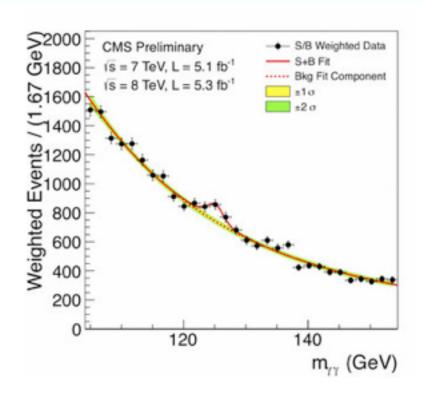
Strongly coupled gauge theories: In and out of the conformal window

Anna Hasenfratz University of Colorado Boulder

> KMI Feb 3, 2014

In collaboration with A. Cheng, Y. Liu, G. Petropoulos and D. Schaich

July 4th 2012: Higgs boson "discovered"

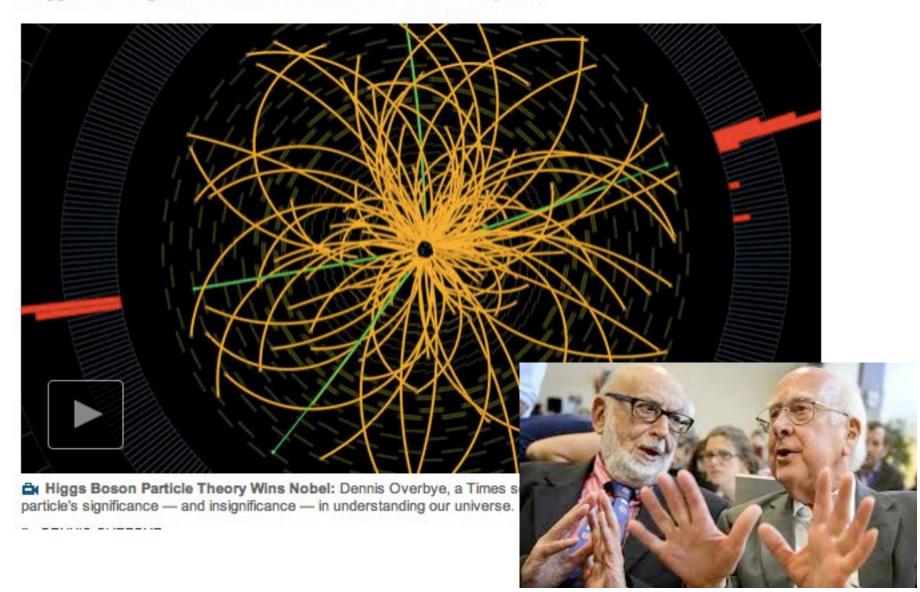


0++ scalar at 126 GeV : Standard Model like

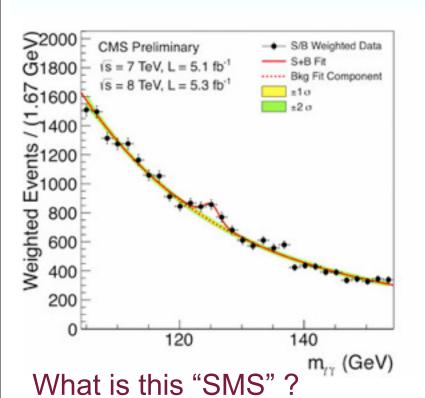
- no sign of new TeV-scale physics!

Oct 8 2013

For Nobel, They Can Thank the 'God Particle' Higgs and Englert Are Awarded Nobel Prize in Physics



July 4th 2012: Higgs boson "discovered"



0++ scalar at 126 GeV : Standard Model like

- no sign of new TeV-scale physics!

- Elementary scalar? and no new physics :

- SUSY? SMS is uncomfortably heavy
- Composite? SMS is uncomfortably light find strongly interacting model with light scalar

What's wrong with the SM Higgs?

.... nothing really

The Higgs sector

- Requires enormous fine tuning of the parameters (naturalness)
- Trivial: mathematically inconsistent: λ(μ) → 0 as Λ → ∞
- Vacuum is metastable due to heavy top quark
- Provides no dynamical explanation for electroweak symmetry breaking or flavor physics

SUSY could solve/explain all this but

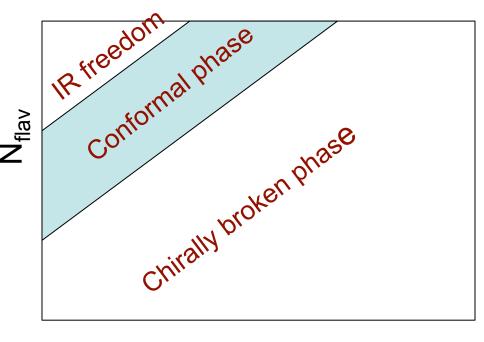
- no SUSY particles have been detected
- Higgs is uncomfortably heavy for most SUSY models

Composite Higgs:

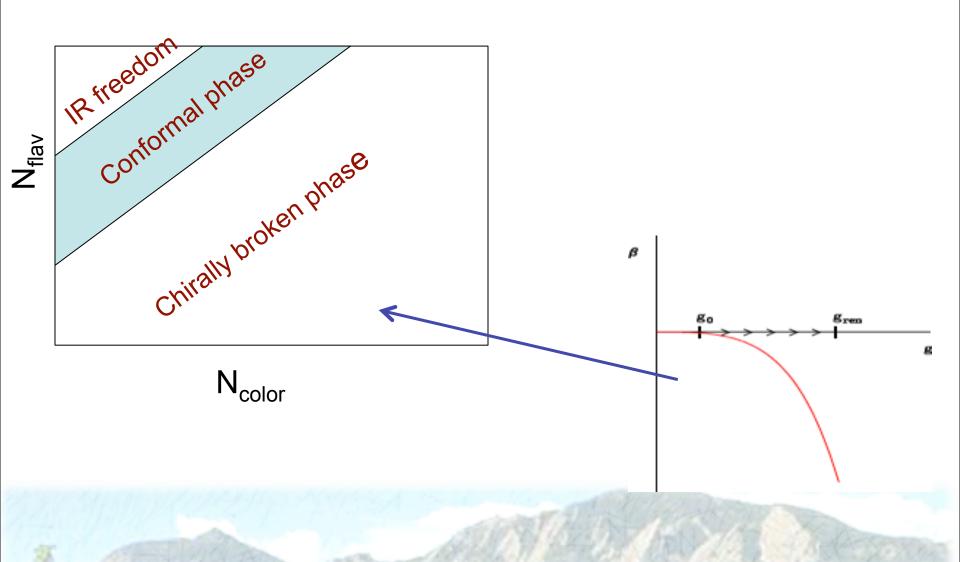
Assume a new gauge-fermion system at high energies (techni-)

