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Lattice fermions
・Doubling problem : Naive chiral&local fermion→16 species

where Tr stands for trace for color and spinor indices. In Monte Carlo simulations the
gauge field configuration is stochastically generated according to the weight in the parti-
tion function as D(U)e−SU . By summing up results for as many configurations as possible
and averaging them, we derive results for the finite lattice spacing. By taking a infinite
volume limit and a continuum limit, we derive results for the continuum theory. Since
the continuum limit is defined at the ultraviolet fixed point which corresponds to a g → 0
limit in QCD, we can obtain physical quantities by extrapolating results for different
bare couplings to zero bare coupling. This is a basic process in the lattice simulations
[2]. However this process itself does not cost much in numerical simulations. What cost
the most is calculation of the fermion propagator and its determinant. To perform the
full lattice simulations, we need to solve a large-size linear equation for a Dirac operator
matrix including the space-time coordinate, Dirac spinor, flavor and color indices for each
gauge configuration. In particular the numerical cost for the fermion propagator soars for
smaller mass and we cannot simulate QCD with practical quark mass. It is because the
number of conditions in the conjugate gradient process, which is usually used for solution
of a large linear equation, are determined by the minimum eigenvalue of the Dirac opera-
tor, which is related to fermion mass: However the most serious problem for lattice QCD
with fermions is not this: It is a notorious problem called a ”doubling problem” [3]. Let
us look into this by rewriting a free lattice fermion action in the momentum expression
with the lattice spacing being explicit as

SF =

∫ π/a

−π/a

d4pψ̄(ap)(
i

a
γµ sin apµ + m)ψ(ap), (2.14)

where we define the 4-vector momentum as pµ (µ = 1, 2, 3, 4). Discretization of spacetime
results in restriction of the euclidean momentum space as −π/a < pµ ≤ π/a, which
is called the Brillouin zone. The zero point of the Dirac operator or the pole of the
propagator in the momentum space D(p) = i

a sin apµ+m = 0 corresponds fermion degrees
of freedom. What is notable here is that this Dirac operator has 16 zeros within the
Brillouin zone for a massless case as

p̃µ = 0, or π/a, (2.15)

where p̃µ takes 0 or π/a thus the total number of zeros are sixteen. Let us look into it in
details for general dimensions. The naive lattice fermion propagator for d dimensions is
given by

D−1(pa) =
−iγµ sin apµ + am

sin2 apµ + a2m2
, (2.16)

with µ = 1, 2, 3, ..., d. The pole of the fermion propagator

sin2 apµ + a2m2 = 0, (2.17)

indicates existence of particles and their dispersion relations. In a classical continuum
limit a → 0, the sine function is expanded as

sin pµa ∼ p̂µa + O(a2), (2.18)
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for pµ = p̂µ and
sin pµa ∼ −p̂µa + O(a2), (2.19)

for pµ = p̂µ + π/a (p̂µ # 1/a). Thus the propagator in the continuum limit is given by

D−1(pa) → 1

a

∑

pµ=0,π/a

−i(−1)δµγµp̂µ + m

p̂2
µ + m2

, (2.20)

where δµ = 0 for pµ = 0 and δµ = 1 for pµ = π/a respectively. This expression clearly
uncovers that the naive fermion describes 2d Dirac fermion modes. This multiple emer-
gence of fermion degrees of freedom, which we call species or doublers, is a generic and
inevitable property of the lattice fermion action. It is summarized in the famous no-go
theorem, Nielsen-Ninomiya’s theorem [4]. This theorem states that the lattice fermion
action with chiral symmetry, locality and hermitcity should acquire fermions in multi-
ple number of two. As shown in [3] intuitively, although the sine function is consistent
with the the physical continuum dispersion for the zero at p̃ = (0, 0, 0, 0), its periodic-
ity results in another zero at a different momentum point such as p̃ = (π, 0, 0, 0). Thus
we have one pair of zeros per one dimension, leading to16 fermion modes in a 4 dimen-
sional theory with the hypercubic symmetry. Unfortunately the pairs have opposite chiral
charges (γ5 ↔ −γ5), thus left-chirality modes are always paired by right-chirality modes.
It means that we cannot formulate the chiral gauge theory such as the Weak- interaction
sector in the standard model, at least by using this naive discretization of the fermion
action. On the other hand, we can formulate a vector-type gauge theory, but there are 16
fermions contributing to the continuum limit. Thus we cannot describe quarks in QCD.
Since we need to break chiral symmetry explicitly to obtain doubler-less lattice fermions,
the doubling problem in lattice QCD can be called as a conflict of “chiral symmetry vs
doubler-less lattice fermion”.

As we have seen, the formulation of lattice fermions has difficulty to match phe-
nomenological theories. From the next section, we will look into a variety of lattice
fermion actions, some of which bypass the no-go theorem by breaking the presuppositions
of the no-go theorem appropriately.

2.2 Naive fermion

In this section we review the naive lattice fermion from the viewpoint of the symmetry
and the Dirac eigenvalues. Symmetries of the naive lattice fermion can be classified into
two types; discrete symmetries and continuous symmetries. Discrete symmetries include
the hypercubic symmetry, C, P and T invariance. The hypercubic symmetry results
in the Euclidean rotational symmetry in the continuum limit. These symmetries are
phenomenologically desiarble. On the other hand, continuous symmetries are affected
by the flavor structure of lattice species. The continuous symmetries include flavor and
chiral symmetry. Since the naive fermion contains 16 species, we expect that the theory
has U(16)×SU(16) symmetry in the continuum limit. However the lattice discretization
errors break it to U(4)×U(4) at finite lattice spacing, which is an anomaly-free subgroup
of the continuum U(16) × SU(16). In this section we first show that the kinetic term of
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γ5 → −γ5 (1)

a → 0 g2
σ → 0 g2 → ∞ N → ∞ (2)

2 − (cos ap1 + cos ap2) =
a2p2

1 + a2p2
2

2
+ O(a3) (3)

1 − cos ap1 cos ap2 =
a2p2

1 + a2p2
2

2
+ O(a3) (4)

ψ(1) :
1
24

(1 + cos p1)(1 + cos p2)

× (1 + cos p3)(1 + cos p4)ψ(p) (5)

p(1) = (0, 0, 0, 0) (6)

(0, 0) (π, 0) (0,π) (π, π) (7)

ψ(1) ψ(2) ψ(3) ψ(4) (8)

DW (p) = iγµpµ + O(a) (9)

DW (p) = iγµpµ +
2
a

+ O(a) (10)

Dov(p) = iγµpµ + O(a) (11)
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Nielsen-Ninomiya

Chiral symmetry   v.s.   desirable flavor number    

2 poles per dim. → 16 doublers in 4d

Free propagator
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Dnf

16 degenerate

Dirac spectrum

SN =
�

n

�a3

2
ψ̄nγµ(Un,µψn+µ − U†

n−µ,µψn−µ) + a4mψ̄nψn

�

                    flavors       chiral      tuning     artifact
Wilson:             1              0         severe      O(a)
Staggered:         4              1           N/A       O(a^2) 
Domain-wall     1             (1)          easy       O(a^2)   
Overlap            1              1           N/A       O(a^2)



Why lattice fermions?

(1) Radical improvement of lattice simulations 

(2) Further understanding on lattice field theory  

New formulations have possibility to eliminate them. 
Even if not, one can enjoy feedbacks.

Further variety of Ginsparg-Wilson fermions ?

Other ways of keeping chiral symmetry on the lattice ?

Wilson : O(a) errors & bad chiral      →   Symanzik:O(a)-improving,   Smearing:UV-filter

Staggered : taste breaking at O(a^2)   →    HISQ : O(a^2)-improving, UV-filter

Domain-wall, Overlap : Numerical cost & more   →    Fixed topology, Reweighting...



Possible new setups
1. Flavored mass 

2. Central branch

3. Two-flavor chiral fermion

New Wilson and overlap fermions    →　O(a) error reduction

                                                             CPU time reduction                                                      

Wilson w/o additive renorm. →   Chiral symmetry (No fine-tuning)
                                                 O(a) improved

Chiral two-flavor w/ ultra locality, based on 6D clifford algebra

→   Chiral symmetry
　   4D-Rotational, C, P,  T invariance



1. Flavored mass



◆Wilson fermion : species-splitting by mass

◆ 1/a additive mass renormalization  → Fine-tune

◆ 15 species are decoupled → doubler-less

The only way of species-splitting ?

◆ Overlap formula and GW symmetry  → costs

Physical (0,0,0,0) :
Doubler(π/a,0,0,0) :
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DW (p) =
1
a

∑

µ

[iγµ sin apµ + (1 − cos apµ)] (1)

εx = (−1)x1+x2+x3+x4 (2)

mqa ≡ |M̂ − M̂c| (3)

m2
πa2 =

8
3
mqa + O(a2) (4)

M̂2
c = 4 (5)

m2
π = 0 (6)

Sgw =
∑

x,y

ψ̄x[γµDµ + r(1 + Mf ) + m]xyψy (7)

Ψ̄(1 ⊗ X)Ψ (8)

f = P, T, A, V (9)

H2 = D†D + m2 ≥ 0 (10)

Hgw = γ5(Dnf − MP ) (11)

Hsw = ε(Dst − M (A)
f ) = Γ55(Dst − M (A)

f ) (12)
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1 4 4616 1
Only one flavor is massless, 
while others have 1/a mass. 

m=0
m=2/a m=4/a m=6/a

m=8/a

SW =
a5

2
ψ̄n(2ψn − ψn+µ − ψn−µ) +

Flavored mass
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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it has been reported in the study of the Gross-Neveu model that the symmetry enhancement

would take place at the central branch (the third branch) of Wilson-type fermions [18].

The aim of this paper is to shed light on the structures of underlying continuous symme-

tries and their spontaneous breakdown in four types of lattice fermions formulation: the naive

fermion, the Wilson fermion and two kinds of minimally doubled fermion. For this purpose,

we rewrite lattice fermion actions in “the spin-flavor representation” [43,44], in which the spin

and doubler-multiplet structures of the lattice fermions become manifest. We first re-express

the U(4) × U(4) symmetry of the naive fermion in [7, 42] using the spin-flavor representation.

We then apply the same method to the Wilson fermion action, which is invariant under only

the ordinary U(1) vector transformation for general values of the mass parameter m. We show,

however, that an additional U(1) vector symmetry is realized by tuning m and this symmetry

is spontaneously broken by pion condensation. Finally, we explore the Karsten-Wilczek and

the Boriçi-Creutz minimally doubled fermion and discover that a similar type of symmetry

enhancement and its spontaneous breakdown occur.

This paper is organized as follows. In section 2, we revisit the symmetries of the naive

lattice fermion via the spin-flavor representation. In section 3, we discuss the symmetries of the

Wilson fermion with emphasis on the symmetry enhancement and its spontaneous breakdown.

We also explore minimally doubled fermions in section 4. Section 5 is devoted to a summary

and discussions. Some technical details are given in appendixes.

2 Naive fermion and Spin-flavor representation

In this section, we first review the U(4)×U(4) symmetries of the naive fermion [7,42]. Then we

introduce the spin-flavor representation, which simplifies the identification of symmetry in the

case of the Wilson fermion and the minimally doubled fermions.

The action of the naive fermion is given by

Snf =
1

2

∑

n,µ

(ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn) + m
∑

n

ψ̄nψn . (1)

Throughout this paper, we consider the nondimensionalized action. As is discussed in [7, 42],

the kinetic term of this action has larger symmetry than the action of the continuum theory:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
ψn ,

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
.

(2)

2
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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Here it has only two zeros located at p = (0, 0, 0, 0), (0, 0, 0,π). These two species are not

equivalent since the gamma matrices are differently defined between them as γ′
µ = Γ−1γµΓ.

