NVIDIA.

HIERARCHICAL ALGORITHMS ON
HETEROGENEOUS ARCHITECTURES:

ADAPTIVE MULTIGRID SOLVERS FOR LQCD ON GPUS

M Clark
NVIDIA

Contents

s|ntroduction to Lattice QCD

=Introduction to GPUs

«QUDA Library

«Multigrid on Heterogeneous Architectures
sSummary

Structure within
the Atom

Quark e
f~,;'v',j. < 10 19 RN k

Quantum Chromodynamics

= The strong force is one of the basic forces of nature
(along with gravity, em and weak) W

Electron
Size < 107'°m

r =~ Proton

= |t’s what binds together the quarks and gluons in the
proton and the neutron (as well as hundreds of other

particles seen in accelerator experiments) ELEMENTARY
. PARTICLES
= QCD is the theory of the strong force
= |t’s a beautiful theory, lots of equations etc.
1
@) =5 [lave I o)

...but

Fermi National Accelerator Laboratory

Lattice Quantum Chromodynamics

Theory is highly non-linear = cannot solve directly
Must resort to numerical methods to make predictions

Lattice QCD
e Discretize spacetime = 4-d dimensional lattice of size Ly X L, X L:X L;

e Finitize spacetime = periodic boundary conditions
 PDEs = finite difference equations

High-precision tool that allows physicists to explore the contents of nucleus
from the comfort of their workstation (supercomputer)

Consumer of 10-20% of North American (public) supercomputer cycles

Steps in a lattice QCD calculation

1. Generate an ensemble of gluon field (“gauge”) configurations
= Produced in sequence, with hundreds needed per ensemble
= Strong scaling required with O(100 Tflops) sustained for several months
= 50-90% of the runtime is in the linear solver

DIF G, y; UYF () = nf (x)

2. “Analyze” the configurations or “Ax = b”

= (Can be farmed out, assuming O(1 Tflops) per job.

= 80-99% of the runtime is in the linear solver
Task parallelism means that clusters reign supreme here

<

D. Weintroub

D. Weintroub

RAVAIDLVA

s

-

.

S LAY

M — NI.\',

2m_, — m,,

WilP-18)

Y(1D-18)

Y(Z2P-18)

Y(35-15)

Y(IP-1S)

09 1.0 1.1 09 1.0 1.1
quenched/experiment (n .= 2+1)/experiment

Davies et al

1600

1280 1

960

Gflops/s

640

320

== Double Precision: NVIDIA GPU

The March of GPUs

Peak Double Precision FP

Kepler+
Kepler

Fermi+
M2090

Fermi

M2070 12-core

vy Bridge
8-core 3 GHz
Sandy Bridge

3 GHz

Westmere
3 GHz

M1060 D€halem
3 GHz

2008 2009 2010 2011 2012 2013

=@-=Double Precision: x86 CPU

Peak Memory Bandwidth
Kepler+
300
Kepler
250 Fermi+
M2090
200
(V)]
~
(Vs
£ 150 -
g 12-core
vy Bridge
100 8-core 3 GHz
Westmere Sandy Bridge
Nehalem 3 GHz 3 GHz
>0 3 GHz
0
2007 2008 2009 2010 2011 pAVNW 2013
~-NVIDIA GPU (ECC off) ~4-x86 CPU

What is a GPU?

* Kepler K20X (2012)
— 2688 processing cores
— 3995 SP Gflops peak
» Effective SIMD width of 32 threads (warp)
* Deep memory hierarchy
* As we move away from registers
— Bandwidth decreases

— Latency increases
e Programmed using a thread model

— Architecture abstraction is known as CUDA
— Fine-grained parallelism required
* Diversity of programming languages
— CUDA C/C++/Fortran
— OpenACC, OpenMP 4.0
— Python, etc.

