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Quantum Chromodynamics

= The strong force is one of the basic forces of nature
(along with gravity, em and weak) W

Electron
Size < 107'°m

r =~ Proton

= |t’s what binds together the quarks and gluons in the
proton and the neutron (as well as hundreds of other

particles seen in accelerator experiments) ELEMENTARY
. PARTICLES
= QCD is the theory of the strong force
= |t’s a beautiful theory, lots of equations etc.
1
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...but

Fermi National Accelerator Laboratory



Lattice Quantum Chromodynamics

Theory is highly non-linear = cannot solve directly
Must resort to numerical methods to make predictions

Lattice QCD
e Discretize spacetime = 4-d dimensional lattice of size Ly X L, X L:X L;

e Finitize spacetime = periodic boundary conditions
 PDEs = finite difference equations

High-precision tool that allows physicists to explore the contents of nucleus
from the comfort of their workstation (supercomputer)

Consumer of 10-20% of North American (public) supercomputer cycles



Steps in a lattice QCD calculation

1. Generate an ensemble of gluon field (“gauge”) configurations
=  Produced in sequence, with hundreds needed per ensemble
=  Strong scaling required with O(100 Tflops) sustained for several months
= 50-90% of the runtime is in the linear solver

DIF G, y; UYF () = nf (x)

2. “Analyze” the configurations or “Ax = b”

= (Can be farmed out, assuming O(1 Tflops) per job.

= 80-99% of the runtime is in the linear solver
Task parallelism means that clusters reign supreme here

<
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== Double Precision: NVIDIA GPU

The March of GPUs
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What is a GPU?

* Kepler K20X (2012)
— 2688 processing cores
— 3995 SP Gflops peak
» Effective SIMD width of 32 threads (warp)
* Deep memory hierarchy
* As we move away from registers
— Bandwidth decreases

— Latency increases
e Programmed using a thread model

— Architecture abstraction is known as CUDA
— Fine-grained parallelism required
* Diversity of programming languages
— CUDA C/C++/Fortran
— OpenACC, OpenMP 4.0
— Python, etc.

Host Memory

PCle I 8.0 GB/s per direction







LQCD applications

* Some examples

— MILC (FNAL, Indiana, Arizona, Utah)
* strict C, MPI only

— CPS (Columbia, BNL, Edinburgh)
* C++ (but no templates), MPI and partially threaded

— Chroma (Jlab, Edinburgh)

* C++ expression-template programming, MPI and threads

— BQCD (Berlin QCD)
* F90, MPI and threads

» Each application consists of 100K-1M lines of code
* Porting each application not directly tractable




Enter QUDA

e “QCD on CUDA” - http://lattice.github.com/quda

o Effort started at Boston University in 2008, now in wide use as
the GPU backend for BQCD, Chroma, CPS, MILC, etc.

e Provides:

— Various solvers for all major fermonic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

* Maximize performance / Minimize time to science

— Exploit physical symmetries to minimize memory traffic

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Domain-decomposed (Schwarz) preconditioners for strong scaling

— Multigrid solvers for optimal convergence



http://lattice.github.com/quda

QUDA is community driven

= Ron Babich (NVIDIA)
= Kip Barros (LANL)

= MAC (NVIDIA)

= Justin Foley

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)

= Balint Joo (Jlab)

= Hyung-Jin Kim (BNL)

= Jian Liang (IHEP)

= Guochun Shi (NCSA -> Google)

= Alexei Strelchenko (Cyprus Institute -> FNAL) r ’

= Alejandro Vaquero (Cyprus Institute)
= Frank Winter (UoE -> Jlab)

" Yibo Yang (IHEP) —— — a—

QMP QLA QMT
Message Passing Linear Algebra Threadmg




The Dirac Operator

» Quark interactions are described by the Dirac operator
- First-order PDE acting with a background field
- Large sparse matrix

Dirac spin projector
matrices
(4x4 spin space) \ (3x3 color space) (12x12 spin ®color space)