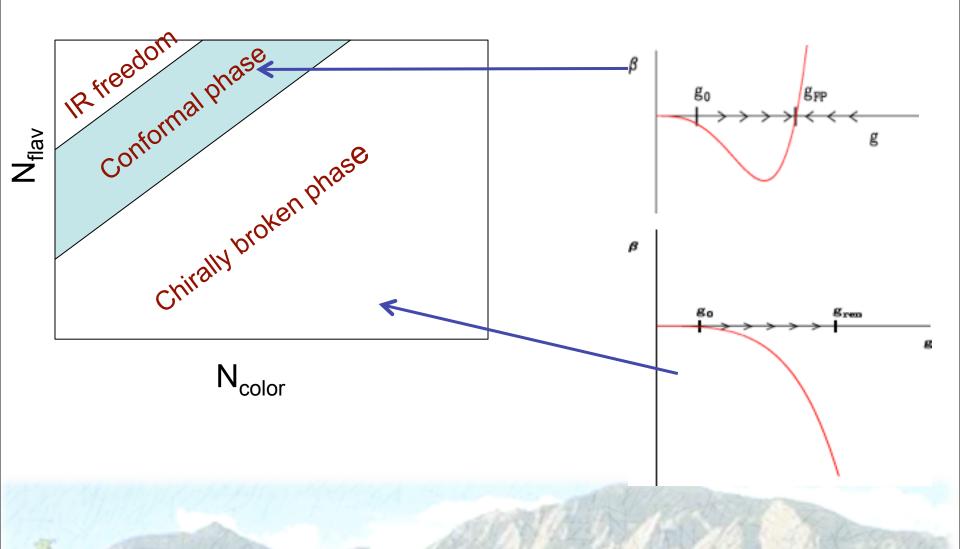
- If it is chirally broken the techni-pions are the Goldstone bosons of electroweak symmetry breaking, the 0⁺⁺ meson is the Higgs Does it agree with experimental data?
- Scaled-up QCD models are out (were ruled out decades ago)!
 - EW measurements are violated (g² runs too fast)
- Walking TC models: gauge coupling evolves slowly over many magnitudes of energy scale with a large anomalous dimension could solve most these problems;
 - Do they have a light Standard Model like scalar?
 - dilaton of spontaneously broken conformal symmetry
 - pseudo-Goldstone of expanded flavor symmetry

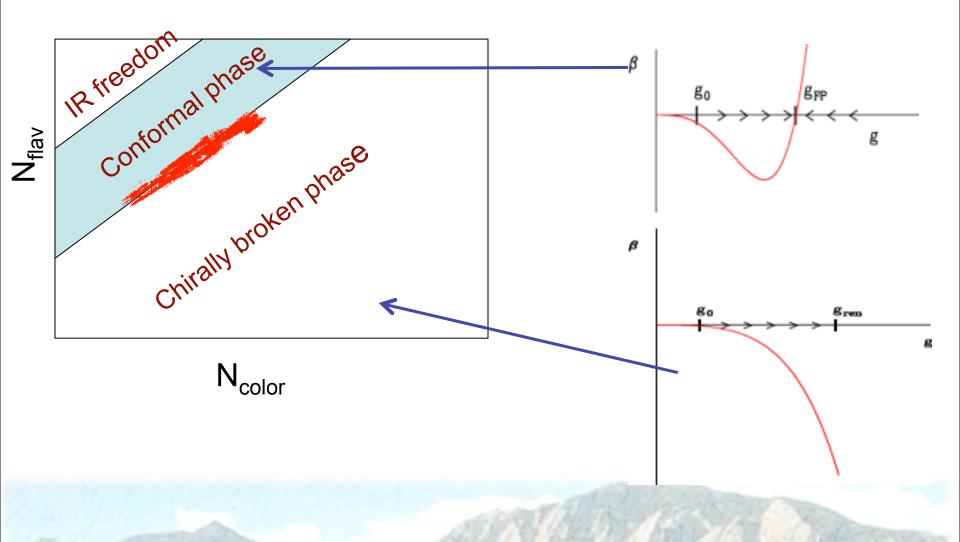
 $SU(N_{color} \ge 2)$ gauge fields + N_{flavor} fermions in some representation

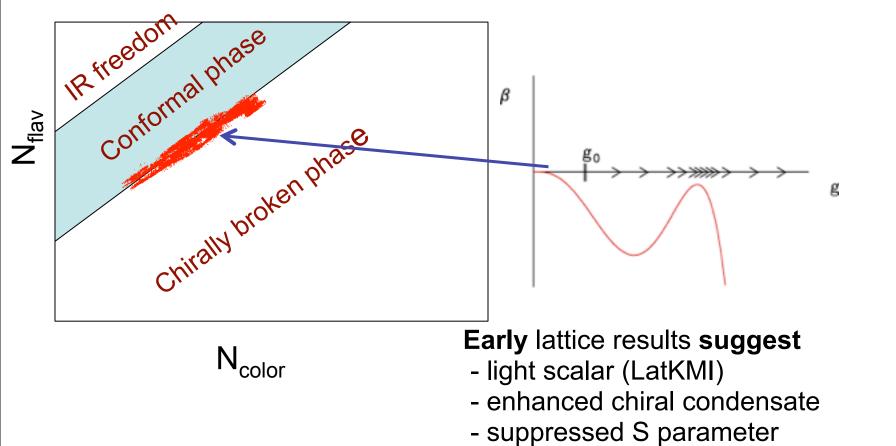


 N_{color}

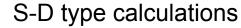


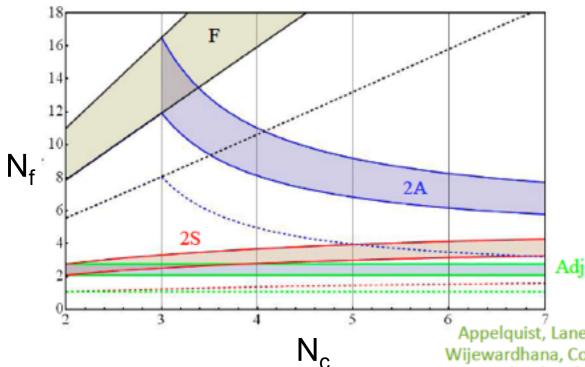






Roadmap for the conformal window





Shaded: conformal Below: confining Above: IR free

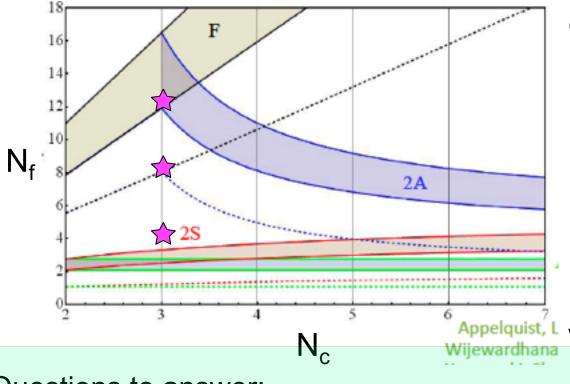
Dotted lines: 2-loop PT

fermion representation:
Fundamental
Adjoint
2Symmetric
2Antisymm

Appelquist, Lane, Mahanta, Wijewardhana, Cohen, Georgi, Yamawaki, Shrock, Dietrich, Sannino, Tuominen

Needs non-perturbative verification!