Host Memory

PCle I 8.0 GB/s per direction

LQCD applications

* Some examples

— MILC (FNAL, Indiana, Arizona, Utah)
* strict C, MPI only

— CPS (Columbia, BNL, Edinburgh)
* C++ (but no templates), MPI and partially threaded

— Chroma (Jlab, Edinburgh)

* C++ expression-template programming, MPI and threads

— BQCD (Berlin QCD)
* F90, MPI and threads

» Each application consists of 100K-1M lines of code
* Porting each application not directly tractable

Enter QUDA

e “QCD on CUDA” - http://lattice.github.com/quda

o Effort started at Boston University in 2008, now in wide use as
the GPU backend for BQCD, Chroma, CPS, MILC, etc.

e Provides:

— Various solvers for all major fermonic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

* Maximize performance / Minimize time to science

— Exploit physical symmetries to minimize memory traffic

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Domain-decomposed (Schwarz) preconditioners for strong scaling

— Multigrid solvers for optimal convergence

http://lattice.github.com/quda

QUDA is community driven

= Ron Babich (NVIDIA)
= Kip Barros (LANL)

= MAC (NVIDIA)

= Justin Foley

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)

= Balint Joo (Jlab)

= Hyung-Jin Kim (BNL)

= Jian Liang (IHEP)

= Guochun Shi (NCSA -> Google)

= Alexei Strelchenko (Cyprus Institute -> FNAL) r ’

= Alejandro Vaquero (Cyprus Institute)
= Frank Winter (UoE -> Jlab)

" Yibo Yang (IHEP) —— — a—

QMP QLA QMT
Message Passing Linear Algebra Threadmg

The Dirac Operator

» Quark interactions are described by the Dirac operator
- First-order PDE acting with a background field
- Large sparse matrix

Dirac spin projector
matrices
(4x4 spin space) \ (3x3 color space) (12x12 spin ®color space)

SU3) QCD gauge field

(link matrices) A is the clover matrix

4
M:U,:C’ — Z(P_'u X Uéb 5:U—I—/l,a:’ + P—l_'u X Uaﬁiﬂ 5:13—,&,:{;’) + (4 + m + Ax)5:v,a;’
u=1

m quark mass parameter

= 2Da:,:c’ + (4 +m+ Ap)dy

- 4-d nearest neighbor stencil operator acting on a vector field
» Eigen spectrum is complex (typically real positive)

Mapping the Dirac operator to CUDA

e Finite difference operator in LQCD is known as Dslash

e Assign a single space-time point to each thread
— V = XYZT threads, e.g., V = 244 => 3.3x10° threads

e Looping over direction each thread must
- Load the neighboring spinor (24 numbers x8)
- Load the color matrix connecting the sites (18 humbers x8)
- Do the computation
- Save the result (24 numbers)

e Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity

e QUDA reduces memory traffic
— Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
— Similarity transforms to increase operator sparsity

— Use 16-bit fixed-point representation
e No loss in precision with mixed-precision solver
« Almost a free lunch (small increase in iteration count)

Tesla K20X

Kepler Wilson-Dslash Performance

V—V¥ Half 8 GF
Half 8

A—A Half 12
Single 8 GF

Bl Single 8
@—@ Single 12

N
A
Q 500
o
3

32
Temporal Extent VV| ISO N DS I as h

K20X performance
V = 243xT

Linear Solvers

= Nature of eigen-spectrum constrains which solver choice [FER TSRy

- CGNE / CGNR Bk = (rK,rk)/(rk-1,rk-1)
- BiCGstab Pi+1 = Ik - PPk
- GMRES qk+1 = A P+

= Condition number inversely proportional to mass S:gk;rk_)gpk+l’qk+l)
- Light (realistic) masses are highly singular o :XLO?;EI