In the above case it is given by Γ = iγ4γ5. This means the chiral symmetry possessed

by this action is identified as a flavored one given by γ5 ⊗ τ3. This lattice fermion breaks

discrete rotational symmetry, or hypercubic symmetry. The residual symmetry is spatial

cubic symmetry, corresponding to the permutation of spatial three axes. As a result, it

possesses only CT and P symmetry.

(1) U(1)V × U(1)A

(2) P

(3) CT

(4) Cubic symmetry

Now let us look into symmetries of the naive lattice fermion with complex chemical

potential. The massless action is given by

Sn(µ) =
1

2

∑

x

[
3∑

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j)

+ ψ̄xγ4

(
eµRe+iµImUx,x+4ψx+4 − e−µRe−iµImUx,x−4ψx−4

)
]

(3)

The action obviously breaks the hypercubic symmetry into the spatial cubic symmetry. It

also breaks C,P and T symmetries into CT and P symmetry. We line up symmetries of this

case below.

(1) U(4) × U(4) (residual flavor symmetry among 16 species)

(2) P

(3) CT

(4) Cubic symmetry

These discrete symmetries are the same as those of Karsten-Wilczek fermion. From

the viewpoint of the universality class, these two theories belong to the same class. It is

reasonable since the Karsten-Wilczek term proportional to r in Eq.(1) works to assign O(1/a)

imaginary chemical potential to 14 species while 2 species has zero imaginary chemical

potential. More precisely, in weak-coupling limit, two of 16 species have zero imaginary
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Symmetries and Spectrum of
lattice fermions with flavored-mass terms

Tatsuhiro Misumi
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual

39
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FIG. 8: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field case in mo-

mentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn − (MP + 0.1MA). (c)

Dn − (MP +MV +MT +MA).

where
∑

perm. means summation over permutations of the space-time indices.

Now we derive the flavored mass terms required to detect the index from the spectral

flow of the Hermitean operator. As in the d = 2 case, it should be constructed so that the

associated Hermitean operator has a flavor-singlet mass part as γ5M ∼ γ5⊗ (1⊗1⊗1⊗1).

Such a mass term is just the P-type mass (A7). Thus the flavored mass term for the

Hermitean operator is given by

MP = mP

∑

sym.

4
∏

µ=1

Cµ. (A8)

With the Hermitean operator Hn = γ5(Dn − MP), we reveal the index theorem with the

naive fermion as in the d = 2 case. Here we only show the figure for eigenvalues of the free

Dirac operator Dn −MP in Fig. 8(a). The mass term splits the modes into two branches,

which are 8 fold degenerate. If we introduce other types of mass terms, the degeneracy is

lifted as seen in Fig. 8(b).

Next we show the flavored mass term to yield a single-flavor naive overlap fermion in 4d.

As in the case of 2d there are some possibilities to realize it. The simplest example of the

mass term to yield a single-flavor naive overlap fermion with hypercubic symmetry is given

by

MP +MV +MT +MA. (A9)

The eigenvalues of the Dirac operator with this mass term is depicted in Fig. 8(c). Here

MT

MV+MT+MA+MP

Dirac op. eigenvalues
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Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual
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Figure 5: Free-field dispersion relations of all operators considered in 2D, where |p|max=π/a.
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Figure 5: Free-field dispersion relations of all operators considered in 2D, where |p|max=π/a.
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Figure 21: Localization of the ρ=1 overlap operator with the standard Wilson kernel (left) or
the new Brillouin kernel (right) on a free 484 lattice, for four directions of the separation.

number, in particular with a bit of link smearing and after O(10) eigenmodes are projected.
This allows for a lower degree polynomial or rational representation of the sign function.

7.5 Comparing the locality of the resulting overlap actions

The locality of the overlap action with standard Wilson kernel was first studied in [41]. In [46]
it was shown that a nearly chiral (but still ultralocal) kernel can significantly improve the
coordinate-space locality of the resulting overlap action. In [42, 43] it was shown that even
a slight modification through some link-smearing can lead to a considerable improvement.
Therefore, one may hope that trading the Wilson kernel for the Brillouin kernel leads to a
noticeable improvement of the locality of the overlap operator.

The localization of the overlap made from the Wilson or the Brillouin kernel is shown for
a 484 lattice in the free field case in Fig. 21. The Frobenius norm of D(x, y) is plotted as a
function of the Euclidean distance d2 = ||x−y||2. Evidently, the Brillouin kernel diminishes the
anisotropy effects and makes the operator fall off at about twice the rate as before.

8 Summary

We have introduced an ultralocal single-flavor lattice Dirac operator, based on the gauge covari-
ant versions of ∇iso and #bri in (14). Relative to the Wilson operator its eigenvalue spectrum
is more Ginsparg-Wilson like (cf. Fig. 22), and its dispersion relation is more continuum-like8.
As species doubling and global anomalies depend only on topological features of the dispersion
relation [48, 49], from the conceptual viewpoint this is a Wilson-like fermion.

When combined with some link smearing and clover improvement, our action was found to
show good scaling of decay constants even in the physical charm region, and we expect that
the near-agreement between perturbative and non-perturbative improvement coefficients found
with the Wilson operator [30, 50, 51] carries over to this action, too. It appears that lattice

8A similar strategy has been adopted for staggered fermions in [47].
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Figure 14: Fit of the mixed αa plus a2 ansatz (24) to the ratio Fc̄c/Fs̄s with 4 (left) or 5 (right)
lattice spacings included.

contribution in αa and a2 at accessible lattice spacings. Still, to the best of our knowledge,
this is the first figure which indicates that, for a tree-level improved operator with some link-
smearing, the pure a2 hypothesis might be closer to the truth than the (formally correct) pure
αa hypothesis. Of course, with infinitely precise data one could separate the two contributions.
To see how far we are from this ideal world, we try a fit of the ratio Fc̄c/Fs̄s with the ansatz

Fc̄c/Fs̄s = d0 + d1α(a)a+ d2a
2 (24)

giving results shown in Fig. 14. The fitted d1, d2 of the Brillouin operator are significantly
smaller than those of the Wilson operator. Also by looking at the fits one would say that the
Brillouin data alone leave little doubt that the correct continuum value is somewhere near 1.85,
while with the Wilson data alone this is far from obvious.

6.4 Comparing the 1/nBiCGstab distributions at fixed r0Mπ

In quenched QCD with Wilson fermions so-called exceptional configurations (on which the
massive Dirac operator Dm could not be inverted) hindered the approach to light quark masses.
In full QCD the functional measure suppresses configurations on whichDm has near-zero modes.
Still, the issue persists in the form of instabilities in the HMC evolution.

In [39] it was shown that the stability of these simulations is linked to the distribution of
the lowest eigenvalue of D†

mDm. The latter is roughly Gaussian distributed, and the simulation
is deemed safe as long as the center of the distribution is at least four standard deviations
away from zero. The BMW collaboration noticed that the smallest eigenvalue of D†

mDm is
directly related to the number of iterations in the inversion, and used the inverse iteration
count 1/nCG in the monitoring [40]. In Fig. 15 we present 1/nBiCGstab for either operator at the
values (r0Mπ)2=1.56 and 0.56 (Mπ∼500MeV and 300MeV). In either case an inversion with
the Brillouin operator requires about 60% of the forward applications7 of the Wilson operator.

7For fixed Mπ the smallest eigenvalues of the two A = D†
mDm are approximately equal, while the largest

eigenvalue is near 2.52 for the Brillouin operator and near 7.52 for the Wilson operator. Since nCG ∝
√

CN(A)
one would expect the relative iteration count to be around 1/3 for CG and around 1/

√
3 $ 0.6 for BiCGstab.
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◆Staggered fermion

Spin diagonalization :

〈ψ̄iγ5τ3ψ〉 #= 0 (30)

m2
π = C|M − Mc| ≡ Cmq (31)

SGN =
∫

d2x [ψ̄(i∂µ − m0)ψ +
g2

2N
{(ψ̄ψ)2 + (ψ̄iγ5ψ)2}] (32)

Veff(σc,πc) = −mσc +
1
4π

(σ2
c + π2

c ) ln
σ2

c + π2
c

eΛ2
(33)

1
g2

=
1
π

ln
M

Λ
, (M → ∞) (34)

m =
m0

g2
(35)

1
g2

R

=
1
π

ln
µ

Λ
(36)

ψ̄xC1C2C3C4ψx →





1
1

−1
−1



 εxχxη1η2η3η4C1C2C3C4χx (37)

ψn = γn1
1 γn2

2 γn3
3 γn4

4 χn, ψ̄n = χ̄nγn4
4 γn3

3 γn2
2 γn1

1 (38)

a

∫
d4xψ̄(x)D2

µψ(x) (39)

Index(DW ) = (−1)d/2Q (40)

Index(Dgw) = 2d(−1)d/2Q (41)

Index(Dsw) = 2d/2(−1)d/2Q (42)

ψ̄(1 ⊗ γ5)ψ (43)

ψ̄(1 ⊗ σµν)ψ (44)

n → n + µ̂ (45)

nµ → −nµ (46)

3
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Include taste-dependent mass term: ±! for left-/right-handed tastes
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Dst DAdams ≡ Dst+!(1⊗ #5)

Then add mass (ie. shift spectrum) to make Nf = 2 massless flavors!
Drawback: additive mass renormalization, ie. fine-tuning for mq → 0

Ph. de Forcrand QCDNA, Sept. 2010 Overlap staggered fermions

4  ξ5=-1  ξ5=+1

de Forcrand, Kurkela, 
Panero(2012)

{C0, Ξµ, Is, Rµν} × {U �(1)}m=0

(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6

◆ Staggered flavored mass Golterman, Smit (1984)   Adams(2010)

TM, Sharpe(2012)

2          2

 ξ5=-1 → physical sector :  ξ5=+1 → decoupled sector : � h

MA = �x
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sym.
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given by
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which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)
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operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)
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spin and flavor are not independent. There are 10 such operators, which are doubled to be
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◆Staggered-Wilson (Domain-wall, Overlap)
Application       :    As Wilson            →  Mass parameter tuning required
                            As Domain-wall    →   5th dimension introduced 
                            As Overlap           →  Overlap formula with StWil kernel

・Index theorem (spectral flow)

Index(Dsw)   =  - Spectral flow(Hsw)

Adams(2009)  Creutz, Kimura, TM (2010) 

36×36 lattice, randomness δ=0.25, Q=1

13

FIG. 3: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 1,

δ = 0.25 background configuration on a 16 × 16 lattice. Two single crossings with positive slopes

are seen in (a), which means the index is −2. Two doubled crossings with positive slopes are seen

in (b), which means the index is −4.

FIG. 4: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 2,

δ = 0.2 background configuration on a 16 × 16 lattice. Six single crossings with positive slopes

and two single crossings with negative slopes are seen in (a), which means the index is −4. Six

doubled crossings with positive slopes and two doubled crossings with negative slopes are seen in

(b), which means the index is −8.

which contains a factor 2 reflecting two species. This relation is also satisfied by cases with

other topological charges, as shown in Fig. 4(a) for the case for Q = 2. Here the net number

of crossings counted with ± depending on the slopes is 4. It means the corresponding index

is −4, which is consistent with (31). We also emphasize that there is a clear separation

between low- and high-lying crossings in Fig. 3(a) where low-lying ones are localized about

Index(Dsw) = -2

Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual

39

Staggered flavored-mass

・Spin diagonalization   Creutz, Kimura, TM (10)
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Hoelbling (10)

1       2          1

{C0, Ξµ, Is, Rµν} × {U �(1)}m=0 {CT , Ξ�
µ, R12, R34, R13R42}

2d Aoki phase

・Aoki phase   Creutz, Kimura, TM(11)  TM, Nakano, Kimura, Ohnishi(12)

Strong-coupling LQCD & 2d Gross-Neveu 
           → Implies parity-flavor broken phase

・Another type (Hoelbling type)   Hoelbling (10), de Forcrand, Kurkela, Panero (10)

→  Requires fine-tuning of parameters for continuum TM, Sharpe (12)

C P
Rotation sym. broken !