In this talk: $N_f = 4$, 8 and 12 fundamental fermions



Concentrate on

N_f=12:

 controversial system near the conformal boundary

N_f=8:

 most likely chirally broken but could be walking

Questions to answer:

- •Is the system conformal or chirally broken (and walking)?
- •Is there a light scalar?
- •Is the S parameter small? What is the anomalous mass dim.?

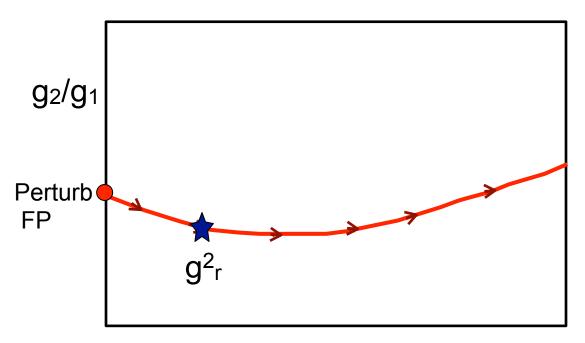
•

Simple enough cannot be much harder than QCD

It is surprisingly difficult to distinguish conformal, walking, and chirally broken systems on the lattice

Fixed point structure of a chirally broken system

m=0 critical surface: one fixed point



g₁: gauge coupling g₂,...: irrelevant couplings

Perturbative FP

g₁=0,m=0 : 2 relevant

directions

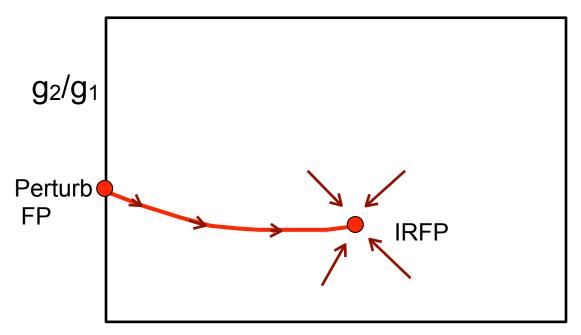
g₁

Continuum limit:

Tune bare $g^2 \to 0$ and $m \to 0$: renormalized g^2 anywhere on renormalized trajectory

Fixed point structure of a conformal system

m=0 critical surface: two fixed points



Perturbative FP

g₁=0,m=0 : 2 relevant directions

IRFP

g₁

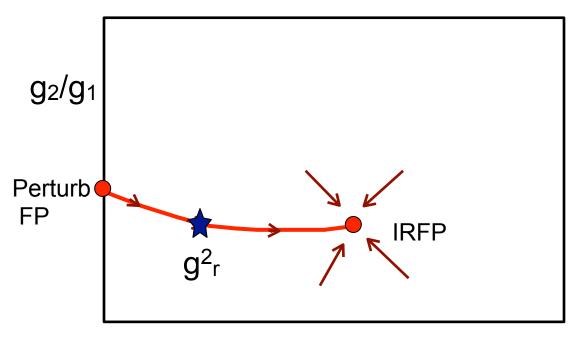
g₁=g_{IRFP},m=0 : 1 relevant direction

Two possible continuum limits:

- 1. Tune bare $g^2 \to 0$ and $m \to 0$: renormalized g^2 anywhere on renormalized trajectory
- 2. Tune only m \rightarrow 0 : renormalized $g^2 = g^2_{IRFP}$

Fixed point structure of a conformal system

m=0 critical surface: two fixed points



Perturbative FP

g₁=0,m=0 : 2 relevant directions

IRFP

g₁

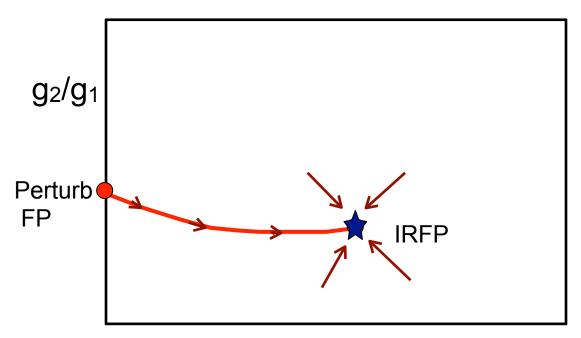
g₁=g_{IRFP},m=0 : 1 relevant direction

Two possible continuum limits:

- 1. Tune bare $g^2 \to 0$ and $m \to 0$: renormalized g^2 anywhere on renormalized trajectory
- 2. Tune only m \rightarrow 0 : renormalized $g^2 = g^2_{IRFP}$

Fixed point structure of a conformal system

m=0 critical surface: two fixed points



Perturbative FP

g₁=0,m=0 : 2 relevant directions

IRFP

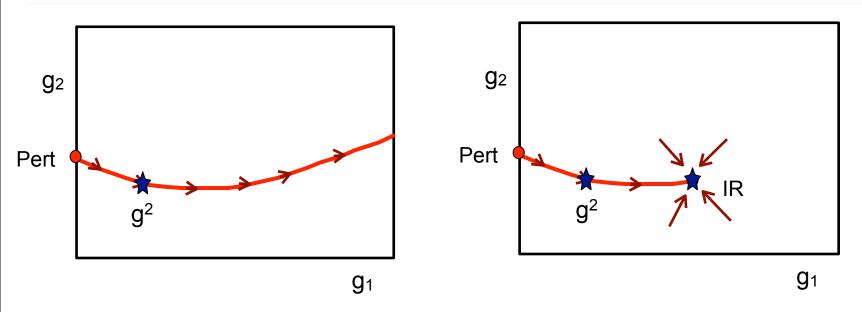
g₁

g₁=g_{IRFP},m=0 : 1 relevant direction

Two possible continuum limits:

- 1. Tune bare $g^2 \to 0$ and $m \to 0$: renormalized g^2 anywhere on renormalized trajectory
- 2. Tune only m \rightarrow 0 : renormalized $g^2 = g^2_{IRFP}$

It is surprisingly difficult to distinguish conformal, walking, and chirally broken systems on the lattice



- they look very similar along the RT
- if the gauge coupling "walks": g is nearly marginal!(non-QCD like)

Discuss 2 methods:

1. Study of Dirac eigenmodes and spectral density $\rho(\lambda)$ Distinguishes weak & strong coupling regions

2. Finite size scaling analysis

Shows the effect of the near marginal gauge coupling

Discuss 2 methods:

1. Study of Dirac eigenmodes and spectral density $\rho(\lambda)$ Distinguishes weak & strong coupling regions

2. Finite size scaling analysis

Shows the effect of the near marginal gauge coupling

Discuss 2 methods:

1. Study of Dirac eigenmodes and spectral density $\rho(\lambda)$ Distinguishes weak & strong coupling regions

m→0 L→∞

2. Finite size scaling analysis

Shows the effect of the near marginal gauge coupling

m,L finite

Discuss 2 methods:

1. Study of Dirac eigenmodes and spectral density $\rho(\lambda)$ Distinguishes weak & strong coupling regions

2. Finite size scaling analysis
Shows the effect of the near marginal gauge coupling

m,L finite

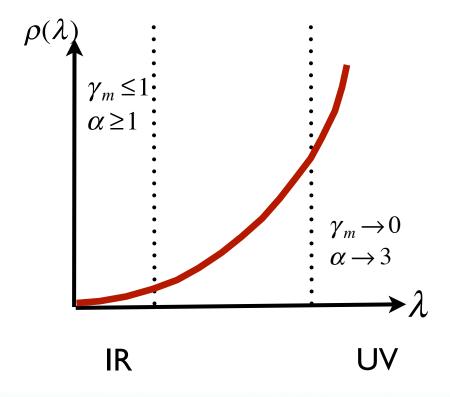
Mostly N_f=4 and 12 flavor to test the methods and understand/resolve existing controversies.

Some N_f=8 : preliminary but exciting!

Eigenvalue density $\rho(0)=0$, scales as $\rho(\lambda) \propto \lambda^{\alpha(\lambda)}$

RG invariance implies $\frac{4}{1+\alpha} = y_m = 1+\gamma_m$

λ provides an energy scale



IR – small λ region:

$$\gamma_m(\lambda \to 0) = \gamma_m^*$$

predicts the universal anomalous dimension at the IRFP

UV – large λ =O(1) region: if governed by the asymptotically free perturbative FP

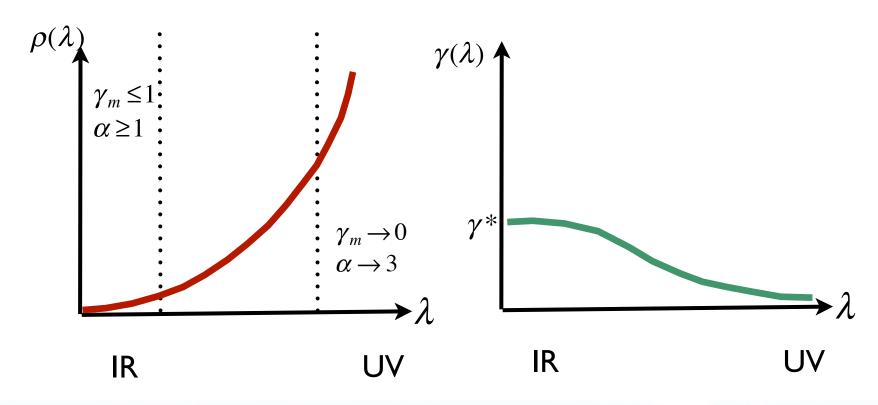
$$\gamma_m(\lambda = \mathcal{O}(1)) = \gamma_0 g^2 + \dots$$

In between:

scale dependent effective $\gamma_{\rm m}$

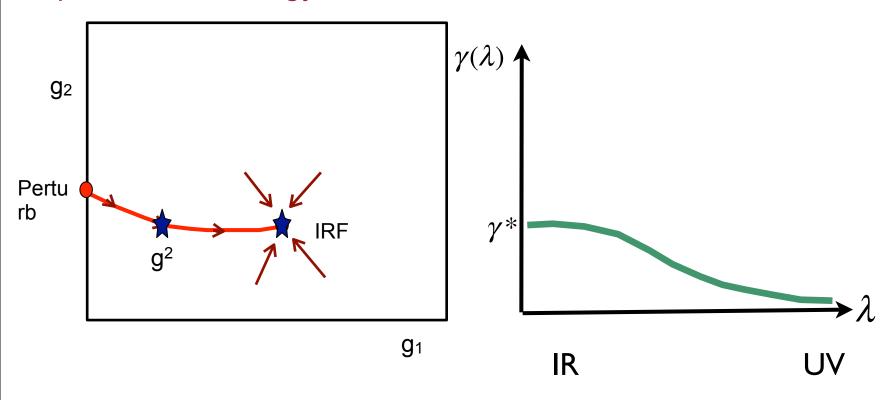
Eigenvalue density $\rho(0)=0$, scales as $\rho(\lambda) \propto \lambda^{\alpha(\lambda)}$

RG invariance implies $\frac{4}{1+\alpha} = y_m = 1+\gamma_m$ λ provides an energy scale



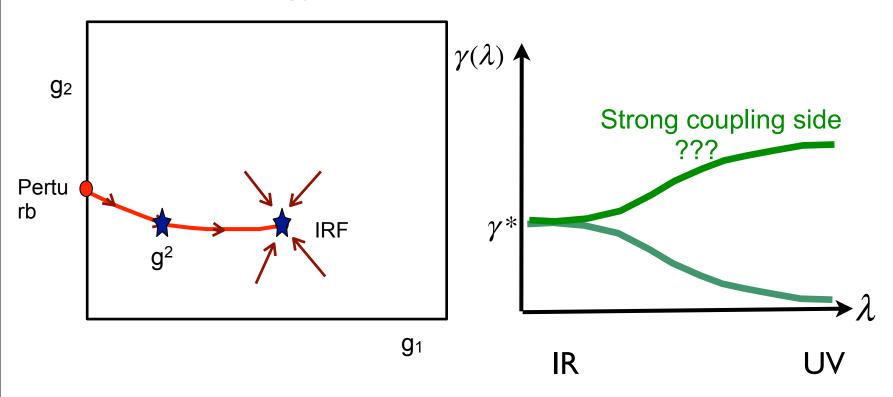
Eigenvalue density $\rho(0)=0$, scales as $\rho(\lambda) \propto \lambda^{\alpha(\lambda)}$

RG invariance implies $\frac{4}{1+\alpha} = y_m = 1+\gamma_m$ λ provides an energy scale



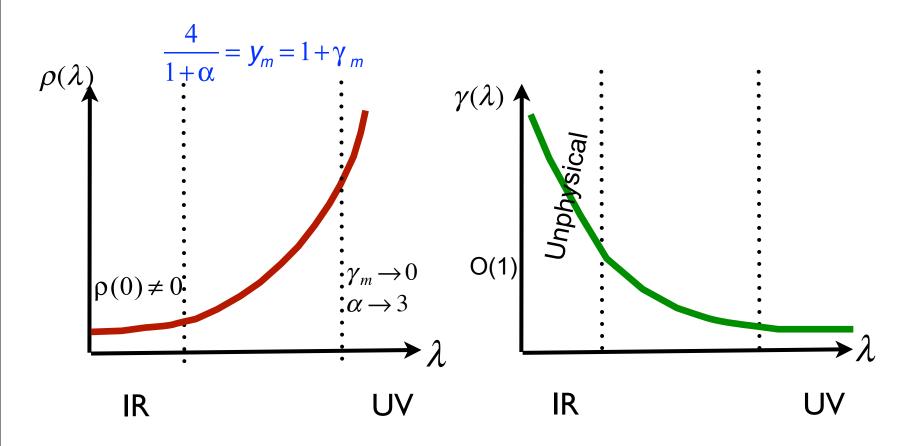
Eigenvalue density $\rho(0)=0$, scales as $\rho(\lambda) \propto \lambda^{\alpha(\lambda)}$