SU3) QCD gauge field

(link matrices) A is the clover matrix

4
M:U,:C’ — Z(P_'u X Uéb 5:U—I—/l,a:’ + P—l_'u X Uaﬁiﬂ 5:13—,&,:{;’) + (4 + m + Ax)5:v,a;’
u=1

m quark mass parameter

= 2Da:,:c’ + (4 +m+ Ap)dy

- 4-d nearest neighbor stencil operator acting on a vector field
» Eigen spectrum is complex (typically real positive)



Mapping the Dirac operator to CUDA

e Finite difference operator in LQCD is known as Dslash

e Assign a single space-time point to each thread
— V = XYZT threads, e.g., V = 244 => 3.3x10° threads

e Looping over direction each thread must
- Load the neighboring spinor (24 numbers x8)
- Load the color matrix connecting the sites (18 humbers x8)
- Do the computation
- Save the result (24 numbers)

e Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity

e QUDA reduces memory traffic
— Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
— Similarity transforms to increase operator sparsity

— Use 16-bit fixed-point representation
e No loss in precision with mixed-precision solver
« Almost a free lunch (small increase in iteration count)

Tesla K20X




Kepler Wilson-Dslash Performance
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Linear Solvers

= Nature of eigen-spectrum constrains which solver choice [FER TSRy

- CGNE / CGNR Bk = (rK,rk)/(rk-1,rk-1)
- BiCGstab Pi+1 = Ik - PPk
- GMRES qk+1 = A P+

= Condition number inversely proportional to mass S:gk;rk_)gpk+l’qk+l)
- Light (realistic) masses are highly singular o :XLO?;EI

= Entire solver algorithm must run on GPUs K = ke

— Time-critical kernel is the stencil application (SpMV)
— Also require BLAS level-1 type operations

conjugate
gradient



Chroma Benchmark with QUDA

Chroma

243x128 lattice
Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge
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Multi-GPU Implementation

= Scalable multi-GPU solver
required

— cuda streams to overlap
comms and compute

— Packing kernels for
contiguous data for MPI

— Utilize GPU Direct for
low-latency inter-GPU
communication




Relative Scaling

Strong Scaling Chroma with DD
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Communication-Reducing Algorithms

* Reduce inter-node communication and synchronization
— Inter-node communication comes from face exchange
— Synchronization comes from global sums
» Utilize domain-decomposition techniques, e.g., Additive Schwarz

N\

: solve domain-restricted

8 e s | D+ PP )/ 3 ; ; /
sites 1in {2 1 t ¢ 1] > ' _ : ____\eq]_la,t.lon n €2 95

K n " R RN =
b

sites 1n (2o
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figure taken from Osaki and Ishikawa



Communication-Reducing Algorithms

* Non-overlapping blocks - simply switch off inter-node comms

* Preconditioner is a gross approximation

— Use an iterative solver to solve each domain
system

— Only block-local sums required

— Require only ~10 iterations of domain solver
= 16-bit precision

— Need to use a flexible solver = GCR

* Block-diagonal preconditioner

impose A cutoff

— Limits scalability of algorithm

— In practice, non-preconditioned part
becomes source of Amdahl
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Strong Scaling Chroma with DD
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Full Gauge Generation with Chroma

V=40" x 256, 2+1 Anisotropic Clover, m_ ~ 230 MeV, 7=0.2

®—® CPU only (XE nodes)
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Adaptive Geometric Multigrid

323x256 anisotropic clover on 1024 BG/P cores

mixed precision BICGStab =g
mixed precision multigrid  =—tte—
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Introduction to Multigrid

* Preconditioner is a gross approximation

 Stationary iterative solvers effective on high frequency
errors

* Minimal effect on low frequency error
* Example

* Free Laplace operator in 2d

* AX = 0, Xo = random

» Gauss Seidel relaxation

* Plot error ej = -X;
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Introduction to Multigrid

* Preconditioner is a gross approximation

 Stationary iterative solvers effective on high frequency
errors

* Minimal effect on low frequency error
» Example
* Free Laplace operator in 2d
* AX = 0, X0 = random
» Gauss Seidel relaxation
* Plot error ej = -X;