ChPT analysis required → 1st or 2nd order ?

→  Numerical tests indicate no problematic signature Durr (13)

iηµην�µν(CµCν + CνCµ)

∼ (1⊗ i(σµν + σνµ)) + O(a)



§ Potential advantages and problems of

(i) 24 terms (ii) 4 transporters  vsOne component (small matrix)  

1. Less numerical costs for overlap? de Forcrand, Kurkela, Panero(2012)

3. Less taste-breaking for 2 flavors ?

Staggered sym. for 4 tastes   vs    Halved staggered sym. for 2 tastes

Durr(2013)2. Wilson improvement works better ?
Clover term + HEX smearing

TM, Sharpe(2012)



◆Small matrix size

◆4-link hopping terms

Fewer Matrix-Vector multiplications 
for overlap sign function !

1. Less numerical costs ?

 Gauge fluctuation raised to 4th power !
   → Gap of two branches reduced

Staggered-Overlap Dirac propagator  CG solver (12^4, m=0.1)

Staggered-Wilson kernel is better than Wilson kernel, but not much better.

β = 6free

Staggered overlap fermions Philippe de Forcrand
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Figure 4: Computer cost of one overlap propagator, measured in outer CG iterations (left), matrix-vector
multiplications (middle) and CPU time (right). The values for Adams’ operator are shown in red, those for
Neuberger’s operator in green. The gauge field is the free field (top), or a ! = 6.0 configuration (bottom).

the distance |x− y|, which should be bounded by exp(−|x− y|/(ca)), where (ca) is a localization
length proportional to the lattice spacing a, and thus shrinking to zero in the continuum limit.

Fig. 3 shows the maximum magnitude maxy |Dov(x0,y)| versus the Manhattan distance |x0−y|,
chosen to follow the conventions of Ref. [7] for the Neuberger operator. The left figure corresponds
to Adams’ overlap operator, the right one to Neuberger’s, on the same gauge configurations at 3
values of ! . While Adams’ operator behaves differently at short distance because of the 4-link
transporters, at large distances the decay of the matrix elements is exponential as in Neuberger’s
case, with a similar localization length. 2

5. Robustness to gauge fluctuations and efficiency

We have studied the computational cost of a quark propagator calculation with Adams’ op-
erator and compared it to Neuberger’s propagator (for one component) on the same gauge field
background, and with the same numerical approach. As the matrix to invert is 4 times smaller, and
its spectrum is closer to the unit circle, at least in the free case (Fig. 2), Adams’ operator may be
computationally cheaper.

The propagator is obtained as the solution of (Dov+m)†(Dov+m)x = (Dov+m)†b, using a
conjugate gradient iterative solver, using the following simple and robust method [9]: at each
iteration of this outer CG, sign(H) is applied to a vector v through a Lanczos process, building a

2This happens even though the kernel of Adams’ operator is much less local than that of Neuberger’s: a less
ultralocal kernel may lead to a more local overlap operator [8].
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Overlap

St.Overlap

St.Overlap

Overlap

de Forcrand, Kurkela, Panero(2011)

free

Staggered overlap fermions Philippe de Forcrand

This figure also shows that the spectrum remains centered about the origin: changing m0 is
not the analogue of changing the mass in the Wilson operator, which shifts the whole spectrum.
Rather, m0 is the analogue of Wilson’s hopping parameter r [2].

This is why the eigenvalue gap in the Hermitian operator HA(m) (Fig. 1) persists for large val-
ues of |m|. Shifting the whole spectrum ofDA by a taste-independent mass term is also possible, but
will destroy the symmetry of the spectrum about the origin without any computational advantage.
Finally, Fig. 5 (right) shows how the gap in the spectrum of DA closes at ! = 5.8.

6. Conclusion

Our study shows that Adams’ staggered overlap operator works as advertised: the taste-
dependent mass operator in its kernel yields 2 massless tastes without fine-tuning, and the topology
and locality properties are similar to Neuberger’s operator.

On very smooth gauge configurations, the computer cost of a quark propagator is nearly an
order of magnitude less than in Neuberger’s case, but the 4-link transporters in the flavored mass
term reduce this advantage to a factor O(2) on ! = 6 configurations. Another drawback of Adams’
construction is that the continuous symmetry of the massless staggered overlap operator is U(1),
not SU(2) as one would wish for a 2-flavor chiral symmetry.

The lack of robustness and of full chiral symmetry can both be addressed by modifying the
mass operator, for example with 2-link transporters [11] that reduce the number of light tastes to
1. Preliminary results [12] confirm our expectations, but do not bring the cost of staggered overlap
fermions near that of ordinary staggered fermions: avoiding rooting still has its price.
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Durr(2013)2. Wilson improvement works better ?

◆Smearing makes the gap larger
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・Gauge fluctuation due to 

    4-hopping is compensated.

◆Clover (Symanzik) improvement

・The gap gets wider as the HEX  

    smearing level goes up.

・The physical branch gets close to 

    the origin.
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Smearing + 
clover term

n=0,1,3
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(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by
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which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
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the only change produced by the flavored-mass term, the three pion states (44) are still in the
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rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)
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Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)
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6 in the non-chiral-
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6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
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6 contains 50 operators. In LFF (B)
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spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
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Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)
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As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
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T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6
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µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
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pseudo-scalar operators is given by
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which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by
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which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
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spin and flavor are not independent. There are 10 such operators, which are doubled to be
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◆ Short summary

・Flavored mass leads to generalization of 

    Wilson, Domain-wall and Overlap fermions. 

・Brillouin fermion   →  less O(a) error

                               →  better kernel for overlap

・Staggered-Wilson  →  less costs for overlap

 　                           →  better improving effects

                           　 →  less taste breaking
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Symmetries and Spectrum of
lattice fermions with flavored-mass terms

Tatsuhiro Misumi

April 12, 2012

1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

2. Central-branch Kimura, Komatsu,TM, Noumi, Torii, Aoki (11) 
Creutz, Kimura, TM (11)

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

MW ≡ m + 4r = 0 (1)

ψ̄ψ ↔ ψ̄γ5ψ (2)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (3)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (4)

MH = M (1)
H + M (2)

H + M (3)
H , (5)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (6)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (7)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (8)

MT &→ MH (9)

M (i)
T → M (i)

H (10)

[σµν ,σνρ] &= 0 (11)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (12)

x → R(µν)R(ρσ)x (13)

1

S =
1
2

�

x,µ

ψ̄x[γµ(Ux,µψx+µ − Ux,−µψx−µ)− (Ux,µψx+µ + Ux,−µψx−µ)]

ψx → eiθ(−1)x1+x2+x3+x4
ψx, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4

・Flavor-chiral symmetry

1      4       6        4        1
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commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

Prohibits additive mass renormalization !
No fine-tuning !

2. Central-branch Kimura, Komatsu,TM, Noumi, Torii, Aoki (11) 
Creutz, Kimura, TM (11)
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H =
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√
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M (2)
H =
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√
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H =
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√
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T ) → Sst(M
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S =
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�

x,µ

ψ̄x[γµ(Ux,µψx+µ − Ux,−µψx−µ)− (Ux,µψx+µ + Ux,−µψx−µ)]

ψx → eiθ(−1)x1+x2+x3+x4
ψx, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4

・Flavor-chiral symmetry

γ5 ⊗ γ5 ⊗ 1
spin          flavor

1      4       6        4        1



・Strong-coupling QCD

NG boson emerges
Spontaneous breaking of the U(1) 

Aoki phase

�ψ̄ψ� = 0
※Special condensate

・Lattice perturbation

quark self-energy

7

p k p p p

p − k

k

Figure 18: Diagrams for the quark self-energy. On the left the sunset diagram, on the right the

tadpole diagram.

situation one can think of, although it already leads to complicated manipulations, as we will

shortly see. We carry out these manipulations starting from the operator

Oµν = ψγµDνψ, (15.41)

and implement the symmetrization in µ and ν at a later stage. Due to the presence of the link
variable U in the covariant derivative, this operator has an expansion in the coupling,

Oµν = O(0)
µν

+ g0O
(1)
µν

+ g2
0O

(2)
µν

+ O(g3
0). (15.42)

To evaluate the one-loop Feynman diagrams in momentum space one has to compute the

Fourier transforms of the operators in this expansion including the term of O(g2
0). It turns out

that to work out these momentum-space insertions for our forward matrix element we can use

the operator defined with the right derivative only, instead of the one involving the difference
between the right and the left derivative (which would lead to more complicated manipulations).

We have then that the expansion of a4 ∑

x

(

ψγµ

→

Dν ψ
)

(x) is

a4 1

2a

∑

x

(

ψ(x)γµUν(x)ψ(x + aν̂) − ψ(x)γµU †
ν
(x − aν̂)ψ(x − aν̂)

)

= a4

{

1

2a

∑

x

(

ψ(x)γµψ(x + aν̂) − ψ(x)γµψ(x − aν̂)
)

(15.43)

+
1

2
ig0T

a
∑

x

(

ψ(x)γµA
a
ν
(x)ψ(x + aν̂) + ψ(x)γµA

a
ν
(x − aν̂)ψ(x − aν̂)

)

−

1

4
ag2

0T
aT b

∑

x

(

ψ(x)γµA
a
ν
(x)Ab

ν
(x)ψ(x + aν̂) − ψ(x)γµAa

ν
(x − aν̂)Ab

ν
(x − aν̂)ψ(x − aν̂)

)

+O(a2g3
0)

}

.

and Mackenzie, 1997; Mertens, Kronfeld and El-Khadra, 1998) and (Kuramashi, 1998).
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Figure 17: “Proper” diagrams for the 1-loop correction of the matrix element 〈q|ψγ{µD
ν}ψ|q〉. The

black squares indicates the insertion of the operator. Shown is also the choice of momenta used in the

calculations.

ψ(x)
←

Dµ =
1

2a

[

ψ(x + aµ̂)U †
µ(x) − ψ(x − aµ̂)Uµ(x − aµ̂)

]

.

We consider amputated Green’s functions, that is the external propagators are removed.
The tree level of the amputated forward quark matrix element of the operator above is easily

seen to be
〈q|O{µν}|q〉

∣

∣

∣

tree
=

1

2
i(γµpν + γνpµ), (15.39)

and the 1-loop QCD result has, as we will see from the calculation, the form

〈q|O{µν}|q〉
∣

∣

∣

1 loop
=

1

2
i(γµpν + γνpµ) ·

g2
0

16π2
CF

(

c1 log a2p2 + c2), (15.40)

i.e., it is proportional to the tree level and this operator is thus multiplicatively renormalized.
The renormalization constant for the matching to the MS scheme can then be read off from the

above 1-loop result plus the corresponding continuum calculations made in the MS scheme (see
Eq. (3.3) and Section 3). For the computation of the lattice part it is necessary to evaluate six
Feynman diagrams, which are given in Figs. 17 and 18. The two diagrams in Fig. 18 compute

the quark self-energy, and give the renormalization of the wave function. The remaining four
diagrams, in Fig. 17, are specific to the operator considered, and we will call them “proper”

diagrams.

15.4.1 Preliminaries

We work in Feynman gauge (α = 1), where the form of the gluon propagator is simpler, and
we set r = 1. We perform the calculations using massless fermions. 64 This is the simplest

64Calculations in which the quark propagator is massive are more complicated. A few examples of these
calculations, which use simpler operators, can be found in (Kronfeld and Mertens, 1984; El-Khadra, Kronfeld
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p = 0

= 0

FIG. 3: The diagrams contributing to the 1-loop fermionic self-energy.

Figure 6: Diagrams for the self-energy of the gluon on the lattice. The diagrams on the upper row

have a continuum analog, while the diagrams on the lower row are a pure lattice artifact. They are

however necessary to maintain the gauge invariance of the lattice theory, and are important for its

renormalizability.