RG invariance implies $\frac{4}{1+\alpha} = y_m = 1+\gamma_m$ λ provides an energy scale



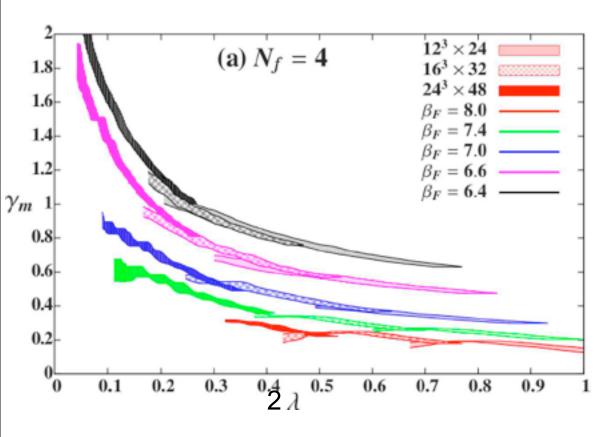
Dirac eigenvalue spectrum - chirally broken system

Chirally broken systems show only the asymptotically free region



Results: $N_f = 4$

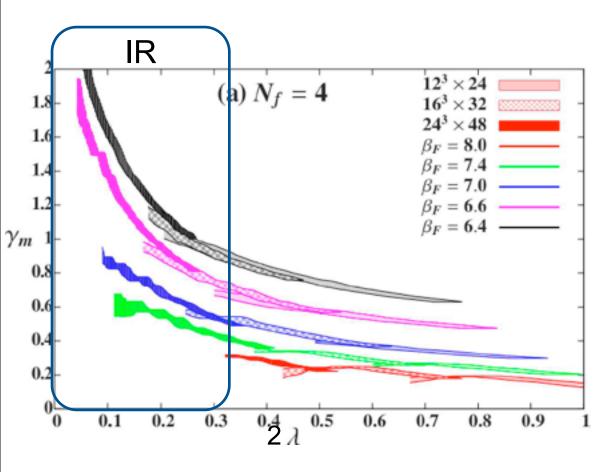
Broken chiral symmetry in IR, asymptotic freedom in UV



$$a_{6.4}$$
 / $a_{7.4}$ = 2.84(3)
 $a_{6.6}$ / $a_{7.4}$ = 2.20(5)
 $a_{7.0}$ / $a_{7.4}$ = 1.45(3)
 $a_{8.0}$ / $a_{7.4}$ = 0.60(4)

Results: $N_f = 4$

Broken chiral symmetry in IR, asymptotic freedom in UV



$$a_{6.4} / a_{7.4} = 2.84(3)$$

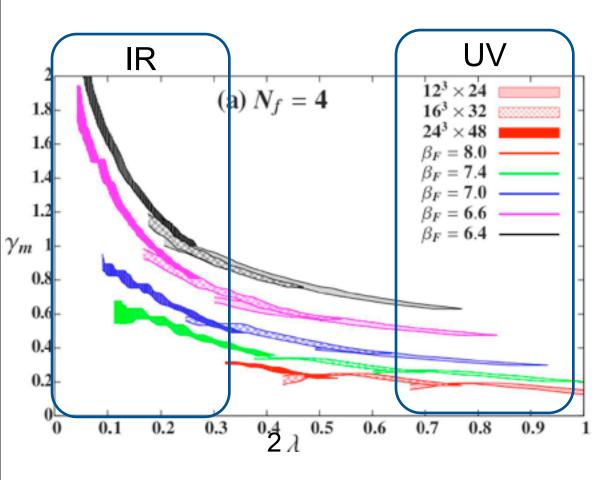
$$a_{6.6} / a_{7.4} = 2.20(5)$$

$$a_{7.0} / a_{7.4} = 1.45(3)$$

$$a_{8.0} / a_{7.4} = 0.60(4)$$

Results: $N_f = 4$

Broken chiral symmetry in IR, asymptotic freedom in UV



$$a_{6.4} / a_{7.4} = 2.84(3)$$

$$a_{6.6} / a_{7.4} = 2.20(5)$$

$$a_{7.0} / a_{7.4} = 1.45(3)$$

$$a_{8.0} / a_{7.4} = 0.60(4)$$

Rescaling: $N_f = 4$

The dimension of λ is carried by the lattice spacing: $\lambda_{lat} = \lambda_{pa}$

Rescale to a common physical scale:



$$\lambda_{\beta} \to \lambda_{\beta} \left(\frac{a_{7.4}}{a_{\beta}} \right)^{1+\gamma_{m}(\lambda_{\beta})}$$

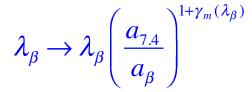
$$a_{6.4} / a_{7.4} = 2.84(3)$$

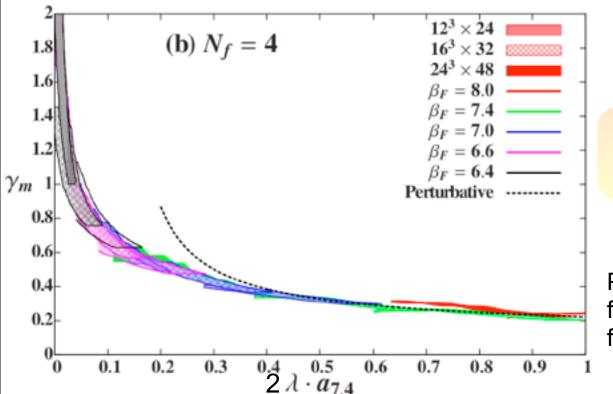
 $a_{6.6} / a_{7.4} = 2.20(5)$
 $a_{7.0} / a_{7.4} = 1.45(3)$
 $a_{8.0} / a_{7.4} = 0.60(4)$

Rescaling: N_f =4

The dimension of λ is carried by the lattice spacing: $\lambda_{lat} = \lambda_{pa}$

Rescale to a common physical scale:



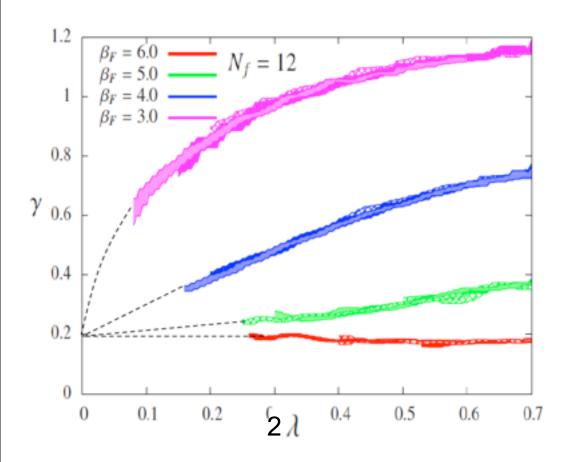


Universal curve covering almost 2 orders of magnitude in energy!