Introduction to Multigrid

» Low frequency error modes are smooth
» Can accurately represent on coarse grid

» Low frequency on fine => high frequency on coarse
» Relaxation effective agin on coarse grid
» Interpolate back to fine grid



Multigrid V-cycle

* Solve
1. Smooth
. Compute residual
. Restrict residual
. Recurse on coarse problem
. Prolongate correction
. Smooth
/. If not converged, goto 1

= Multigrid has optimal scaling
— O(N) Linear scaling with problem size
— Convergence rate independent of condition humber

* For LQCD, we do not know the null space components that need
to be preserved on the coarse grid

o U1 AN W N




Adaptive Geometric Multigrid

» Adaptively find candidate null-space vectors

— Dynamically learn the null space and use this to
define the prolongator

— Algorithm is self learning

* Setup

1. Set solver to be simple smoother

2. Apply current solver to random vector vi = P(D) n;i

3. If convergence good enough, solver setup complete

4. Construct prolongator using fixed coarsening (1 - P R) vk =0
= Typically use 4* geometric blocks
= Preserve chirality when coarsening R = ys PT ys = PT

5. Construct coarse operator (Dc = R D P)

6. Recurse on coarse problem

/. Set solver to be augmented V-cycle, goto 2




Adaptive Geometric Multigrid




Adaptive Geometric Multigrid




Adaptive Geometric Multigrid
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Motivation

Wallclock time for Light Quark solves in Single
Precision

= A CPU running the optimal
algorithm surpasses a highly
tuned GPU sub-optimal
algorithm

» For competitiveness, MG on
GPU 1s a must

» Seek multiplicative gain of
architecture and algorithm
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Chroma propagator benchmark
Figure by Balint Joo

MG Chroma integration by Saul Cohen
MG Algorithm by James Osborn



The Challenge of Multigrid on GPU

* GPU requirements very different from CPU
— Each thread is slow, but O(10,000) threads per GPU

* Fine grids run very efficiently
— High parallel throughput problem

* Coarse grids are worst possible scenario

— More cores than degrees of freedom

— Increasingly serial and latency bound

— Little’s law (bytes = bandwidth * latency)
— Amdahl’s law limiter

* Multigrid decomposes problem into
throughput and latency parts




Hierarchical algorithms on
heterogeneous architectures

GPU

Thousands of cores
for parallel processing

CPU

Few Cores optimized
for serial work




Heterogeneous Updating Scheme

» Multiplicative MG is necessarily EmsEuEEE musenEn
serial process
— Cannot utilize both GPU and CPU
simultanesouly

Q Q @) ? Q Q
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Heterogeneous Updating Scheme

* Multiplicative MG is necessarily e

serial process T

SEE— — Cannot utilize both GPU and CPU EEEEEEE EEEEEE
\ / » Additive MG is parallel -
o—o o—o A

— Can utilize both GPU and CPU
simultanesouly

» Additive MG requires accurate

T 7 coarse-grid solution
¢—0—0 —>0—0—0 — Not amenable to multi-level
O—6—0 o—o—0 — Only need additive correction at
CPU<->GPU level interface
\ / * Accurate coarse-grid solution
\ X maybe cheaper than serialization

/ synchronization



Design Goals

e Performance

— LQCD typically reaches high % peak peak performance
— Brute force can beat the best algorithm

» Flexibility
— Deploy level i on either CPU or GPU

— All algorithmic flow decisions made at runtime
— Autotune for a given heterogeneous architecture

* (Short term) Provide optimal solvers to legacy apps
— e.g., Chroma, CPS, MILC, etc.