An example of this fact is given by the diagrams contributing to the gluon self-energy at
one loop (Fig. 6). If one would only consider the diagrams on the upper row, that is the

ones that would also exist in the continuum, the lattice results would contain an unphysical
1/(am)2 divergence. This divergence is canceled away only when the results of the diagrams
on the lower row are added, that is only when gauge invariance is fully restored. Notice that

for this to happen also the measure counterterm is needed (see Section 5.2.1). In a similar way,
terms of the type p2

µ
δµν , which are not Lorentz covariant and are often present in the individual

diagrams, disappear only after all diagrams have been considered and summed.
From what we have seen so far, we can understand that a lattice regularization does not

just amount to introducing in the theory a momentum cutoff. In fact, it is a more complicated
regularization than just setting a nonzero lattice spacing, because one has also to provide a
lattice action. Different actions define different lattice regularizations. Because of the particular

form of lattice actions, the Feynman rules are much more complicated that in the continuum,
and in the case of gauge theories new interaction vertices appear which have no analog in the

continuum. The structure of lattice integrals is also completely different, due to the overall
periodicity which causes the appearance of trigonometric functions. The lattice integrands are
then given by rational functions of trigonometric expressions.

At the end of the day, lattice perturbation theory is much more complicated than contin-
uum perturbation theory: there are more fundamental vertices and more diagrams, and these

propagators and vertices, with which one builds the Feynman diagrams, are more complicated
on the lattice than they are in the continuum, which can lead to expressions containing a huge

number of terms. Finally, one has also to evaluate more complicated integrals. Lattice pertur-
bative calculations are thus rather involved. As a consequence, for the calculation of all but

27

FIG. 4: The diagrams contributing to additive mass in the 1-loop gluon self-energy. The contribu-

tion from sunset and tadpole diagrams cancel.

III. STRONG-COUPLING QCD

We first review the strong-coupling QCD study for the central branch [8], which figures

out that there appears an NG boson associated with the U(1)V̄ symmetry breaking in the

6

as Σ(α)
0 (sun). It is calculated as

Σ(α)
0 (sun) =

g2
0

a
CF

∫ π

−π

ddk

(2π)d

∑

ρ

1

4(
∑

λ sin2 kλ
2 )(

∑
µ sin2 kµ + (−

∑
µ cos kµ)2)

× eiπ(α)
ρ

(
(sin2 kρ

2
− γ2

ρ cos2 kρ

2
)(−

∑

λ

cos kλ)

+ (γρ(γµ sin kµ) + (γµ sin kµ)γρ) sin
kρ

2
cos

kρ

2

)

=
g2
0

a
CF

∫ π

−π

ddk

(2π)d

∑

ρ

1

4(
∑

λ sin2 kλ
2 )(

∑
µ sin2 kµ + (−

∑
µ cos kµ)2)

× eiπ(α)
ρ

(
(sin2 kρ

2
− cos2 kρ

2
)(−

∑

λ

cos kλ) + sin2 kρ

)

= 0, (10)

where eiπ(α)
ρ gives plus or minus sign depending on locations of the poles in the direction ρ.

This sign change leads to cancelation between different dimensions ρ in the integral for any

poles α.

The contribution from the tadpole diagram I(α)(tad) is given by

I(α)(tad) =
1

2

∫ π
a

−π
a

ddk

(2π)d

∑

ρ

Gρρ(k) · (V aa
2 )ρρ(p, p) (apρ → π(α)

ρ )

=
1

2

∫ π

−π

ddk

(2π)d
a2 1

4
∑

λ sin2 kλ/2

(
−1

2
ag2

0

∑

a

{T a, T a}cc

)
∑

ρ

(−iγρ sin apρ + cos apρ)

= −1

2
g2
0CF

∫ π

−π

ddk

(2π)d

1

4
∑

λ sin2 kλ/2

(
−iγµpµ +

1

a
+

1

a
− 1

a
− 1

a

)

= −1

2
g2
0CF Z0 (−iγµpµ) , (11)

where we denote the final integral for d = 4 as Z0, which is calculated with high precision

as ∫ π

−π

d4k

(2π)4

1

4
∑

λ sin2 kλ
2

= Z0 = 0.15493339... (12)

Therefore, Σ(α)
0 (tad) from the tadpole diagram for any α is zero. These results show

Σ(α)
0 = Σ(α)

0 (sun) + Σ(α)
0 (tad) = 0, (13)

which means the additive mass renormalization becomes zero at one loop as shown in Fig. 3.

TM (12)   Chowdhury, et.al. (13)

Kimura, Komatsu, TM, Noumi, Torii, Aoki (11)

Twisted-mass basis

5

We now consider the fermion self energy which consists of two diagrams, sunset and

tadpole. In analogy to the usual Wilson fermion, the 1-loop fermion self-energy has a form

as
g2
0

16π2

(
Σ0

a
+ iγµpµΣ1 + m0Σ2

)
(8)

The term proportional to Σ0/a corresponds to additive mass renormalization, which stands

for the critical mass. The third term comes from bare mass, but we do not consider bare

quark mass in our study. The question is whether the additive mass renormalization Σ0 is

zero or nonzero for the central branch Wilson fermion.

We first consider the sunset diagram, which contains divergent diagram. We denote the

sunset contribution as I. The total contribution from this diagram is given by lima→0 I(ap !=

0) + I(ap = 0) due to the Reisz power-counting theorem. However, the contribution to Σ0

only comes from I(ap = 0) ≡ I0, thus we focus on this quantity for now. We now define π(α)
µ

as the location of zeros of the Dirac operators. α = 1, 2, ..., 6 identifies six zeros, and the

associated zeros π(α)
µ are given by π(1)

µ = (0, 0,π,π), π(2)
µ = (0,π, 0,π),... Then, we consider

I(α)
0 (sun) of the sunset diagram for the six flavors (α = 1, ..., 6), which is given by

I(α)
0 (sun) =

∫ π
a

−π
a

ddk

(2π)d

∑

ρ

Gρρ(p − k) · Vρ(k, p) · S(k) · Vρ(p, k)|
apµ=π(α)

µ

=
g2
0

a
CF

∫ π

−π

ddk

(2π)d

∑

ρ

1

4(
∑

λ sin2 kλ
2 )

(sin
kρ + π(α)

ρ

2
+ iγρ cos

kρ + π(α)
ρ

2
)

×
−iγµ sin kµ + (−

∑
µ cos kµ)

∑
µ sin2 kµ + (−

∑
µ cos kµ)2

(sin
kρ + π(α)

ρ

2
+ iγρ cos

kρ + π(α)
ρ

2
) + O(1), (9)

where we rescaled the integration variables and extracted the terms up to O(1). We also

worked in the dimensional regularization with general dimension d in the integral. It is

obvious that the term proportional to 1/a is the contribution to Σ(α)
0 (sun), which we denote

No additive mass renormalization

π ∼ ψ̄(−1)
P

nψ Meson operator a/w the U(1)

cosh(mπ) = 1 +
2M2

W (16 + M2
W )

16− 15M2
W

→ mπ = 0

additive mass

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

ψ̄ψ ↔ ψ̄γ5ψ (1)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (2)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (3)

MH = M (1)
H + M (2)

H + M (3)
H , (4)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (5)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (6)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (7)

MT %→ MH (8)

M (i)
T → M (i)

H (9)

[σµν ,σνρ] %= 0 (10)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (11)

x → R(µν)R(ρσ)x (12)

Dnf − (MV + MT + MA + MP ) (13)

1
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§ Potential drawbacks

・Negative quark determinant (odd negative zero modes)

・Sign problem for different topological sector

Two sets of Wilson CB → 12-flavor QCD

→ 6-flavor QCDchange of mass basis

・No additive mass renormalization (no fine-tuning)

・SSB of U(1) and massless NG boson

・No O(a) errors     cf.) Twisted-mass Wilson

§ Advantages

m3ψ̄iτ3γ5ψ
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MT  :  U(2) restored

MP  :  U(2)×U(2) restored

MAdams  : CT’Ξ, CT’I restored

MHoel  :  CT’ restored

◆ CB for other flavored masses

C �
T : χx → χ̄T

x , χ̄x → χT
x , Ux,µ → U∗

x,µ

→ No additive mass

◆ 2-flavor CB

(1,3,3,2,3,3,1) splitting
・No additive mass for 2-flavor fermion

the mass parameter. The problem is, however, that it produces 6 flavors.
The question is whether or not two-flavor central-branch fermions can be
constructed.

We note this case corresponds to the central cusp of the Aoki phase
diagram in Fig. 2, at which six fermion modes with momentum shift, p =
(π, π, 0, 0), (π, 0,π, 0), (π, 0, 0, π), (0,π, π, 0), (0,π, 0,π) and (0, 0, π, π), are
expected to appear in the continuum limit.

2 2-flavor central branch

In this section, we discuss 2-flavor central-branch fermions. For example, we
consider a simple modification of the usual Wilson flavored-mass as

4∑

µ=1

Cµ →
3∑

j=1

Cj + 3C4. (4)

where Cµ ≡ (T+µ + T−µ)/2 with T±µψn = Un,±µψn±µ In this case the action
(1) is modified for a free case as

SW2 =
1

2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂)

− r

2

∑

n

ψ̄n

[
3∑

j=1

(
ψn+ĵ + ψn−ĵ

)
+ 3ψ̄n(ψn+4̂ + ψn−4̂)

]
. (5)

The schematic Dirac spectrum is depicted in Fig. 3. The 16 species are split
into seven branches with 1, 3, 3, 2, 3, 3 and 1 flavors. The central branch
corresponds to the two zeros of the Dirac operator (0, 0, 0,π) and (π, π, π, 0).
We note this fermion action explicitly breaks hypercubic symmetry into cubic
symmetry while it does not break any of C, P and T symmetry. The emer-
gence of the dimension-3 operator is forbidden by these invarinces, thus what
we need to care regarding Lorentz symmetry restoration is the dimension-4
operator as ψ̄γ4∂4ψ.

In five dimensions, we can take a parallel procedure to have two-flavor
central-branch fermions. The deformation from the 5d Wilson is given as

5∑

µ=1

Cµ →
4∑

j=1

Cj + 4C5. (6)

4

! " # $%"%#%$
!!! " ## ##

Figure 3: 4-dimensional two-flavor central branch with
∑

j Cj + 3C4.
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5∑
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4∑
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Cj + 4C5. (6)

4

§ 4D

(1,4,6,4,2,4,6,4,1) splitting

・Hypercubic symmetry   →  Cubic symmetry

・5D hypercubic  →  4D hyperubic

§ 5D

・No additive mass
(4+1)D extra-dim setup !



3. Two-flavor chiral fermion



3. Two-flavor chiral fermion

◆2D N=(2,2) SUSY lattice Sugino (2003)

・4D N=1 → 2D N=(2,2)

・4 SUSY                        4 real spinor                 2 U(1) R-sym.

・Topological twist → one scalar supercharge (BRST charge)

→Scalar SUSY can survive on the lattice

R-Flavor Lorentz

S = QV (U, φ, ψ)

TM (2013)

SUSY lattice :  doubling problem is more harmful

1. #boson = #fermion
2. R symmetry ~ chiral symmetry

“Well-defined SUSY lattice”  ⇆  “Successful doubling bypass”  

Q± Q̄±

Q = Q+ + Q−SO(2)T = SO(2)R ⊕ SO(2)

λ± λ̄±

Q2 = 0



The kernel of the kinetic terms (3.19) is written in the momentum space −π
a ≤ qµ < π

a as

D =
2

∑

µ=1

[

−iγµ
1

a
sin (qµa) + 2Pµ

1

a
sin2

(qµa

2

)

]

. (3.23)

It is easy to see that the kernel D vanishes only at the origin q1 = q2 = 0, because using

(3.21) we get

D2 =
1

a2

2
∑

µ=1

[

sin2 (qµa) + 4 sin4
(qµa

2

)]

. (3.24)

Thus, the fermion kinetic terms contain no fermion doublers.