Perturbative: functional form from 1-loop PT, relative scale is fitted

Most of these data were obtained on deconfined (small) volumes at m=0!

Spectral density results: $N_f = 12$

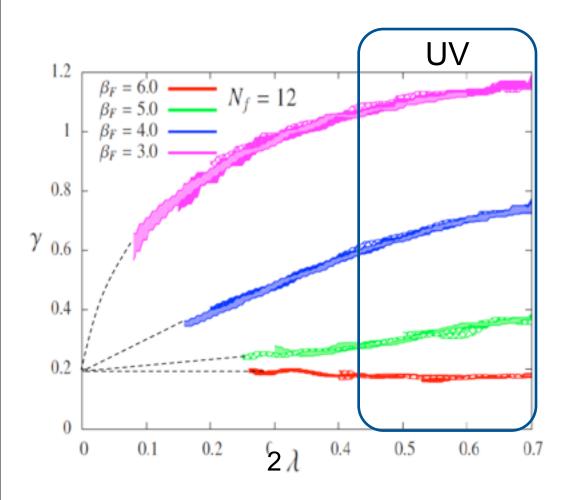


 β =3.0, 4.0, 5.0, 6.0

- •There is no sign of asymptotic freedom behavior for β <6.0, $\gamma_{\rm m}$ grows towards UV
- •Not possible to rescale different β's to a single universal curve

Looks as if there was an IRFP between β =5.0 -6.0

Spectral density results: $N_f = 12$

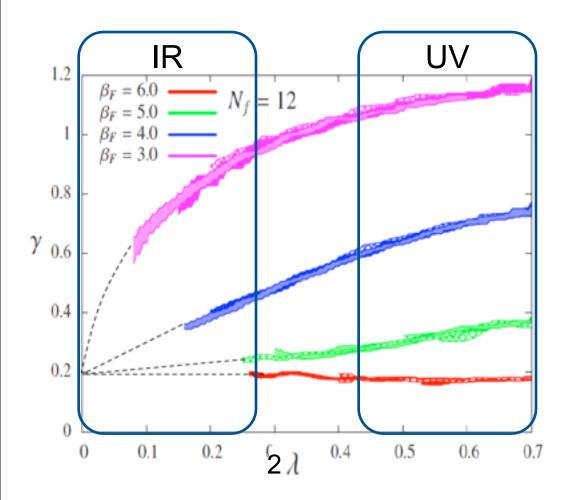


 β =3.0, 4.0, 5.0, 6.0

- •There is no sign of asymptotic freedom behavior for β <6.0, γ_m grows towards UV
- •Not possible to rescale different β's to a single universal curve

Looks as if there was an IRFP between β =5.0 -6.0

Spectral density results: $N_f = 12$

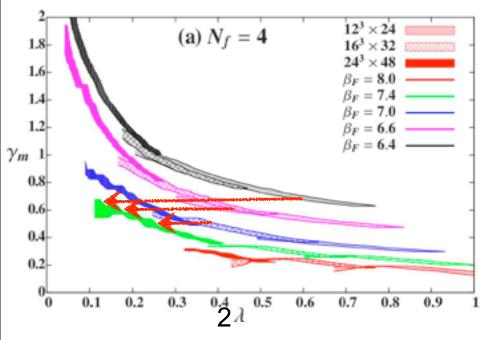


 β =3.0, 4.0, 5.0, 6.0

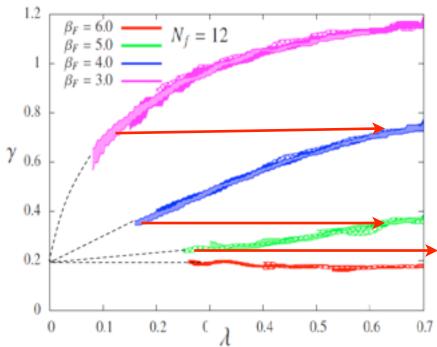
- •There is no sign of asymptotic freedom behavior for β <6.0, γ_m grows towards UV
- •Not possible to rescale different β's to a single universal curve

Looks as if there was an IRFP between β =5.0 -6.0

Rescaling N_f=4 vs N_f=12



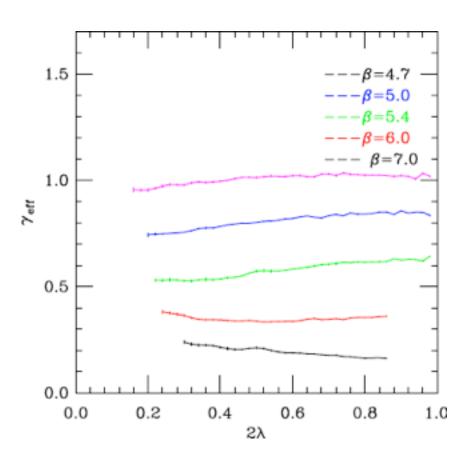
 N_f =4 : smaller β matches to the left (forward flow)



 N_f =12 : no consistent rescaling but even an approximate one matches to the right of β <6.0

Anomalous dimension, $N_f = 8$

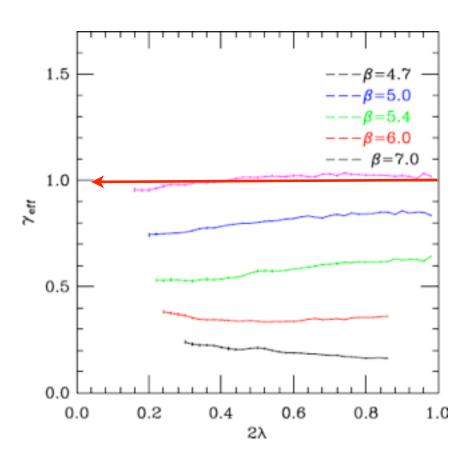
Expected to be chirally broken - looks like walking!



- No asymptotic free scaling
- -No rescale of different couplings
- -When $\gamma_m \sim 1$ in the UV, the S⁴b phase develops

Anomalous dimension, $N_f = 8$

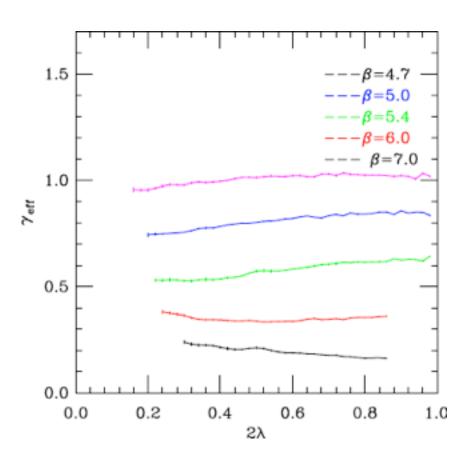
Expected to be chirally broken - looks like walking!