* (Long term) Hierarchical algorithm toolbox
— Little to no barrier to trying new algorithms




Multigrid and QUDA

* QUDA designed to abstract algorithm from the heterogeneity

LatticeField

/N

ColorSpinorField GaugeField

/N /N

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField




Multigrid and QUDA

* QUDA designed to abstract algorithm from the heterogeneity

olorSpinorFielc augeFielc

/N /N

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField




Multigrid and QUDA

* QUDA designed to abstract algorithm from the heterogeneity

LatticeField

/N

ColorSpinorField GaugeField

Alrcnitecture




Multigrid and QUDA

» Algorithms are straightforward to write down
= QUDA Multigrid V-cycle source:

void MG: :operator() (ColorSpinorField &x, ColorSpinorField &b) {

1f (param.level < param.Nlevel) {

(*presmoother) (x, b); // do the pre smoothing
transfer->R(*r coarse, *r); // restrict to the coarse grid
(*coarse) (*x_coarse, *r coarse); // recurse to the next lower level
transfer->P(*r, *x coarse); // prolongate back to this grid
(*postsmoother) (x,b); // do the post smoothing

} else {

(*coarsesolver) (x, b); // do the coarse grid solve

v




Ingredients for Parallel Adaptive Multigrid

= Prolongation construction (setup)
- Block orthogonalization of null space vectors
- Sort null-space vectors into block order (locality)
- Batched QR decomposition

= Smoothing (relaxation on a given grid)
- Repurpose the domain-decomposition preconditioner

= Prolongation
- interpolation from coarse grid to fine grid
- one-to-many mapping

= Restriction
- restriction from fine grid to coarse grid
- many-to-one mapping

» Coarse Operator construction (setup)
- Evaluate R 4 P locally
- Batched (small) dense matrix multiplication

» Coarse grid solver
- direct solve on coarse grid
- (near) serial algorithm




Parallel Implementation

= Coarse operator looks like a Dirac operator
- Link matrices have dimension Ny X Ny (e.g., 20 x 20)

w2l
ISCJS ‘e — T Z { isc,js’c’ l_l_,uaj + }/ISC.]S re! 51 ,uaji| T (M o Xi§é,j§/é/) 5i§é7j§/é/

= Fine vs. Coarse grid parallelization
- Coarse grid points have limited thread-level parallelism
- Highly desirable to parallelize over fine grid points where possible

= Parallelization of internal degrees of freedom?
- Color / Spin degrees of freedom are tightly coupled (dense matrix)
- Each thread loops over color / spin dimensions
- Rely on instruction-level parallelism for latency hiding

» Parallel multigrid uses common parallel primitives
- Reduce, sort, etc.
- Use CUB parallel primitives for high performance




Writing the same code for two architectures

» Use C++ templates to abstract arch specifics
— Load/store order, caching modifiers, precision, intrinsics

 CPU and GPU almost identical

— CPU and GPU kernels call the same functions
— Index computation (for loop -> thread id)
— Block reductions (shared memory reduction and / or atomic operations)




Writing the same code for two architectures

template<.>  host device  Real bar(Arg &arg, int x) {
// do platform independent stuff here
complex<Real> a[arg.length];
arg.A.load(a);

field order, cache modifiers, textures 99% of computation goes here

arg.A.save(a)

platform specific load/store here: < .. // do computation <——— Platiormindependent stuff goes here
return norm(a);
}

template<..> void fooCPU(Arg &arg) { template<.> global void fooGPU(Arg arg) {
N arg.sum = 0.0; int tid = threadIdx.x + blockIdx.x*blockDim.x;
~  #pragma omp for real sum = bar<..>(arg, tid);
for (int x=0; x<size; x++) platform specific parallelization __shared  typename BlockReduce::TempStorage tmp;
arg.sum += bar<.>(arg, X); GPU: shared memory arg.sum = cub::BlockReduce<..>(tmp).Sum(sum);
} CPU: OpenMP, vectorization }

- CPU GPU
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Current Status

= Wilson multigrid fully numerically verified

» Consistent with results from QCDMG (Babich et al 2010)
» Framework still slow

» Small speedup observed versus BiCGstab (~1.5x)

» Host code not optimized at all (serial)

» GPU <-> CPU transfers not optimal

» Optimal code requires heavy degree of templating
(compilation and link time is increasingly a problem)