For the renormalization, we can repeat the argument in [1] without introducing the

supersymmetry breaking term (2.22). Note that the U(1)R symmetry is kept intact under

the modification. For the G = SU(N), the gauge symmetry and the U(1)R invariance allow

the operator tr φφ̄, while it is forbidden by the supersymmetry Q. For the U(N) case, in

addition, we should take into account the operator tr H. However, it is prohibited by the

reflection symmetry: x ≡ (x1, x2) → x̃ ≡ (x2, x1) with

(U1(x), U2(x)) → (U2(x̃), U1(x̃))

(ψ1(x),ψ2(x)) → (ψ2(x̃),ψ1(x̃))

(H(x),χ(x)) → (−H(x̃),−χ(x̃))

(φ(x), φ̄(x), η(x)) → (φ(x̃), φ̄(x̃), η(x̃)). (3.25)

Hence, radiative corrections do not generate relevant or marginal operators except the

identity. Our modified lattice action is shown to flow to the desired continuum theory

without any fine-tuning.

3.2 N = 4 Case

For the case of N = 4 theory, similar modification is possible:

When ||1 − U12(x)|| < ε for ∀x,

ŜLAT
N=2 = Q+Q−

1

2g2
0

∑

x

tr



−iB(x)Φ̂(x) −
2

∑

µ=1

ψ+µ(x)ψ−µ(x) − χ+(x)χ−(x)

−1

4
η+(x)η−(x)

]

, (3.26)

and otherwises

ŜLAT
N=4 = +∞. (3.27)

Φ̂(x) is same as (3.8). Similarly to the N = 2 case, the locality of the theory is satisfied,

and the Boltzmann weight exp
[

−ŜLAT
N=4

]

is smooth and differentiable. It leads the Q±

invariance of the Boltzmann weight in the same sense as (3.15). Also, the SU(2)R and

Q+ ↔ Q− symmetries (2.18, 2.20) are not influenced by the modification.
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The kernel of the kinetic terms (3.19) is written in the momentum space −π
a ≤ qµ < π

a as

D =
2

∑

µ=1

[

−iγµ
1

a
sin (qµa) + 2Pµ

1

a
sin2

(qµa

2

)

]

. (3.23)

It is easy to see that the kernel D vanishes only at the origin q1 = q2 = 0, because using

(3.21) we get

D2 =
1

a2

2
∑

µ=1

[

sin2 (qµa) + 4 sin4
(qµa

2

)]

. (3.24)

Thus, the fermion kinetic terms contain no fermion doublers.
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(H(x),χ(x)) → (−H(x̃),−χ(x̃))

(φ(x), φ̄(x), η(x)) → (φ(x̃), φ̄(x̃), η(x̃)). (3.25)

Hence, radiative corrections do not generate relevant or marginal operators except the

identity. Our modified lattice action is shown to flow to the desired continuum theory

without any fine-tuning.

3.2 N = 4 Case

For the case of N = 4 theory, similar modification is possible:

When ||1 − U12(x)|| < ε for ∀x,

ŜLAT
N=2 = Q+Q−
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0

∑

x
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

−iB(x)Φ̂(x) −
2

∑

µ=1

ψ+µ(x)ψ−µ(x) − χ+(x)χ−(x)

−1

4
η+(x)η−(x)

]

, (3.26)

and otherwises

ŜLAT
N=4 = +∞. (3.27)

Φ̂(x) is same as (3.8). Similarly to the N = 2 case, the locality of the theory is satisfied,

and the Boltzmann weight exp
[

−ŜLAT
N=4

]

is smooth and differentiable. It leads the Q±

invariance of the Boltzmann weight in the same sense as (3.15). Also, the SU(2)R and

Q+ ↔ Q− symmetries (2.18, 2.20) are not influenced by the modification.
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2. U(1) R-invariance (chiral invariance)

γ̄1γ̄2P1P2 =
�

1
−1

�

1. No more species doubling  (never conflicts with no-go theorem)

→ prohibits mass term

p = (0, 0, 0, 0)with only zero at

If we simply imposed (3.1) just by putting the step functions

∏

x

θ
(

ε2 − ||1 − U12(x)||2
)

(3.16)

in front of the Boltzmann weight exp
[

−SLAT
N=2

]

with the original action (2.2), the super-

symmetry Q would be broken due to the contribution from the boundary (3.9). The mod-

ification of the action (3.6, 3.7) however makes the breaking effect completely suppressed,

and maintains the supersymmetry.

No Fermion Doublers and Renormalization We may expand the exponential of the

link variable (1.1), and the action (3.6, 3.7) leads to the N = 2 SYM theory in the classical

continuum limit:

a → 0 with g2
2 ≡ g2

0/a
2 fixed. (3.17)

Note that ε is independent of the lattice spacing a. Also, the modification to the fermionic

part of the action reads

tr
[

iχ(x)QΦ̂(x)
]

=
1

1 − 1
ε2 ||1 − U12(x)||2

tr [iχ(x)QΦ(x)]

− tr [iχ(x)Φ(x)]
(

1 − 1
ε2 ||1 − U12(x)||2

)2

1

ε2
tr [QU12(x) + QU21(x)] , (3.18)

where the second term contributes to gauge-fermion interaction terms of the irrelevant

order O(a8) but not to fermion kinetic terms. (Notice that fermionic variables are rescaled

as (fermions) → a3/2(fermions) when taking the continuum limit.) Thus, the modification

does not affect the fermion kinetic terms, and the absence of fermion doubling is shown as

in the previous paper [1]. Indeed, the fermion kinetic terms are expressed as

S(2)
f =

a4

2g2
0

∑

x,µ

tr

[

−1

2
Ψ(x)T γµ(∆µ + ∆∗

µ)Ψ(x) − a
1

2
Ψ(x)T Pµ∆µ∆∗

µΨ(x)

]

, (3.19)

where fermions were combined as ΨT =
(

ψ1,ψ2,χ, 1
2η

)

. The γ-matrices and Pµ are given

by

γ1 = −i

(

0 σ1

σ1 0

)

, γ2 = i

(

0 σ3

σ3 0

)

, P1 =

(

0 σ2

σ2 0

)

, P2 = −i

(

0 12

−12 0

)

(3.20)

with σi (i = 1, 2, 3) being Pauli matrices. Note that they all anticommute each other:

{γµ, γν} = −2δµν , {Pµ, Pν} = 2δµν , {γµ, Pν} = 0. (3.21)

∆µ and ∆∗
µ represent forward and backward difference operators respectively:

∆µf(x) ≡ 1

a
(f(x + µ̂) − f(x)) , ∆∗

µf(x) ≡ 1

a
(f(x) − f(x − µ̂)) . (3.22)
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・2-flavor × 2-spinor → 4 spinor

If we simply imposed (3.1) just by putting the step functions

∏
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(
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)

(3.16)

in front of the Boltzmann weight exp
[

−SLAT
N=2

]

with the original action (2.2), the super-

symmetry Q would be broken due to the contribution from the boundary (3.9). The mod-

ification of the action (3.6, 3.7) however makes the breaking effect completely suppressed,

and maintains the supersymmetry.

No Fermion Doublers and Renormalization We may expand the exponential of the

link variable (1.1), and the action (3.6, 3.7) leads to the N = 2 SYM theory in the classical

continuum limit:

a → 0 with g2
2 ≡ g2

0/a
2 fixed. (3.17)

Note that ε is independent of the lattice spacing a. Also, the modification to the fermionic

part of the action reads

tr
[
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]

=
1
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ε2 ||1 − U12(x)||2

tr [iχ(x)QΦ(x)]

− tr [iχ(x)Φ(x)]
(
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ε2 ||1 − U12(x)||2

)2

1

ε2
tr [QU12(x) + QU21(x)] , (3.18)

where the second term contributes to gauge-fermion interaction terms of the irrelevant

order O(a8) but not to fermion kinetic terms. (Notice that fermionic variables are rescaled

as (fermions) → a3/2(fermions) when taking the continuum limit.) Thus, the modification

does not affect the fermion kinetic terms, and the absence of fermion doubling is shown as

in the previous paper [1]. Indeed, the fermion kinetic terms are expressed as

S(2)
f =

a4

2g2
0

∑

x,µ

tr

[

−1

2
Ψ(x)T γµ(∆µ + ∆∗

µ)Ψ(x) − a
1

2
Ψ(x)T Pµ∆µ∆∗

µΨ(x)

]

, (3.19)

where fermions were combined as ΨT =
(

ψ1,ψ2,χ, 1
2η

)

. The γ-matrices and Pµ are given

by

γ1 = −i

(

0 σ1

σ1 0

)

, γ2 = i

(

0 σ3

σ3 0

)

, P1 =

(

0 σ2

σ2 0

)

, P2 = −i

(

0 12

−12 0

)

(3.20)

with σi (i = 1, 2, 3) being Pauli matrices. Note that they all anticommute each other:

{γµ, γν} = −2δµν , {Pµ, Pν} = 2δµν , {γµ, Pν} = 0. (3.21)

∆µ and ∆∗
µ represent forward and backward difference operators respectively:

∆µf(x) ≡ 1

a
(f(x + µ̂) − f(x)) , ∆∗

µf(x) ≡ 1

a
(f(x) − f(x − µ̂)) . (3.22)
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If we simply imposed (3.1) just by putting the step functions
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)

(3.16)

in front of the Boltzmann weight exp
[

−SLAT
N=2

]

with the original action (2.2), the super-

symmetry Q would be broken due to the contribution from the boundary (3.9). The mod-

ification of the action (3.6, 3.7) however makes the breaking effect completely suppressed,

and maintains the supersymmetry.

No Fermion Doublers and Renormalization We may expand the exponential of the

link variable (1.1), and the action (3.6, 3.7) leads to the N = 2 SYM theory in the classical

continuum limit:

a → 0 with g2
2 ≡ g2

0/a
2 fixed. (3.17)

Note that ε is independent of the lattice spacing a. Also, the modification to the fermionic

part of the action reads
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[
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]

=
1

1 − 1
ε2 ||1 − U12(x)||2

tr [iχ(x)QΦ(x)]

− tr [iχ(x)Φ(x)]
(

1 − 1
ε2 ||1 − U12(x)||2

)2

1

ε2
tr [QU12(x) + QU21(x)] , (3.18)

where the second term contributes to gauge-fermion interaction terms of the irrelevant

order O(a8) but not to fermion kinetic terms. (Notice that fermionic variables are rescaled

as (fermions) → a3/2(fermions) when taking the continuum limit.) Thus, the modification

does not affect the fermion kinetic terms, and the absence of fermion doubling is shown as

in the previous paper [1]. Indeed, the fermion kinetic terms are expressed as

S(2)
f =

a4

2g2
0

∑
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−1

2
Ψ(x)T γµ(∆µ + ∆∗

µ)Ψ(x) − a
1

2
Ψ(x)T Pµ∆µ∆∗

µΨ(x)

]

, (3.19)

where fermions were combined as ΨT =
(

ψ1,ψ2,χ, 1
2η

)

. The γ-matrices and Pµ are given

by

γ1 = −i

(

0 σ1

σ1 0

)

, γ2 = i

(

0 σ3

σ3 0

)

, P1 =

(

0 σ2

σ2 0

)

, P2 = −i

(

0 12

−12 0

)

(3.20)

with σi (i = 1, 2, 3) being Pauli matrices. Note that they all anticommute each other:

{γµ, γν} = −2δµν , {Pµ, Pν} = 2δµν , {γµ, Pν} = 0. (3.21)

∆µ and ∆∗
µ represent forward and backward difference operators respectively:
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(f(x + µ̂) − f(x)) , ∆∗
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4D clifford algebra

If we simply imposed (3.1) just by putting the step functions

∏
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)

(3.16)
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with the original action (2.2), the super-

symmetry Q would be broken due to the contribution from the boundary (3.9). The mod-

ification of the action (3.6, 3.7) however makes the breaking effect completely suppressed,

and maintains the supersymmetry.