- No asymptotic free scaling
- -No rescale of different couplings
- -When $\gamma_m \sim 1$ in the UV, the S⁴b phase develops

Anomalous dimension, $N_f = 8$

Expected to be chirally broken - looks like walking!



- No asymptotic free scaling
- -No rescale of different couplings
- -When $\gamma_m \sim 1$ in the UV, the S⁴b phase develops

Dirac operator eigenvalue spectrum and spectral density

Unique & promising method!

- Can distinguish strong and weak coupling region of conformal /chirally broken systems

Predictions:

N_f=4 : scaling & anomalous dimension

N_f=12: looks conformal

N_f=8 : could be walking with large anomalous dimension!

II: Finite size scaling

Well understood method in systems governed by one relevant operator

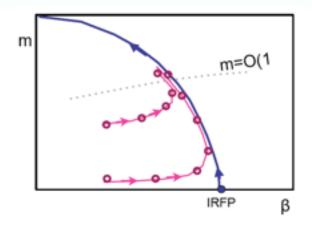
→ in conformal systems it could predict the mass anomalous dimension

Is this prediction internally consistent? Is it consistent with results of spectral density?

Finite size scaling - textbook case

Consider a FP with one relevant operator $m \approx 0$ with scaling dimension $y_m > 0$ and irrelevant operators

 g_i with scaling dimensions $y_i < 0$.



Renormalization group arguments in volume L³ predict scaling of physical masses as

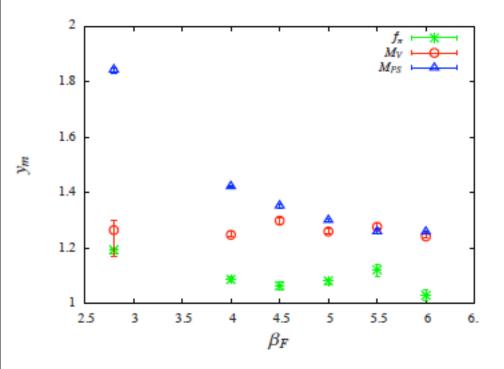
$$M_H L = f(Lm^{1/y_m}, g_i m^{-y_i/y_m})$$
 as $m \approx 0$

as
$$m \to 0$$
, $L \to \infty$: $g_i m^{-y_i/y_0} \to 0$
$$M_H L = f(x), \quad x = L m^{1/y_m}$$

-tune y_m until different volumes "collapse"

Scaling exponents

Result of "curve collapse" for pseudo-scalar, vector and f_{π} :

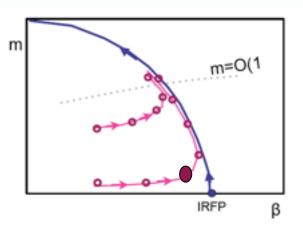


y_m depends strongly on β and the operator considered → Internally inconsistent !!!

Finite size scaling with a near-marginal operator

Consider a FP with one relevant operator $m \approx 0$ with scaling dimension $y_m > 0$ and irrelevant operators

 g_i with scaling dimensions $y_i < 0$ g_0 (near) marginal, $y_0 \le 0$



Renormalization group arguments in volume L³ predict

$$M_H L = f(Lm^{1/y_m}, g_i m^{-y_i/y_m})$$
 as $m \approx 0$

as
$$m \to 0$$
, $L \to \infty$: $g_i m^{-y_i/y_0} \to 0$
$$g_0 \to g_0 m^{\omega}, \quad \omega = -y_0/y_m \gtrsim 0$$

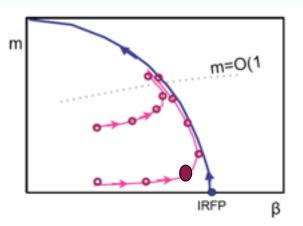
$$M_H L = f(x, g_0 m^{\omega}), \quad x = L m^{1/y_m}$$

The scaling function depends on two variables now!

Corrections to finite size scaling

Physical masses scale as

$$\mathbf{M}_{H} = L^{-1} f(x, g_{0} m^{\omega}), \quad \omega = -y_{0} / y_{m}$$



If the g₀m^ω corrections are small, expand

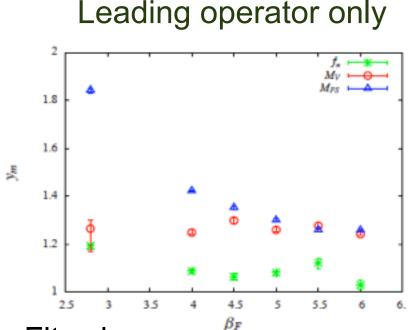
$$LM_H = F(x)(1 + g_0 m^{\omega} G(x))$$

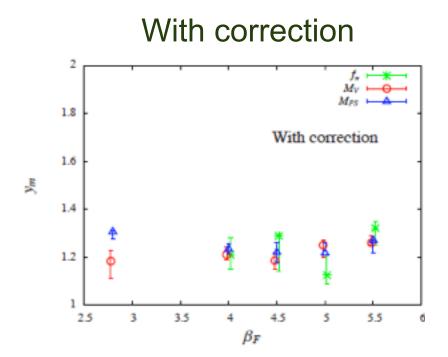
Approximate
$$G(x) = c$$
 (should be checked) $\rightarrow \frac{LM_H}{1+c g_0 m^\omega} = F(x)$

Fit needs minimization in y_m , ω , and $c_0=cg_0$

Scaling exponent with corrections

Include all data $M_{\pi} L$, $M_{V} L$, $f_{\pi} L$ points

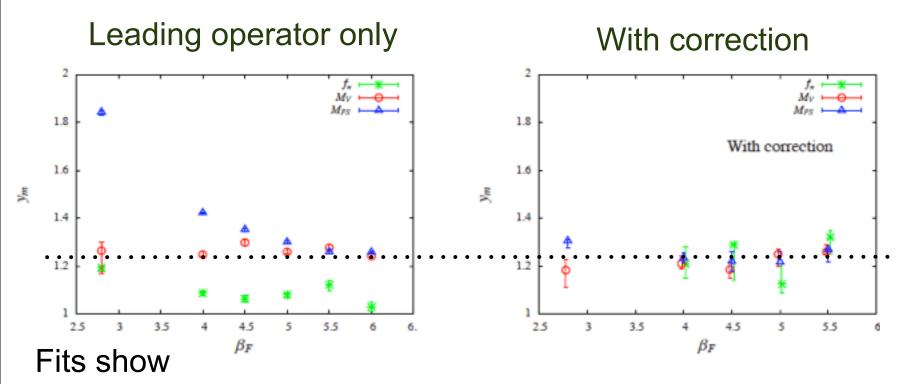




- Fits show
 - good curve collapse
 - consistent scaling exponent y_m=1.22(2)
 - can we constrain the fit parameters better?