= Entire solver algorithm must run on GPUs K = ke

— Time-critical kernel is the stencil application (SpMV)
— Also require BLAS level-1 type operations

conjugate
gradient

Chroma Benchmark with QUDA

Chroma

243x128 lattice
Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge

8
6.8
E I
oo
e
24
)
2 3
©
S 2 1.0
m .
1 0.5
0
1xCPU+ 1xCPU+ 2xCPU+ 2xCPU+ 2xCPU+ 2xCPU+
1xGPU 2xGPU 1xGPU 2xGPU 1xGPU 2xGPU
1xCPU 2xCPU 19240).4 M2090 9240).4
CPU Single-Socket Dual-Socket

I 7 I — l l AlIlQIA o 2 VeaaValVeaYd I I — NN o VaaVbaealViaY d I

Multi-GPU Implementation

= Scalable multi-GPU solver
required

— cuda streams to overlap
comms and compute

— Packing kernels for
contiguous data for MPI

— Utilize GPU Direct for
low-latency inter-GPU
communication

Relative Scaling

Strong Scaling Chroma with DD

~ O O

. TN
o N

SO N ~ OO O

Chroma

3 [
48 X5_1 2 Iattlc_e _ _ _ “XK7" node = XK7 (1x K20X + 1x Interlagos)
Relative Scaling (Application Time) “XE6” node = XE6 (2x Interlagos)

XK7 (K20X) (BiCGStab)
XEG6 (2x Interlagos)

0 128 256 384 512 640 768 896 1024 1152 1280
Nodes

Communication-Reducing Algorithms

* Reduce inter-node communication and synchronization
— Inter-node communication comes from face exchange
— Synchronization comes from global sums
» Utilize domain-decomposition techniques, e.g., Additive Schwarz

N\

: solve domain-restricted

8 e s | D+ PP)/ 3 ; ; /
sites 1in {2 1 t ¢ 1] > ' _ : ____\eq]_la,t.lon n €2 95

K n " R RN =
b

sites 1n (2o
sites 1n ()3

sites 1n (24

figure taken from Osaki and Ishikawa

Communication-Reducing Algorithms

* Non-overlapping blocks - simply switch off inter-node comms

* Preconditioner is a gross approximation

— Use an iterative solver to solve each domain
system

— Only block-local sums required

— Require only ~10 iterations of domain solver
= 16-bit precision

— Need to use a flexible solver = GCR

* Block-diagonal preconditioner

impose A cutoff

— Limits scalability of algorithm

— In practice, non-preconditioned part
becomes source of Amdahl

A

Strong Scaling Chroma with DD

Chroma

483x512 lattice

_ _ R _ "XK7" node = XK7 (1x K20X + 1x Interlagos)
Relative Scaling (Application Time)

“XEG6” node = XEG6 (2x Interlagos)

RN
(00)

XK7 (K20X) (DD+GCR)

16

14
£ 12 3.58x vs. XE6
:Dg e XK7 (K20X) (BiCGStab) @1152 nodes
S 3
I
!

a m Interlagos)

2

0

0 128 256 384 512 640 768 896 1024 1152 1280
Nodes

Full Gauge Generation with Chroma

V=40" x 256, 2+1 Anisotropic Clover, m_ ~ 230 MeV, 7=0.2

®—® CPU only (XE nodes)
16000 @ CPU+QUDA

A—A QDP-JIT
14000 O—0 QDP-JIT+QUDA

18000

12000

10000

8000

0
)
£
—
>
C
@)
e
O
2,
O
—
|_

6000

4000

2000

128 256 400 512 800 1600 Winter, Clark, Joo and
XE Sockets / XK Nodes Edwards, IPDPS 2014

Adaptive Geometric Multigrid

323x256 anisotropic clover on 1024 BG/P cores

mixed precision BICGStab =g
mixed precision multigrid =—tte—

13.9x

M[
Mphys Miight
l

Sl

O
=
O
7p
| -
0,
o
(%)
O
-
Q
O
D
/p

-0.088 -0.086 -0.084 -0.082 -0.08 -0.078 -0.076 -0.074
mass

Osborn et al 2011

Introduction to Multigrid

* Preconditioner is a gross approximation

 Stationary iterative solvers effective on high frequency
errors

* Minimal effect on low frequency error
* Example

* Free Laplace operator in 2d

* AX = 0, Xo = random

» Gauss Seidel relaxation

* Plot error ej = -X;