No Fermion Doublers and Renormalization We may expand the exponential of the

link variable (1.1), and the action (3.6, 3.7) leads to the N = 2 SYM theory in the classical

continuum limit:

a → 0 with g2
2 ≡ g2

0/a
2 fixed. (3.17)
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=
1
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tr [iχ(x)QΦ(x)]
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where the second term contributes to gauge-fermion interaction terms of the irrelevant

order O(a8) but not to fermion kinetic terms. (Notice that fermionic variables are rescaled

as (fermions) → a3/2(fermions) when taking the continuum limit.) Thus, the modification

does not affect the fermion kinetic terms, and the absence of fermion doubling is shown as

in the previous paper [1]. Indeed, the fermion kinetic terms are expressed as

S(2)
f =

a4

2g2
0

∑

x,µ
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−1

2
Ψ(x)T γµ(∆µ + ∆∗

µ)Ψ(x) − a
1

2
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2η

)

. The γ-matrices and Pµ are given

by

γ1 = −i

(
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σ1 0

)

, γ2 = i

(

0 σ3

σ3 0

)

, P1 =

(

0 σ2
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, P2 = −i

(
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)
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with σi (i = 1, 2, 3) being Pauli matrices. Note that they all anticommute each other:

{γµ, γν} = −2δµν , {Pµ, Pν} = 2δµν , {γµ, Pν} = 0. (3.21)

∆µ and ∆∗
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Kinetic term Wilson-like term

2D N=(2,2) fermion part



Let us construct chiral 2-flavor setup inspired by SUSY !

1. D-dim Two-flavor → (D+2)-dim fermion

2. D+2 dimensional clifford algebra
      (Two sets of D-dim gamma matrices)
    → No further doubling

3. D+2 chiral symmetry 
    → R invariance (chiral invariance)

Main points



◆New 2D two-flavor setup Ψ = (ψA, ψB)T

D = iγ̄µ sin pµ +
�

µ

iPµ(1− cos pµ)

{Pµ, Pν} = 2δµν

{γ̄µ, γ̄ν} = 2δµν

{γ̄µ, Pν} = 0

γ̄1 = 1⊗ σ1 =
�

σ1

σ1

�
γ̄2 = 1⊗ σ2 =

�
σ2

σ2

�

2. Flavored-chiral invariance

1. No more species doubling

Γ5 = γ̄1γ̄2P1P2 = (σ3 ⊗ σ3) =
�

γ5

−γ5

�

cf.)staggered-like

Wilson-like term → Flavor-Lorentz mixing

p = (0, 0, 0, 0)

3. O(a) SU(2) flavor symmetry breaking

D = i(1⊗ σµ) sin pµ + (σµσ3 ⊗ σ3)(1− cos pµ)

・4D gamma matrix

P2 = σ1 ⊗ σ3 =
�

σ3

σ3

�
P1 = −σ2 ⊗ σ3 =

�
iσ3

−iσ3

�

TM (2013)

D2 =
2�

µ=1

�
sin2 pµ + (1− cos pµ)2

�



◆New 4D two-flavor setup

6D clifford algebra  :  only 6 gamma matrices × cf.) 4D N=2{Pµ, Pν} = 2δµν

{γ̄µ, γ̄ν} = 2δµν

{γ̄µ, Pν} = 0

1.  Common P for 4 directions

D = iγ̄µ sin pµ + iP
�

µ

(1− cos pµ) D2 =
4�

µ=1

sin2 pµ +

�
4�

µ

(1− cos pµ)

�2

2.  P respecting hypercubic symmetry

i) Failed case

cf.) Minimal-doubling

γ̄j = 1⊗ σ1 ⊗ σj =
�

γj

γj

�

γ̄4 = σ3 ⊗ σ2 ⊗ 1 =
�

γ4

−γ4

�

P = σ1 ⊗ σ2 ⊗ 1 =
�

γ4

γ4

�

D = iγµ sin pµ + iγ4

�

j

(1− cos pj)

TM (2013)

・No more doubling

・Chiral symmetry

・4th-dim specified → hypercubic broken

γ̄5 = 1⊗ σ3 ⊗ 1 =
�

γ5

γ5

�



ii) Successful case

γ̄j = σ3 ⊗ σ1 ⊗ σj =
�

γj

−γj

�

γ̄4 = σ3 ⊗ σ2 ⊗ 1 =
�

γ4

−γ4

�

P = σ1 ⊗ 1⊗ 1 =
�

1
1

�

D = iγ̄µ sin pµ + iP
�

µ

(1− cos pµ)

2. Flavored-chiral invariance

1. No more species doubling

4. Flavor symmetry breaking ?

γ̄5 = σ3 ⊗ σ3 ⊗ 1 =
�

γ5

−γ5

�

3. Hypercubic and C, P,  T invariance

D2 =
2�

µ=1

�
sin2 pµ + (1− cos pµ)2

�

No hypercubic breaking



◆ Short summary

・Two-flavor chiral and hypercubic-symmetric fermion 

    is constructed by using 6D gamma matrix. 

・Gamma-5 hermiticity and C,P,T invariance. 

・Further study will uncover flavor symmetry breaking.

・Relation to twisted-mass Wilson?



                    flavors       chiral      tuning     artifact      SW4 
Wilson:             1              0         severe      O(a)           ○
Staggered:         4              1           N/A        O(a^2)       ○*
Domain-wall     1             (1)          easy        O(a^2)       ○
Overlap            1              1           N/A        O(a^2)       ○
Brillouin            1              0         severe      O(a)*        ○○
Br-Overlap        1              1           N/A        O(a^2)      ○○
St-Wil               2              0         severe       O(a)          ○*
St-Overlap         2              1          N/A         O(a^2)      ○*
6-f CB               6              1          N/A         O(a^2)       ○
2-f CB               2              1          N/A         O(a^2)       ×
2-f chiral            2              1          N/A         O(a^2)       ○



Summary

1. Flavored-mass terms give us new types of  Wilson and   
    overlap fermions.   
 
2. Central-branch fermion is a new possibility of use of 
    Wilson for many-flavor QCD without fine-tuning of   
    parameters.  
    
3. Two-flavor chiral fermion is constructed based on 6-dim  
   clifford algebra. 
                                                                    



Back-up slides



Karsten(81) Wilczek(87)

◆ Advantage

・U(1) chiral symmetry

・Ultra-local

・2 flavor possible

◆ Drawbacks

・Hypercubic symmetry breaking

・Tuning parameters for a correct continuum limit 

! " # $ % ! " # $

! !

� � � � � � �� �

&'()*+ ,(-.*/0123405'3-(67*89

�

µ

(1− cos pµ)

Finite-mass system(Wil) ⇆ Finite-density system(FCP) 

(i) γ4

3�

j=1

(1− cos pj)

Capitani, Creutz, Weber, Wittig (09)(10) 

 Minimal-doubling

Flavored imaginary chemical potential term lifts species degeneracy.          
                                                                         cf.) Flavored mass in Wilson

Creutz(07) Borici(87) Creutz,TM(10)

Bedaque, Buchoff, Tiburzi, Walker-Loud(08)

→    keeping one chiral sym.



Parameter phase structure

◆Symmetries

◆Chiral phase structure

Nontrivial chiral phase diagram 

TM (12) 

Application to Finite-(T, μ) QCD TM, Kimura, Ohnishi (2012)

Additive chemical potential    v.s   Additive mass renormalization

25
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FIG. 9: Conjecture on µ3-g2 chiral phase structure for Karsten-Wilczek fermion with r=1. The

width of the minimal-doubling range determines how hard it is to tune µ3.

V. CONJECTURE ON PHASE STRUCTURE IN QCD

From the study of strong-coupling lattice QCD and the Gross-Neveu model we speculate

on the whole chiral phase structure in lattice QCD with Karsten-Wilczek fermion. Fig. 9 is

a conjectured chiral phase structure with the number of flavors in the µ3-g2 space for r = 1.

There are roughly two phases with and without chiral condensate, or equivalently with

and without SSB of chiral symmetry. As was shown in the previous section, the boundary

between chiral symmetric and broken phases starts from the edge of the two-flavor region of

the free theory. We expect that the chiral boundaries are connected to the two-flavor and

no-flavor phases also in 4d QCD as shown in Fig. 9.

The question is a boundary between two-flavor and six-flavor ranges. In the weak-coupling

limit (g2 = 0) we analytically know the number of physical flavors: There are four sectors

with two, six, six and two flavors. There are only no flavors of fermions outside these ranges.

Toward the strong coupling, these ranges will change with g2 as shown in Fig. 9. We have

seen that we cannot distinguish two-flavor and six flavor ranges in the strong-coupling limit,

which means that the number of species becomes an ambiguous notion in this limit. We

thus expect that the boundary disappears at a certain gauge coupling, and the two-flavor

and six-flavor regions become undistinguishable as shown in Fig. 9.

From the viewpoints of practical application to two-flavor QCD, the relevant parameter

The renormalization leads to different flavor number.

(Need to tune the parameter)

 Symmetries of finite-density systems

1. U(1) chiral
2. P
3. CT
4. Cubic

1. SU(2) chiral
2. P
3. CT
4. Spatial rotation

In a continuum limit



◆ Strong-coupling lattice QCD

Chiral phase structure

Effective potential of σ as a function of T, μ and μ3

・1st and 2nd phase transition (m=0)

・1st, critical point and crossover (m≠0)

New possibility of (T,μ) lattice QCD !

13

Qn =

∫ π

−π

dφ

2π
(2 cosh NτE + 2 cos θ)4 e−inφ, θ = φ − iNτµ. (18)

For Nc = 3 these Qn are explicitly given as

Q0 = 2(8 cosh4 NτE + 24 cosh2 NτE + 3), Q±1 = 8 cosh NτE(4 cosh2 NτE + 3)e±Nτ µ,

Q±2 = 4(6 cosh2 NτE + 1)e±2Nτ µ, Q±3 = 8 cosh NτE e±3Nτ µ,

Q±4 = e±4Nτ µ, Q|n|≥5 = 0. (19)

As a result, the effective potential is given by

Feff(σ,π4; m,T, µ, µ3, d4) =
NcD

4

(
(1 + r2)σ2 + (1 − r2)π2

4

)
− Nc log A

−T

4
log

(
∑

n∈Z
det (Qn+i−j)1≤i,j≤Nc

)
. (20)

Here we redefine the free energy 4Feff → Feff to be consistent with the phenomenological

result as discussed later. We here show only the calculation result of the determinant part

for Nc = 3,

∑

n∈Z
det (Qn+i−j)1≤i,j≤Nc

= 8

(
1 + 12 cosh2 E

T
+ 8 cosh4 E

T

)(
15 − 60 cosh2 E

T
+ 160 cosh4 E

T
− 32 cosh6 E

T
+ 64 cosh8 E

T

)

+64 cosh
µB

T
cosh

E

T

(
−15 + 40 cosh2 E

T
+ 96 cosh4 E

T
+ 320 cosh8 E

T

)

+80 cosh
2µB

T

(
1 + 6 cosh2 E

T
+ 24 cosh4 E

T
+ 80 cosh6 E

T

)

+80 cosh
3µB

T
cosh

E

T

(
−1 + cosh2 E

T

)
+ 2 cosh

4µB

T
, (21)

with

µB = 3µ. (22)

In the case of zero temperature T = 0, we can solve the equilibrium condition analytically.

For D = 3 (d = 4) with m = 0 and r = 1 the free energy is given by

Feff(σ,π4; T, µB, µ3, d4) =
9

2
σ2 − 3

2
log

(
(1 + d4)

2 + (µ3 + 3)2
)

− max

{
3 arcsinh

(
3σ√

(1 + d4)2 + (µ3 + 3)2

)
, µB

}
. (23)

1. Link variable integral
2. Bosonization
3. Determine the vacuum from the effective potential
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FIG. 3: Phase diagram for the chiral transition with r = 1, µ3 = −0.9 and m = 0 for d4 = 0.