Scaling exponent with corrections

Include all data $M_{\pi} L$, $M_{V} L$, $f_{\pi} L$ points



- good curve collapse
- consistent scaling exponent y_m=1.22(2)
- can we constrain the fit parameters better?

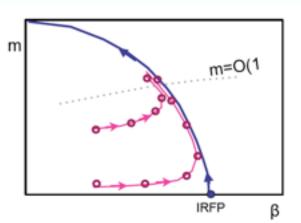
Combining data sets:

If the gauge coupling is irrelevant, the scaling function F(x)

$$\frac{LM_H}{1+c\,g_0m^\omega} = F(x)$$

is unique, independent of

- gauge coupling β
- lattice action (nHYP or stout or HISQ)



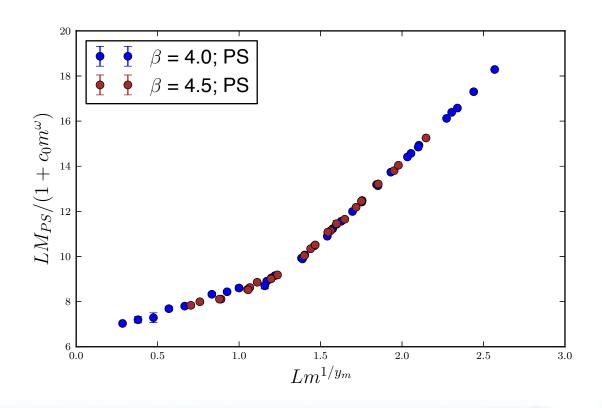
Combine different data sets

- we need to rescale the bare fermion mass $m(\beta) \rightarrow s m(\beta)$
- remnant scaling violations could be different for different sets
 → most noticeable at small x (or L)

Combining gauge couplings:

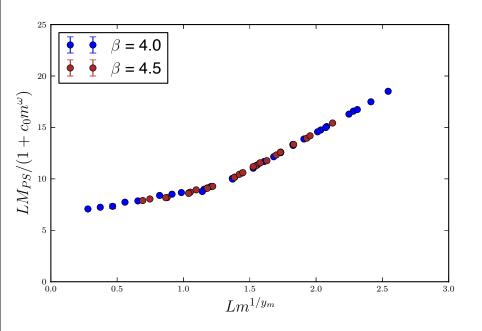
pion at β =4.0,4.5 (all available volumes):

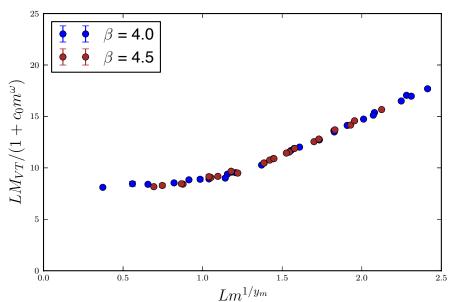
$$y_m=1.23[2], y_0=-0.47[6]; \chi^2/dof=1.2[60]$$



Combining gauge couplings AND operators

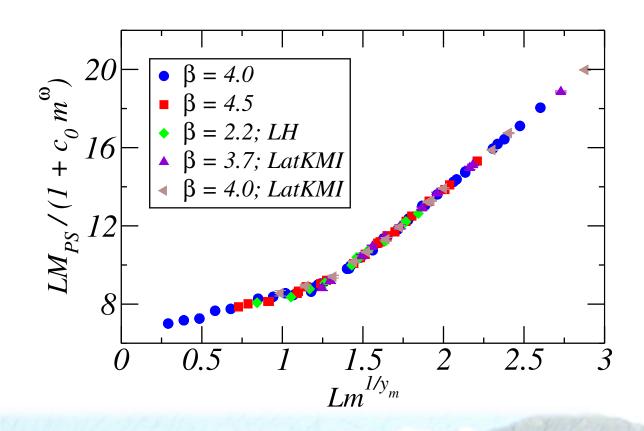
pion and vector at β =4.0,4.5 (new fit!) y_m =1.22[2], y_0 =-0.50[5]; χ^2 /dof =1.4 [108]





Combining gauge couplings AND actions

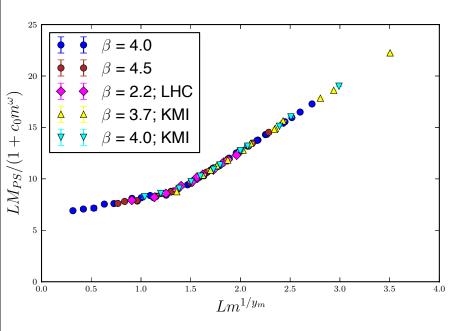
pion at β=4.0,4.5, LH, KMI : y_m =1.24[1], y_0 =-0.51[5] ; χ^2 /dof =1.4 [95]

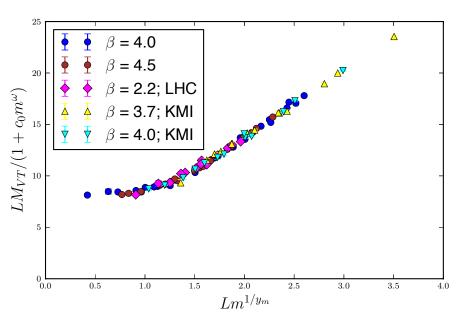


Combining gauge couplings AND actions AND operators

pion and vector at β =4.0,4.5, LHC, KMI :

$$y_m=1.27[1], y_0=-0.51[5]; \chi^2/dof=2.7[188]$$





Consistency:

Fit 30-300 points with 10 - 20 parameters ...

Consistency:

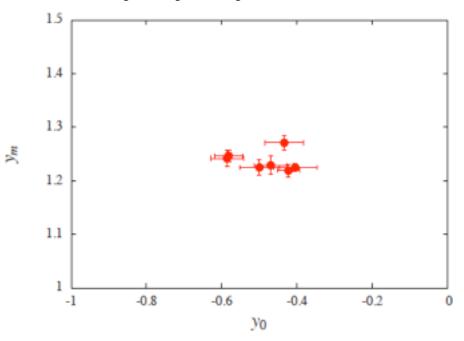
Fit 30-300 points with 10 - 20 parameters ...

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann

Consistency:

Fit 30-300 points with 10 - 20 parameters ... yet y_m, y₀, are consistent



"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann

Fits combining different data sets, operators, predict $y_m = 1 + \gamma_m = 1.235[15]$ with $\Box \chi^2/\text{dof} \approx 1 - 3$

Message from FSS

The gauge coupling of strongly coupled conformal systems are expected to run slowly ("walking")

→ scaling is strongly influenced by this near-marginal coupling

This is universal in every walking system!

- In finite size scaling analysis the marginal coupling can be accounted for
- Its effect should be considered in every other approach

Summary

Strongly coupled gauge-fermion systems are exciting

- show non-perturbative dynamics with unusual properties
- can offer BSM description with composite Higgs

Near the conformal window they (could)

- walk: slowly changing gauge coupling
- large anomalous dimension
- dilaton: light scalar ?

Lattice studies are only starting to understand these systems