» Early observations

» Using 16-bit precision for smoothing does not affect
convergence

» Coarse-grid solve can be poorly conditioned thus requiring
single precision




Next Steps

« Optimize
— E.g., kernel fusion, CPU OpenMP/vectorization
— read/write directly to/from CPU memory

» Add support for clover coarsening and put into production asap
» Strong scaling
» Algorithm research

— Precision investigation

— Coarse-grid solvers (direct vs. indirect)
— Staggered multigrid
— Comparison of traditional versus heterogeneous update




Hierarchical Algorithm Toolbox

» Exploit closer coupling of precision and algorithm

— QUDA designed for complete run-time specification of
precision at any point in the algorithm

— Currently supports 64-bit, 32-bit, 16-bit
— |Is 128-bit or 8-bit useful at all for hierarchical algorithms?

* Domain-decomposition (DD) and multigrid
— DD solvers are effective for high-frequency dampening

— Overlapping domains likely more important at coarser scales
» Real goal is developing asynchronous solvers for
future heterogeneous architectures



Heterogeneous Computing in 2016

ﬁ

NVLink
380 GB/s

HBM DDR4
1 Terabyte/s 50 75 GB/s

HHH




Summary

* Introduction to QUDA library

* Production library for GPU-accelerated LQCD
— Scalable linear solvers
— Coverage for most LQCD algorithms

* Current research efforts focused on adaptive multigrid
algorithms

— All of the nitty gritty details worked out
— Now time for fun

* Hierarchical and heterogeneous algorithm research toolbox
— Aim for scalability and optimality

» Lessons today are relevant for Exascale preparation
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The compilation problem...

 Tightly-coupled variables should be at the register level

* Dynamic indexing cannot be resolved in register variables

— Array values with indices not known at compile time spill out into
global memory (L1 / L2 / DRAM)

template <typename ProlongateArg>
__global  void prolongate(ProlongateArg arg, int Ncolor, int Nspin) {
int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<Nspin; s++) {
for (int c=0; c<Ncolor; c++) {

}
}
}



The compilation problem...

* All internal parameters must be known at compile time
— Template over every possible combination O(10,000) combinations
— Tensor product between different parameters
— 0(10,000 combinations) per kernel
— Only compile necessary kernel at runtime

template <typename Arg, int Ncolor, int Nspin>
__global void prolongate(Arg arg) {
int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<Nspin; s++) {
for (int c=0; c<Ncolor; c++) {

}
}

< }
» JIT support could help here...



QUDA Roadmap

= 0.6.X

= Long-link computation
= Reconstruct 9/13 support for HISQ fermions
= Google test API for stronger unit tests (QUDA now in CUDA regression suite)

= 0.7.0

» Twisted-clover and Mobius fermions

» EigCG solver

» Better strong scaling

» Stabilized mixed-precision CG

» Clover field computation, inversion and force terms

= 0.8.0

= Adaptive multigrid
» Optimized dslash (essentially untouched since 2009)
<« = s-step solvers

» Taking requests (and more importantly volunteers!)




Run-time autotuning

= Motivation:

—Kernel performance (but not output) strongly dependent on launch
parameters:

= gridDim (trading off with work per thread), blockDim
= blocks/SM (controlled by over-allocating shared memory)

» Design objectives:

—Tune launch parameters for all performance-critical kernels at run-
time as needed (on first launch).

—Cache optimal parameters in memory between launches.
—Optionally cache parameters to disk between runs.
—Preserve correctness.




Auto-tuned “warp-throttling”
= Motivation: Increase reuse in limited L2 cache.
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Double Single Half

B BlockDim only
¥ BlockDim & Blocks/SM




Run-time autotuning: Implementation

» Parameters stored in a global cache:
static std::map<TuneKey, TuneParam> tunecache;

= TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

= TuneParam is a struct specifying the tune blockDim,
gridDim, etc.
» Kernels get wrapped in a child class of Tunable (next slide)

= tuneLaunch() searches the cache and tunes if not found:
TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled,

QudaVerbosity verbosity);



Run-time autotuning: Usage

= Before:
myKernelWrapper(a, b, ¢);

= After:
MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary

» Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

* Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.




