1930 1980 2030 2080
path length (m)




Luminosity [cm? s™']

10%

Design goals match physics goals

E, = 250 GeV E, = 250 GeV
E.=5.1 GeV E.=9.4 GeV

Peak luminosity vs. CM energy

le =50 mA

—_
(@)
&)
i
T

E, = 250 GeV
E.=15.9 GeV
lo =10 mA

\
E, = 250 GeV

E.=21.2 GeV

EIC White Paper: EIC White Paper: lo=3mA

Peak luminosity and CoM energy range Upgrade

25 50 75 100 125 150
Center-of-Mass Energy [GeV]

Detector requirements:
» Good PID (e/h and &, K, p)

» Wide acceptance to reach
edges of kinematic range

» Ongoing generic EIC
detector R&D program

Brookhaven Science Associates

Luminosity (cm= sec)

EIC requirements for
physics opportunities

Spin and Flavor Structure of

the Nucleon and Nuclei

Internal
Landscape

the Nucleus Densities - Saturation

40 80 120

14 " ’
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QCD at Extreme Parton
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Selected Measurements
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PDFs: Impact on nuclear modification

(C) (C)

I:{valence F*sea I:‘gluon
1.4 1.4
~ 15 Q%=5 GeV? Y ’
o 2 .
% i !
S 1.0 1.0
i
‘C o8 0.8
3 ' '
o 06 Current EPS09 0.6
o - == with eRHIC (no charm) -
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1 | | | | 1
104  10° 102 107 10% 10° 102 107
X X
1.4 1.4
L 12 1.2
8 !
o 1.0 1.0
NII -
T 08 0.8
5: L
o 06 Current EPS09 0.6
> - = with eRHIC (no charm) i
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1 | |

104 10° 102 10°
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Imaging quarks and gluons

using Generalized Parton Distributions (GPD’s):

x ¢(x,b,0%) [fm™) x ¢"*%(x,b,0?) [ fm™?) x g(x,b,0%) [fm™?)

15k x=10"?
b, =0 fm
7 = 4 GeV?
1}
/ \

)
]

S
)

B enmiad s g
g NN

47 NN
W, 7
W
\.

_-/
e |

-1.5f ]\——/

L L A L " “ L L L L L u AL L
-15 -1 05 O 0.5 1 15 -15 -1 =05 O 0.5 1 15 =15 -1 =05 0O 0.5 1 1.5
by [ fm] by [fm] by [ fm]
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Imaging gluons

> Exclusive vector meson production:
Y’ Q

«,\,‘,\/\7// __— J¥, 0, ... g Fourier transform of the t-dependence
T+ & /I _e Mg o =) Spatial imaging of glue density
73 3\ P depdQdt
— o Resolution ~ 1/Q or 1/Mg

> Gluon imaging from simulation:

‘ e+p—e+p+Jp
’ 158 < Q2 + M3, < 25.1 GeV?

2 —— :E
S t - “'I 00s
E ‘, 14 |§ 0@6
o T — 12 14 18
S 6 012
S s| . obs
E o c‘,me.\-l;.,.c. olozs ) — ——— / gﬁ
“— 02 04 06 o8 T 12 14 1.6 002
E 3t o %2 14 18
o . . .

il oz Images of transverse gluon distributions

1 S 0.08 = H

P 2t i e 812{ > from exclusive J/§ production

0 0.2 0.4 0.6 08 1 1.2 14 1.8‘ ) o.o2
' °2 1.4 18
-
by (fm)

Only possible at the EIC: From the valence quark region
deep into the gluon / sea quark region

BROOKHEVEN
NATIONA LABORATORY
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Solving the spin puzzle

> The EIC - the decisive measurement (in 15t year of running):

(Utilizing the wide Q2, x range accessible at the EIC)

R — op o . ; 1

0.04 XAU JE xAd 3 0.04 TR T L

_ all uncertainties for Ay’= 9 1t : - Q2 =10 GeV2 R
0.02 i |y - 0.02 - -

' : - current .

0 e ] 0 0_5 - data -

-0.02} ¥ESE DSSV - 1-0.02 3 T T

. B DSSV and - — X 4
-0:04r 25GeV on 250 GeV 1-0-04 og ol w/EIC data

: _....' T '....: = R e e .n,._- 0.3 g','- - -
0.04 XAS 1k XAg Before/after ] =8

. R o
0.02f [ B Dssv+

: | B el -

ok 5x250 |

g I EIC 20<250 |
-0.02F L all uncertainties for Ay'=9 |

E .1 l L A A L l A A A A l A A A A l A A
-0.04 0.3 0.35 0.4 0.45

[ 1

f AZ(x,Q°%) dx
0.001
No other machine in the world can perform this measurement!
> Solution to the proton spin puzzie:
& Precision measurement of AG — extends to smaller x regime
< Orbital angular momentum — motion transverse to proton’s momentum o~
BROOKHEVEN
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Probing gluon saturation

> Strong suppression of di-hadron correlation in eA:

Simulation
el
u H I I IELENLAL L L I B
’e’/,/ 0.4 [ pi®>2GeVic 15 GeV on 100 GeV ]
0‘2'1», q bk 1GeVic <p**<p’® -
L iet- T 02«2, 2*<0.4 7
> et N 1<quQGz;Vz,:; _+_ -+— e+Au - no-sat -
— 0_3 _— 06<y<08 ",' “‘ _+_ eAu - sat _—
» Jet-2 = - ' -
< N :
O 021 3
G' 011 _ . -
VR _ i
Either Jets or use leading \Q_‘ o ..2. .
hadrons from jets (dihadrons) : ' ' -
beam view Ad) (rad)

<& This has never been measured in e+A (only in d+Au, where it is ambiguous)
¢ Correlation directly probes the saturated gluon distribution in a large nucleus

¢ Suppression of back-to-back hadron correlation

BROOKHAVEN
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Exclusive vector meson production

dol® Au— €' AU /4t (nb/GeV?)

Broockhaven Science Associates

5 o coherent - no saturation
10°% = ¢ o incoherent - no saturation
= O = coherent - saturation (bSat)
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107 p(Kdecay) > 1 GeV/c
- (b) St/ = 5%
10‘2_lllllllllllllllllllllllllllllllllll
0 002 004 0.06 008 0.1 0.12 0.14 0.16 0.18
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‘_.g 102
S~
— "
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t 1L Wf
3 3
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o —
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0 0.02 004 0.06 0.08 0.1 0.12 0.14 0.16 0.18
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Why now?
A set of compelling physics questions has been formulated.

A set of measurements has been identified that can provide

answers to many of the open questions about the gluon
structure of the proton and of nuclei.

A powerful formalism has been developed over the past
decade that connects measurable observables to rigorously
defined properties of the QCD structure of nucleons and nuclei.

Accelerator technology has reached a state where a capable
EIC can be constructed at an affordable cost.
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A set of compelling physics questions has been formulated.

A set of measurements has been identified that can provide

answers to many of the open questions about the gluon
structure of the proton and of nuclei.

A powerful formalism has been developed over the past
decade that connects measurable observables to rigorously
defined properties of the QCD structure of nucleons and nuclei.

Accelerator technology has reached a state where a capable
EIC can be constructed at an affordable cost.

The new U.S. Long Range Plan

for Nuclear Science will contain

a strong recommendation for an
Electron-lon Collider.
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