Introduction to Multigrid

* Preconditioner is a gross approximation

 Stationary iterative solvers effective on high frequency
errors

* Minimal effect on low frequency error
» Example
* Free Laplace operator in 2d
* AX = 0, X0 = random
» Gauss Seidel relaxation
* Plot error ej = -X;

Introduction to Multigrid

* Preconditioner is a gross approximation

 Stationary iterative solvers effective on high frequency
errors

* Minimal effect on low frequency error
» Example
* Free Laplace operator in 2d
* AX = 0, X0 = random
» Gauss Seidel relaxation
* Plot error ej = -X;

Introduction to Multigrid

* Preconditioner is a gross approximation

 Stationary iterative solvers effective on high frequency
errors

* Minimal effect on low frequency error
» Example
* Free Laplace operator in 2d
* AX = 0, X0 = random
» Gauss Seidel relaxation
* Plot error ej = -X;

Introduction to Multigrid

* Preconditioner is a gross approximation

 Stationary iterative solvers effective on high frequency
errors

* Minimal effect on low frequency error
» Example
* Free Laplace operator in 2d
* AX = 0, X0 = random
» Gauss Seidel relaxation
* Plot error ej = -X;

Introduction to Multigrid

» Low frequency error modes are smooth
» Can accurately represent on coarse grid

» Low frequency on fine => high frequency on coarse
» Relaxation effective agin on coarse grid
» Interpolate back to fine grid

Multigrid V-cycle

* Solve
1. Smooth
. Compute residual
. Restrict residual
. Recurse on coarse problem
. Prolongate correction
. Smooth
/. If not converged, goto 1

= Multigrid has optimal scaling
— O(N) Linear scaling with problem size
— Convergence rate independent of condition humber

* For LQCD, we do not know the null space components that need
to be preserved on the coarse grid

o U1 AN W N

Adaptive Geometric Multigrid

» Adaptively find candidate null-space vectors

— Dynamically learn the null space and use this to
define the prolongator

— Algorithm is self learning

* Setup

1. Set solver to be simple smoother

2. Apply current solver to random vector vi = P(D) n;i

3. If convergence good enough, solver setup complete

4. Construct prolongator using fixed coarsening (1 - P R) vk =0
= Typically use 4* geometric blocks
= Preserve chirality when coarsening R = ys PT ys = PT

5. Construct coarse operator (Dc = R D P)

6. Recurse on coarse problem

/. Set solver to be augmented V-cycle, goto 2

Adaptive Geometric Multigrid

Adaptive Geometric Multigrid

Adaptive Geometric Multigrid

32796 CG

24°64 CG

16’64 CG
® @ 2464 Eig-CG
B ‘B 1664 Eig-CG
@ -® 32’96 MG-GCR

7))
S
o
=
<
Q
;:
Q.
Q.
<
—
o
-
<
S
O
Q.
o
Q
<
S
o
-

240 vectors

20 vectors

Babich et al 2010

Motivation

Wallclock time for Light Quark solves in Single
Precision

= A CPU running the optimal
algorithm surpasses a highly
tuned GPU sub-optimal
algorithm

» For competitiveness, MG on
GPU 1s a must

» Seek multiplicative gain of
architecture and algorithm

m

©
c
O
S
()
7))

—

)
.S
el
=
o
7y
|
—
O
[Pk
)
k=
-
c
=
(a
)
(o]
(C
-
)
>
<

QUDA (32 XK nodes) MultiGrid (16 XE nodes)

Chroma propagator benchmark
Figure by Balint Joo

MG Chroma integration by Saul Cohen
MG Algorithm by James Osborn

The Challenge of Multigrid on GPU

* GPU requirements very different from CPU
— Each thread is slow, but O(10,000) threads per GPU