Virtual member functions of Tunable

" [nvoke the kernel (tuning if necessary):

—apply()
= Save and restore state before/after tuning:
—prelune(), postTune()

* Advance to next set of trial parameters in the tuning:
—advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
—advanceTuneParam() // simply calls the above by default

» Performance reporting
—flops(), bytes(), perfString()

) = etc.




Kepler Wilson-Solver Performance
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(Stable) Mixed-precision CG

= CG convergence relies on gradient vector being orthogonal to

residual
- Re-project when injecting new residual

= 0. chosen to minimize |e|a
- True irrespective of precision of p, q, r
- Solution correction is truncated if we keep low precision x

- Always keep solution vector in high precision ,
while (|ri|> ¢) {

« B computation relies on (ri,ij) = [rif? 3 R
- Not true in finite precision Pk-1 = Ik - PPk
- Polak-Ribiere formula is equivalent and self-stabilizing ki1 = A pre
through local orthogonality o = (rk,rk)/(Px+1, qk+1)

rk+1 = Ik - OlQk+1

Pk = a(o(qk,qx) - (Px,qk))/(Xk-1,1k-1) o X0t G
» Further improvement possible k=k+1
— Mining the literature on fault-tolerant solvers...




Comparison of staggered double-halt solvers
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Comparison of staggered double-half solvers
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Deflation Algorithms in QUDA

» EigCG implemented in QUDA (Alexei Strelchenko)

, //accum. Ritz vectors
for s = 1,...,51 X //for 51 RHS
xo = UH U b, //Galerkin proj.

x;, V,H| = eigCG(nev,m, A, xy,b;) //eigCG part

V = orthogonalize V against U //(not strictly needed)
‘U, H| =RayleighRitz[U, V]
end for




Deflation Algorithms in QUDA

= Use MAGMA library for required LAPACK functionality
= Memory not a problem
» EigCG only works on subsets

- Cache full set on CPU . TAccluZZy of final Ritz vectors, L=24,T=48
= Extensible eigenvector solver 2| @recssase

framework for future solvers ;

= EigBiCG

= GMRES-DR

s etc.




Deflation Algorithms in QUDA

1Ogonvergence of 48 successive linear systems, L=24,T=48 1O(;onvergence of 48 successive linear systems, L=24,T=48
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Mixed-Precision Deflation Algorithms

» Mixed-precision CG
» Precision-truncated residual is ignorant of low modes
= This can causes breakdown in CG recurrence relations
» Ameliorated by using reliable updates (and other methods)

» EigCG phase seems to need double precision

» Loss of precision in finding Ritz vectors results in very poor
eigenvector set

» Deflated CG is hugely stabilized once low modes projected out
= double-half solvers now completely stable at light quark mass
» e.g. degenerate twisted mass 24°x48, k = 0.161231, p = 0.0040

Non-deflated double-single CG: 15 sec
Non-deflated double-half CG: (does not converge)
INitCG double-single initCG: 2.42 sec

INitCG double-half initCG: 1.84 sec

(combination of algorithm and precision)




Mixed Precision Deflation Algorithms

» EigCG seems to need high precision (double)

10gonvergence of 48 successive linear systems, L=24,T=48

10(e;onvergence of 48 successive linear systems, L=24,T=48
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double-single double-half

degenerate twisted mass 243x48, K=0.161231, y = 0.0040



The Future of GPUs

= GPUs viable because of multi SB gaming market
= Coming to an end anytime soon?













The Future of GPUs

= Each photo-realistic image takes ~2 seconds
» Photo-realistic imagery requires ~200x faster
» Add physics

» Rigid body mechanics

» Computational fluid dynamics (smoke, water, wind)

= Hair

n efC.

=« GPUs aren’t slowing down anytime soon




® Machine

O Machine + Algo

—_
O
o)

A
o —
< O
~—

“n
N
e
Z
¢>«BOY)
=
4
S
O
-

—
O
oy

1995 2000
year