Green and red lines show 2nd and 1st transition lines, respectively. The transition order is changed

from 2nd to 1st at the tricritical point (µtri
B , T tri) = (0.804, 0.234).

tricritical point (µtri
B , T tri) = (0.804, 0.234). We also depict σ condensate and the baryon

density ρB = −∂Feff/∂µB as functions of µB with several fixed T in Fig. 4. We find that

there are first (T < T tri) and second (T > T tri) order phase transitions for σ, followed by

the phase transition of the density ρB. (The transitions for the chiral condensate and the

density coincide at the same value of µB as shown in Fig. 4.) In the lower line of the same

figure, we show that the crossover transition instead appears with the 2nd-order critical

point for m "= 0. For d4 "= 0 the phase diagram is slightly scaled as shown in Fig. 5 and

Fig. 6, but the qualitative properties including the ratio of µtri
B /T tri are unchanged. Such

small influence of d4 on the phase diagram indicates that, even if we can fine-tune d4, it does

not affect the qualitative properties of the phase diagram. Therefore, we consider that our

study of the chiral phase diagram without fine-tuning of d4 is still of sufficient importance.

These results are qualitatively consistent with those with strong-coupling lattice QCD

with staggered fermions, while there are some quantitative differences. For example, the KW

phase diagram is suppressed in T direction compared to that in staggered. We here compare

the ratio of the transition baryon chemical potential at T = 0 to the critical temperature

at µB = 0, R0 = µc(T = 0)/Tc(µB = 0). In staggered fermion, this ratio is R0
st # 3 ×

0.56/(5/3) ∼ 1 [11, 12], while R0
KW # 0.767/0.356 ∼ 2.2 (d4 = 0) and 0.742/0.343 ∼

2.2 (d4 = 0.1). In the real world, this ratio is larger, R0 >∼ MN/170 MeV ∼ 5.5. When
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FIG. 4: Chiral condensate σ and the baryon density ρB for (left) T = 0.3 and (right) T = 0.2 with

d4 = 0. Top and bottom panels show the massless m = 0 and massive m = 0.1 cases. There are

1st and 2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior

instead of the 2nd order transition.

the finite coupling and Polyakov loop effects are taken into account for staggered fermion,

Tc(µB = 0) decreases, µc(T = 0) stays almost constant, then R0 value increases [14–16].

Larger R0 with KW fermion in the strong coupling limit may suggest smaller finite coupling

corrections in the phase boundary. Another interesting point is the location of the tricritical

point. In KW fermion, the ratio Rtri
KW = 0.804/0.234 " 3.4 (d4 = 0) and 0.774/0.226 "

3.4 (d4 = 0.1), while Rtri
st = 1.73/0.866 " 2.0 for unrooted staggered fermion [11, 12]. It

would be too brave to discuss this value, but Rtri
KW is consistent with the recent Monte-

Carlo simulations [42], which implies that the critical point does not exist in the low baryon

chemical potential region, µB/T <∼ 3. These observations reveal usefulness of KW fermion

for research on QCD phase diagram.

Apart from the phase transitions, the µB dependence of σ and ρB seems to have some

characteristics in Fig. 4. At T = 0.3 > T tri with m=0, σ and ρB undergoes the 2nd-order
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FIG. 4: Chiral condensate σ and the baryon density ρB for (left) T = 0.3 and (right) T = 0.2 with

d4 = 0. Top and bottom panels show the massless m = 0 and massive m = 0.1 cases. There are

1st and 2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior

instead of the 2nd order transition.

the finite coupling and Polyakov loop effects are taken into account for staggered fermion,

Tc(µB = 0) decreases, µc(T = 0) stays almost constant, then R0 value increases [14–16].

Larger R0 with KW fermion in the strong coupling limit may suggest smaller finite coupling

corrections in the phase boundary. Another interesting point is the location of the tricritical

point. In KW fermion, the ratio Rtri
KW = 0.804/0.234 " 3.4 (d4 = 0) and 0.774/0.226 "

3.4 (d4 = 0.1), while Rtri
st = 1.73/0.866 " 2.0 for unrooted staggered fermion [11, 12]. It

would be too brave to discuss this value, but Rtri
KW is consistent with the recent Monte-

Carlo simulations [42], which implies that the critical point does not exist in the low baryon

chemical potential region, µB/T <∼ 3. These observations reveal usefulness of KW fermion

for research on QCD phase diagram.

Apart from the phase transitions, the µB dependence of σ and ρB seems to have some

characteristics in Fig. 4. At T = 0.3 > T tri with m=0, σ and ρB undergoes the 2nd-order
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FIG. 4: Chiral condensate σ and the baryon density ρB for (left) T = 0.3 and (right) T = 0.2 with

d4 = 0. Top and bottom panels show the massless m = 0 and massive m = 0.1 cases. There are

1st and 2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior

instead of the 2nd order transition.

the finite coupling and Polyakov loop effects are taken into account for staggered fermion,

Tc(µB = 0) decreases, µc(T = 0) stays almost constant, then R0 value increases [14–16].

Larger R0 with KW fermion in the strong coupling limit may suggest smaller finite coupling

corrections in the phase boundary. Another interesting point is the location of the tricritical

point. In KW fermion, the ratio Rtri
KW = 0.804/0.234 " 3.4 (d4 = 0) and 0.774/0.226 "

3.4 (d4 = 0.1), while Rtri
st = 1.73/0.866 " 2.0 for unrooted staggered fermion [11, 12]. It

would be too brave to discuss this value, but Rtri
KW is consistent with the recent Monte-

Carlo simulations [42], which implies that the critical point does not exist in the low baryon

chemical potential region, µB/T <∼ 3. These observations reveal usefulness of KW fermion

for research on QCD phase diagram.

Apart from the phase transitions, the µB dependence of σ and ρB seems to have some

characteristics in Fig. 4. At T = 0.3 > T tri with m=0, σ and ρB undergoes the 2nd-order
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FIG. 4: Chiral condensate σ and the baryon density ρB for (left) T = 0.3 and (right) T = 0.2 with

d4 = 0. Top and bottom panels show the massless m = 0 and massive m = 0.1 cases. There are

1st and 2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior

instead of the 2nd order transition.

the finite coupling and Polyakov loop effects are taken into account for staggered fermion,

Tc(µB = 0) decreases, µc(T = 0) stays almost constant, then R0 value increases [14–16].

Larger R0 with KW fermion in the strong coupling limit may suggest smaller finite coupling

corrections in the phase boundary. Another interesting point is the location of the tricritical

point. In KW fermion, the ratio Rtri
KW = 0.804/0.234 " 3.4 (d4 = 0) and 0.774/0.226 "

3.4 (d4 = 0.1), while Rtri
st = 1.73/0.866 " 2.0 for unrooted staggered fermion [11, 12]. It

would be too brave to discuss this value, but Rtri
KW is consistent with the recent Monte-

Carlo simulations [42], which implies that the critical point does not exist in the low baryon

chemical potential region, µB/T <∼ 3. These observations reveal usefulness of KW fermion

for research on QCD phase diagram.

Apart from the phase transitions, the µB dependence of σ and ρB seems to have some

characteristics in Fig. 4. At T = 0.3 > T tri with m=0, σ and ρB undergoes the 2nd-order
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β geom. a−1[GeV] κstd/std
crit (“Standard”) κiso/bri

crit (“Brillouin”)
5.72 103×20 1.236 0.134516(65) 0.134533 0.129780(64) 0.129798
5.80 123×24 1.479 0.132673(47) 0.132650 0.128594(30) 0.128582
5.95 163×32 1.978 0.130760(59) 0.130769 0.127469(48) 0.127471
6.08 203×40 2.463 0.129818(45) 0.129864 0.126940(30) 0.126973
6.20 243×48 2.964 0.129362(57) 0.129303 0.126725(42) 0.126676

Table 1: Summary of κcrit for either operator with 1APE step and cSW=1, as determined from
direct measurements at these couplings (with error bars) and through the fit (21).

Figure 10: Additive mass renormalization versus g20 for the Wilson operator and the Brillouin
operator (both with cSW=1 and αAPE=0.72). In either case a rational fit with the ansatz (21)
is included. Error bars are significantly smaller than the size of the symbols.

0.0344, while for the Brillouin operator c1 = 0.0143(54), without a perturbative prediction to
compare to. Given the quality of these fits, the interpolated κcrit are more accurate than the
direct measurements, and this is why we include these values in Tab. 1.

In order to perform a quenched scaling study we define, for each β, three reference κ-values
which realize (r0Mπ)2=1.56, (r0Ms̄s)2=4.56 and (r0Mc̄c)2=46.5. We call them κlight, κstrange,
and κcharm, respectively (even though the first two are heavier than the respective physical
flavors, and the last one is lighter than the physical charm quark). These values are determined,
for each coupling, by interpolating the results of a few tuning runs. The three reference κ-values
are then evaluated on the full ensembles, and the resulting (r0MP )2 are compared to the target
values in Fig. 11. It seems the tuning is accurate enough, so that we can proceed with a study
of the scaling of the decay constants.

21

Figure 14: Fit of the mixed αa plus a2 ansatz (24) to the ratio Fc̄c/Fs̄s with 4 (left) or 5 (right)
lattice spacings included.

contribution in αa and a2 at accessible lattice spacings. Still, to the best of our knowledge,
this is the first figure which indicates that, for a tree-level improved operator with some link-
smearing, the pure a2 hypothesis might be closer to the truth than the (formally correct) pure
αa hypothesis. Of course, with infinitely precise data one could separate the two contributions.
To see how far we are from this ideal world, we try a fit of the ratio Fc̄c/Fs̄s with the ansatz

Fc̄c/Fs̄s = d0 + d1α(a)a+ d2a
2 (24)

giving results shown in Fig. 14. The fitted d1, d2 of the Brillouin operator are significantly
smaller than those of the Wilson operator. Also by looking at the fits one would say that the
Brillouin data alone leave little doubt that the correct continuum value is somewhere near 1.85,
while with the Wilson data alone this is far from obvious.

6.4 Comparing the 1/nBiCGstab distributions at fixed r0Mπ

In quenched QCD with Wilson fermions so-called exceptional configurations (on which the
massive Dirac operator Dm could not be inverted) hindered the approach to light quark masses.
In full QCD the functional measure suppresses configurations on whichDm has near-zero modes.
Still, the issue persists in the form of instabilities in the HMC evolution.

In [39] it was shown that the stability of these simulations is linked to the distribution of
the lowest eigenvalue of D†

mDm. The latter is roughly Gaussian distributed, and the simulation
is deemed safe as long as the center of the distribution is at least four standard deviations
away from zero. The BMW collaboration noticed that the smallest eigenvalue of D†

mDm is
directly related to the number of iterations in the inversion, and used the inverse iteration
count 1/nCG in the monitoring [40]. In Fig. 15 we present 1/nBiCGstab for either operator at the
values (r0Mπ)2=1.56 and 0.56 (Mπ∼500MeV and 300MeV). In either case an inversion with
the Brillouin operator requires about 60% of the forward applications7 of the Wilson operator.

7For fixed Mπ the smallest eigenvalues of the two A = D†
mDm are approximately equal, while the largest

eigenvalue is near 2.52 for the Brillouin operator and near 7.52 for the Wilson operator. Since nCG ∝
√

CN(A)
one would expect the relative iteration count to be around 1/3 for CG and around 1/

√
3 $ 0.6 for BiCGstab.
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0.0344, while for the Brillouin operator c1 = 0.0143(54), without a perturbative prediction to
compare to. Given the quality of these fits, the interpolated κcrit are more accurate than the
direct measurements, and this is why we include these values in Tab. 1.