* Fine grids run very efficiently
— High parallel throughput problem

* Coarse grids are worst possible scenario

— More cores than degrees of freedom

— Increasingly serial and latency bound

— Little’s law (bytes = bandwidth * latency)
— Amdahl’s law limiter

* Multigrid decomposes problem into
throughput and latency parts

Hierarchical algorithms on
heterogeneous architectures

GPU

Thousands of cores
for parallel processing

CPU

Few Cores optimized
for serial work

Heterogeneous Updating Scheme

» Multiplicative MG is necessarily EmsEuEEE musenEn
serial process
— Cannot utilize both GPU and CPU
simultanesouly

Q Q @) ? Q Q
o, Q @) + Q Q
O O O ‘ o——O

Heterogeneous Updating Scheme

* Multiplicative MG is necessarily e

serial process T

SEE— — Cannot utilize both GPU and CPU EEEEEEE EEEEEE
\ / » Additive MG is parallel -
o—o o—o A

— Can utilize both GPU and CPU
simultanesouly

» Additive MG requires accurate

T 7 coarse-grid solution
¢—0—0 —>0—0—0 — Not amenable to multi-level
O—6—0 o—o—0 — Only need additive correction at
CPU<->GPU level interface
\ / * Accurate coarse-grid solution
\ X maybe cheaper than serialization

/ synchronization

Design Goals

e Performance

— LQCD typically reaches high % peak peak performance
— Brute force can beat the best algorithm

» Flexibility
— Deploy level i on either CPU or GPU

— All algorithmic flow decisions made at runtime
— Autotune for a given heterogeneous architecture

* (Short term) Provide optimal solvers to legacy apps
— e.g., Chroma, CPS, MILC, etc.

* (Long term) Hierarchical algorithm toolbox
— Little to no barrier to trying new algorithms

Multigrid and QUDA

* QUDA designed to abstract algorithm from the heterogeneity

LatticeField

/N

ColorSpinorField GaugeField

/N /N

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField

Multigrid and QUDA

* QUDA designed to abstract algorithm from the heterogeneity

olorSpinorFielc augeFielc

/N /N

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField

Multigrid and QUDA

* QUDA designed to abstract algorithm from the heterogeneity

LatticeField

/N

ColorSpinorField GaugeField

Alrcnitecture

Multigrid and QUDA

» Algorithms are straightforward to write down
= QUDA Multigrid V-cycle source:

void MG: :operator() (ColorSpinorField &x, ColorSpinorField &b) {

1f (param.level < param.Nlevel) {

(*presmoother) (x, b); // do the pre smoothing
transfer->R(*r coarse, *r); // restrict to the coarse grid
(*coarse) (*x_coarse, *r coarse); // recurse to the next lower level
transfer->P(*r, *x coarse); // prolongate back to this grid
(*postsmoother) (x,b); // do the post smoothing

} else {

(*coarsesolver) (x, b); // do the coarse grid solve

v

Ingredients for Parallel Adaptive Multigrid

= Prolongation construction (setup)
- Block orthogonalization of null space vectors
- Sort null-space vectors into block order (locality)
- Batched QR decomposition

= Smoothing (relaxation on a given grid)
- Repurpose the domain-decomposition preconditioner

= Prolongation
- interpolation from coarse grid to fine grid
- one-to-many mapping

= Restriction
- restriction from fine grid to coarse grid
- many-to-one mapping

» Coarse Operator construction (setup)
- Evaluate R 4 P locally
- Batched (small) dense matrix multiplication

» Coarse grid solver
- direct solve on coarse grid
- (near) serial algorithm

Parallel Implementation

= Coarse operator looks like a Dirac operator
- Link matrices have dimension Ny X Ny (e.g., 20 x 20)

w2l
ISCJS ‘e — T Z { isc,js’c’ l_l_,uaj + }/ISC.]S re! 51 ,uaji| T (M o Xi§é,j§/é/) 5i§é7j§/é/

= Fine vs. Coarse grid parallelization
- Coarse grid points have limited thread-level parallelism
- Highly desirable to parallelize over fine grid points where possible

= Parallelization of internal degrees of freedom?
- Color / Spin degrees of freedom are tightly coupled (dense matrix)
- Each thread loops over color / spin dimensions
- Rely on instruction-level parallelism for latency hiding

» Parallel multigrid uses common parallel primitives
- Reduce, sort, etc.
- Use CUB parallel primitives for high performance

Writing the same code for two architectures

» Use C++ templates to abstract arch specifics
— Load/store order, caching modifiers, precision, intrinsics

 CPU and GPU almost identical

— CPU and GPU kernels call the same functions
— Index computation (for loop -> thread id)
— Block reductions (shared memory reduction and / or atomic operations)

Writing the same code for two architectures

template<.> host device Real bar(Arg &arg, int x) {
// do platform independent stuff here
complex<Real> a[arg.length];
arg.A.load(a);

field order, cache modifiers, textures 99% of computation goes here

arg.A.save(a)

platform specific load/store here: < .. // do computation <——— Platiormindependent stuff goes here
return norm(a);
}

template<..> void fooCPU(Arg &arg) { template<.> global void fooGPU(Arg arg) {
N arg.sum = 0.0; int tid = threadIdx.x + blockIdx.x*blockDim.x;
~ #pragma omp for real sum = bar<..>(arg, tid);
for (int x=0; x<size; x++) platform specific parallelization __shared typename BlockReduce::TempStorage tmp;
arg.sum += bar<.>(arg, X); GPU: shared memory arg.sum = cub::BlockReduce<..>(tmp).Sum(sum);
} CPU: OpenMP, vectorization }

- CPU GPU

)

0.0001

Ir i

- (GCR + MR preconc
= (GCR + MG preconc

1tioner

1tioner

—_—

T T
L

(IR
L LI

IR
L

-

Current Status

= Wilson multigrid fully numerically verified

» Consistent with results from QCDMG (Babich et al 2010)
» Framework still slow

» Small speedup observed versus BiCGstab (~1.5x)

» Host code not optimized at all (serial)

» GPU <-> CPU transfers not optimal

» Optimal code requires heavy degree of templating
(compilation and link time is increasingly a problem)

» Early observations

» Using 16-bit precision for smoothing does not affect
convergence

» Coarse-grid solve can be poorly conditioned thus requiring
single precision

Next Steps

« Optimize
— E.g., kernel fusion, CPU OpenMP/vectorization
— read/write directly to/from CPU memory

» Add support for clover coarsening and put into production asap
» Strong scaling
» Algorithm research

— Precision investigation

— Coarse-grid solvers (direct vs. indirect)
— Staggered multigrid
— Comparison of traditional versus heterogeneous update

Hierarchical Algorithm Toolbox

» Exploit closer coupling of precision and algorithm

— QUDA designed for complete run-time specification of
precision at any point in the algorithm

— Currently supports 64-bit, 32-bit, 16-bit
— |Is 128-bit or 8-bit useful at all for hierarchical algorithms?

* Domain-decomposition (DD) and multigrid
— DD solvers are effective for high-frequency dampening

— Overlapping domains likely more important at coarser scales
» Real goal is developing asynchronous solvers for
future heterogeneous architectures

Heterogeneous Computing in 2016

ﬁ

NVLink
380 GB/s

HBM DDR4
1 Terabyte/s 50 75 GB/s

HHH

Summary

* Introduction to QUDA library

* Production library for GPU-accelerated LQCD
— Scalable linear solvers
— Coverage for most LQCD algorithms

* Current research efforts focused on adaptive multigrid
algorithms

— All of the nitty gritty details worked out
— Now time for fun

* Hierarchical and heterogeneous algorithm research toolbox
— Aim for scalability and optimality

» Lessons today are relevant for Exascale preparation

NVIDIA.

BACK UP SLIDES

The compilation problem...

 Tightly-coupled variables should be at the register level

* Dynamic indexing cannot be resolved in register variables

— Array values with indices not known at compile time spill out into
global memory (L1 / L2 / DRAM)

template <typename ProlongateArg>
__global void prolongate(ProlongateArg arg, int Ncolor, int Nspin) {
int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<Nspin; s++) {
for (int c=0; c<Ncolor; c++) {

}
}
}

The compilation problem...

* All internal parameters must be known at compile time
— Template over every possible combination O(10,000) combinations
— Tensor product between different parameters
— 0(10,000 combinations) per kernel
— Only compile necessary kernel at runtime

template <typename Arg, int Ncolor, int Nspin>
__global void prolongate(Arg arg) {
int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<Nspin; s++) {
for (int c=0; c<Ncolor; c++) {

}
}

< }
» JIT support could help here...

QUDA Roadmap

= 0.6.X

= Long-link computation
= Reconstruct 9/13 support for HISQ fermions
= Google test API for stronger unit tests (QUDA now in CUDA regression suite)

= 0.7.0

» Twisted-clover and Mobius fermions

» EigCG solver

» Better strong scaling

» Stabilized mixed-precision CG

» Clover field computation, inversion and force terms

= 0.8.0

= Adaptive multigrid
» Optimized dslash (essentially untouched since 2009)
<« = s-step solvers

» Taking requests (and more importantly volunteers!)

Run-time autotuning

= Motivation:

—Kernel performance (but not output) strongly dependent on launch
parameters:

= gridDim (trading off with work per thread), blockDim
= blocks/SM (controlled by over-allocating shared memory)

» Design objectives:

—Tune launch parameters for all performance-critical kernels at run-
time as needed (on first launch).

—Cache optimal parameters in memory between launches.
—Optionally cache parameters to disk between runs.
—Preserve correctness.

Auto-tuned “warp-throttling”
= Motivation: Increase reuse in limited L2 cache.

500
450
400
350
300
250
200
150
100
50

o
GTX 580 | GTX 680 | GTX580 | GTX 680 | GTX580 | GTX 680

Double Single Half

B BlockDim only
¥ BlockDim & Blocks/SM

Run-time autotuning: Implementation

» Parameters stored in a global cache:
static std::map<TuneKey, TuneParam> tunecache;

= TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

= TuneParam is a struct specifying the tune blockDim,
gridDim, etc.
» Kernels get wrapped in a child class of Tunable (next slide)

= tuneLaunch() searches the cache and tunes if not found:
TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled,

QudaVerbosity verbosity);

Run-time autotuning: Usage

= Before:
myKernelWrapper(a, b, ¢);

= After:
MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary

» Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

* Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.

Virtual member functions of Tunable

" [nvoke the kernel (tuning if necessary):

—apply()
= Save and restore state before/after tuning:
—prelune(), postTune()

* Advance to next set of trial parameters in the tuning:
—advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
—advanceTuneParam() // simply calls the above by default

» Performance reporting
—flops(), bytes(), perfString()

) = etc.

Kepler Wilson-Solver Performance

<4—< Single-12 / Half-8-GF
A—A Single-12 / Half-8
Single-12 / Half-12
Bl Single-12 / Single-8
500 @—©® Single-12

09
A
S 400
s
G

32
Temporal Extent Wilson CG

K20X performance
V = 243xT

(Stable) Mixed-precision CG

= CG convergence relies on gradient vector being orthogonal to

residual
- Re-project when injecting new residual

= 0. chosen to minimize |e|a
- True irrespective of precision of p, q, r
- Solution correction is truncated if we keep low precision x

- Always keep solution vector in high precision ,
while (|ri|> ¢) {

« B computation relies on (ri,ij) = [rif? 3 R
- Not true in finite precision Pk-1 = Ik - PPk
- Polak-Ribiere formula is equivalent and self-stabilizing ki1 = A pre
through local orthogonality o = (rk,rk)/(Px+1, qk+1)

rk+1 = Ik - OlQk+1

Pk = a(o(qk,qx) - (Px,qk))/(Xk-1,1k-1) o X0t G
» Further improvement possible k=k+1
— Mining the literature on fault-tolerant solvers...

Comparison of staggered double-halt solvers
V=16"m=0.01

ble-half (naive) |
“ L
*m r\ —— double-half (new)

™,

W,

double

0.0001

1e-06

-

Comparison of staggered double-half solvers

V=16" m=0.001
| | | | | | | |

10000 — —— double-half (naive)

—— double-half (new)
louble

N

;} IR

le—OSE | | | | | | | | | %

40000 60000 30000

Deflation Algorithms in QUDA

» EigCG implemented in QUDA (Alexei Strelchenko)

, //accum. Ritz vectors
for s = 1,...,51 X //for 51 RHS
xo = UH U b, //Galerkin proj.

x;, V,H| = eigCG(nev,m, A, xy,b;) //eigCG part

V = orthogonalize V against U //(not strictly needed)
‘U, H| =RayleighRitz[U, V]
end for

Deflation Algorithms in QUDA

= Use MAGMA library for required LAPACK functionality
= Memory not a problem
» EigCG only works on subsets

- Cache full set on CPU . TAccluZZy of final Ritz vectors, L=24,T=48
= Extensible eigenvector solver 2| @recssase

framework for future solvers ;

= EigBiCG

= GMRES-DR

s etc.

Deflation Algorithms in QUDA

1Ogonvergence of 48 successive linear systems, L=24,T=48 1O(;onvergence of 48 successive linear systems, L=24,T=48

Tesla K40m] Tesla K40m
@ rec 8 gauge @ rec 8 gauge

O
>
9
m
()
a'd

Residual

1000 1500 2000

1000 1500 2000
lters

lters

degenerate twisted mass 243x48, K=0.161231, p = 0.0085

Mixed-Precision Deflation Algorithms

» Mixed-precision CG
» Precision-truncated residual is ignorant of low modes
= This can causes breakdown in CG recurrence relations
» Ameliorated by using reliable updates (and other methods)

» EigCG phase seems to need double precision

» Loss of precision in finding Ritz vectors results in very poor
eigenvector set

» Deflated CG is hugely stabilized once low modes projected out
= double-half solvers now completely stable at light quark mass
» e.g. degenerate twisted mass 24°x48, k = 0.161231, p = 0.0040

Non-deflated double-single CG: 15 sec
Non-deflated double-half CG: (does not converge)
INitCG double-single initCG: 2.42 sec

INitCG double-half initCG: 1.84 sec

(combination of algorithm and precision)

Mixed Precision Deflation Algorithms

» EigCG seems to need high precision (double)

10gonvergence of 48 successive linear systems, L=24,T=48

10(e;onvergence of 48 successive linear systems, L=24,T=48

Tesla K40m

Tesla K40m @ rec 8 gauge

@ rec 8 gauge

Residual

©
S
2
m
Q
o

0 500 1000 1500 2000 2500 3000 3500 4000 4500 500 1000 1500 2000 2500 3000 3500 4000 4500
Ilters lters

double-single double-half

degenerate twisted mass 243x48, K=0.161231, y = 0.0040

The Future of GPUs

= GPUs viable because of multi SB gaming market
= Coming to an end anytime soon?

The Future of GPUs

= Each photo-realistic image takes ~2 seconds
» Photo-realistic imagery requires ~200x faster
» Add physics

» Rigid body mechanics

» Computational fluid dynamics (smoke, water, wind)

= Hair

n efC.

=« GPUs aren’t slowing down anytime soon

® Machine

O Machine + Algo

—_
O
o)

A
o —
< O
~—

“n
N
e
Z
¢>«BOY)
=
4
S
O
-

—
O
oy

1995 2000
year