In order to perform a quenched scaling study we define, for each β, three reference κ-values
which realize (r0Mπ)2=1.56, (r0Ms̄s)2=4.56 and (r0Mc̄c)2=46.5. We call them κlight, κstrange,
and κcharm, respectively (even though the first two are heavier than the respective physical
flavors, and the last one is lighter than the physical charm quark). These values are determined,
for each coupling, by interpolating the results of a few tuning runs. The three reference κ-values
are then evaluated on the full ensembles, and the resulting (r0MP )2 are compared to the target
values in Fig. 11. It seems the tuning is accurate enough, so that we can proceed with a study
of the scaling of the decay constants.
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Figure 11: Summary of the final (r0Mπ)2, (r0Ms̄s)2, (r0Mc̄c)2 to test how accurately the target
values 1.56, 4.56, 46.5 were reached. Error bars are smaller than the size of the symbols.

6.3 Comparing the scaling of decay constants at fixed r0MP

The decay constants Fπ, Fs̄s, Fc̄c are determined from the improved and renormalized current

Aren
µ = ZA(1+bAam

W)(Aµ+acA∂̄µP ) (22)

where Aµ and P denote the naive axial-vector current and pseudo-scalar density, respectively,
and mW=m0−mcrit. In practice, mW in (22) is often replaced by the PCAC quark mass

mPCAC=

∑

x
〈∂̄4[A4(x)+acA∂̄4P (x)]O(0)〉

2
∑

x
〈P (x)O(0)〉

(23)

where ∂̄ denotes the symmetric derivative, and usually O≡P is chosen to get maximal signal.
Here it is assumed that the two quark masses are equal; in general the improvement factor in
(22) is (1+bAa(mW

j +mW
k )/2) for flavors j, k, and the l.h.s. of (23) is (mPCAC

j +mPCAC
k )/2.

We use the tree-level improvement coefficients bA = 1, cA = 0. The 1-loop renormalization
constant ZA=1−g20zA/(12π2), which is needed for consistency, is known for the Wilson operator
(zA=2.42423 with 1 step of αAPE=0.72 smearing and cSW=1 is found in [30]), but not for the
Brillouin operator. In Fig. 12 we plot the decay constants Fπ, Fs̄s, Fc̄c versus αa (left) and a2

(right). Here everything is made dimensionless through r0. In case of the Wilson operator the
lattice-to-continuum matching factor ZA is included, but it brings a rather small shift, since it
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Figure 13: The ratios Fs̄s/Fπ (top) and Fc̄c/Fs̄s (bottom) versus αa (left) and a2 (right). The
linear fits include only 4 lattice spacings, and favor the pure a2 over the pure αa extrapolation.

With hindsight we can thus anticipate that also for the Brillouin operator the data without ZA

are indicative of the approach to the continuum. Comparing the two operators without ZA, we
see little difference in the light and strange pseudo-scalar data (top and middle), while there is
a pronounced difference in the charm sector (bottom row). Hence, for the scaling of r0Fc̄c the
Brillouin operator seems to bring a significant improvement.

To get rid of the ZA factors, we also consider the scaling of the ratios Fs̄s/Fπ and Fc̄c/Fs̄s,
as shown in Fig. 13. Again, we plot the data against αa (left) and a2 (right). For the strange-
to-light ratio all data happen to be essentially flat, so there is no advantage of one operator
over the other. For the charm-to-strange ratio, the situation is different. Fitting the data on
the four finer lattices with a pure αa ansatz yields two continuum extrapolated results which
are not consistent (lower left panel). Fitting the same data with a pure a2 ansatz leads to two
continuum extrapolated results which are almost consistent (lower right panel). If we restrict
the fits to the three finest lattice spacings, the values obtained with the pure αa hypothesis
stay inconsistent, while the continuum results with the pure a2 hypothesis become consistent.
To prevent any misunderstanding, let us emphasize that we think that both operators have a
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◆ Spectral flow 

would-be zero modes : low-lying real crossing
(i) Hermitian operator (ii) Eigenvalue flow

Index(DW)   =  - Spectral flow(HW)

※ Spectral flow :
         Crossings counted with ± slopes

R.Edwards, U.Heller, R.Narayanan (1998)

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

June 15, 2011
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from the continuum limit using the spectral flow of a certain Hermitean version of the
Dirac operator. The integer index obtained here correctly illustrates the gauge topological
charge up to a factor coming from species. Indeed we will show the spectral flow correctly
illustrates the index determined by the gauge field topology in naive, minimally doubled
and staggered fermions. In the end of this chapter we also present overlap versions built
from the generalized WIlson and staggered-Wilson fermion kernels. It is a universal
feature for fermions with species doublers that you can obtain the associated overlap
fermion with a proper flavored mass term illustrating the correct index.

Note the results in this chapter are basically based on the original works [29, 75] by the
present author. I also refer to the results on the index theorem in the staggered fermion
in the reference [30].

5.1 Spectral flow and the index theorem

In this section we obtain the integer index related with gauge field topology for the
minimally doubled, naive and staggered fermions with flavored-mass terms. As in the
cases of Wilson [76] we utilize the spectral flow of the Hermitean operators. Here the
would-be zero modes of the Dirac operators are identified as low-lying crossings of the
eigenvalue flow of the Hermitean operators.

Let us begin with explaining what the spectral flow is. In the continuum field theory
the index is defined as the difference between the numbers of zero modes of the massless
Dirac operator with positive and negative chirality, n+ and n−. The statement of the
index theorem is that the index is just equal to a topological charge Q of a background
gauge configuration up to a sign factor depending on its dimensionality,

n+ − n− = (−1)d/2Q. (5.1)

Here the question is how to obtain the index of the Dirac operator. We can of course
calculate the zero-mode chiralities straightforwardly, but there is a useful way called
spectral flow. To introduce it we first introduce a certain Hermitean version of the Dirac
operator

H(m) = γ5(D − m), (5.2)

where any zero modes of the Dirac operator with ± chirality correspond to some eigen-
modes of this Hermitean operator with eigenvalues λ(m) = ∓m. If we now consider the
flow of the eigenvalues λ(m) as the mass varies, those corresponding to zero modes will
cross the origin with slopes ∓1 depending on their ± chirality. The non-zero eigenmodes
of D, in contrast, occur in pairs which are mixed by H and cannot cross zero. Therefore
the index of the Dirac operator is given by minus the spectral flow of the Hermitean op-
erator, which stands for the net number of eigenvalues crossing the origin, counted with
sign ± depending on the slope.

The index with lattice Wilson fermions [76] can similarly be obtained from the spectral
flow, which in this case means the net number of eigenvalues crossing zero at low-lying
values of m, counted with signs of the slopes. In the continuum limit, we are only
interested in the crossings at small mass; the massive doublers also eventually cross zero,
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Index(Dgw)   =  - Spectral flow(Hgw)

36×36 lattice, randomness δ=0.25, Q=1
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FIG. 3: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 1,

δ = 0.25 background configuration on a 16 × 16 lattice. Two single crossings with positive slopes

are seen in (a), which means the index is −2. Two doubled crossings with positive slopes are seen

in (b), which means the index is −4.

FIG. 4: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 2,

δ = 0.2 background configuration on a 16 × 16 lattice. Six single crossings with positive slopes

and two single crossings with negative slopes are seen in (a), which means the index is −4. Six

doubled crossings with positive slopes and two doubled crossings with negative slopes are seen in

(b), which means the index is −8.

which contains a factor 2 reflecting two species. This relation is also satisfied by cases with

other topological charges, as shown in Fig. 4(a) for the case for Q = 2. Here the net number

of crossings counted with ± depending on the slopes is 4. It means the corresponding index

is −4, which is consistent with (31). We also emphasize that there is a clear separation

between low- and high-lying crossings in Fig. 3(a) where low-lying ones are localized about

doubled
Index(Dgw) = -4

Adams(2009)  M. Creutz, T. Kimura, TM (2010) 

but only for large values of m. Now we can symbolically write a formula for the index as

Index(D) = −Spectral flow(H). (5.3)

It is quite natural to consider whether this formula is also available to detect the index
of minimally doubled, naive and staggered fermions with the flavored mass terms we
proposed. We will from now show this spectral flow method can be also applied to
these cases. We first study the case for the minimally doubled and naive fermions. The
associated Hermitean operators for minimally doubled and naive fermions are given by

Hmd(mτ3) = γ5(Dmd − Mτ3), (5.4)

Hnf(mτ3⊗τ3) = γ5(Dn − Mτ3⊗τ3), (5.5)

where the matrix γ5 is regarded as a flavored one, γ5 ⊗ τ3 for minimally doubled fermions
and γ5 ⊗ (τ3 ⊗ τ3) for two dimensional naive fermions in terms of the flavor multiplet.
The flavored mass terms Mτ3 and Mτ3⊗τ3 for d = 2 have been already given in Eq. (3.9)
and (3.18) with the parameters mτ3 for the minimally doubled fermion and mτ3⊗τ3 for
the naive fermion. We here use these parameters as a mass parameter of the continuum
hermitian Dirac operator in (5.2). Thus the eigenvalues are functions of mτ3 and mτ3⊗τ3

as λ(mτ3) and λ(mτ3⊗τ3). (These parameters correspond to the Wilson parameter r in
(4.1) rather than the mass parameter since it is a parameter for the flavored-mass term.)
For now we focus on the two dimensional case.

We then numerically calculate the eigenvalue flows of two dimensional minimally dou-
bled and naive fermions. We consider background configurations proposed in [79] for the
staggered case [30]: we start with a smooth U(1) gauge field with topological charge Q,

Ux,1̂ = eiωx2 , Ux,2̂ =

{
1 (x2 = 1, 2, · · · , L − 1)

eiωLx1 (x2 = L)
, (5.6)

where L is the lattice size and ω is the curvature given by ω = 2πQ. Then, to emulate
a typical gauge configuration of a practical simulation, we introduce disorder effects to
link variables by random phase factors, Ux,µ → eirx,µUx,µ, where rx,µ is a random number
uniformly distributed in [−δπ, δπ]. The parameter δ determines the magnitude of disorder.

Fig. 5.1(a) shows the eigenvalue flow of the minimally doubled Hermitean operator
(5.4). It is calculated with a Q = 1 and δ = 0.25 background configuration on a 16 × 16
lattice. There are two low-lying crossings around m = 0 with positive slopes, which cor-
respond to would-be zero modes. With the formula (5.3), it means the index of the Dirac
operator of the minimally doubled fermion in this case is −2. This result is consistent
with the index theorem for the minimally doubled fermions given by

Index(Dmd) = 2(−1)d/2Q, (5.7)

which contains a factor 2 reflecting two species. This relation is also satisfied by cases
with other topological charges, as shown in Fig. 5.2(a) for the case for Q = 2. Here
the net number of crossings counted with ± depending on the slopes is 4. It means
the corresponding index is −4, which is consistent with (5.7). We also emphasize that
there is a clear separation between low- and high-lying crossings in Fig. 5.1(a) where
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Index(Dsw)   =  - Spectral flow(Hsw)

Index(Dsw)=-2
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Figure 5.3: Spectral flows of staggered Hermitean operators λ(mf ), δ = 0.33 background
configuration on a 16 × 16 lattice. The same result was shown first in [30].

up to a integer factor from the number of tastes as

Index(Dst) = 2d/2(−1)d/2Q (5.10)

One of the results is shown in the figure 5.3. Here the spectral flow again means the net
number of eigenvalues crossing zero at low-lying values of m, counted with signs of the
slopes. Thus the theoretical foundation of the index theorem with staggered fermions is
established without a renormalization depending on the gauge ensemble.

5.2 Overlap formulation

In this section we discuss overlap fermions constructed from the staggered-Wilson and
generalized Wilson fermions. Firstly we show the index of exact zero modes of these
overlap versions also illustrate the topological charge correctly. We now introduce overlap
Dirac operators based on the staggered-Wilson and the generalized Wilson fermions as,

Dso = 1 + ε
Hst√
H2

st

, Dno = 1 + γ5
Hn√
H2

n

. (5.11)
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but only for large values of m. Now we can symbolically write a formula for the index as

Index(D) = −Spectral flow(H). (5.3)

It is quite natural to consider whether this formula is also available to detect the index
of minimally doubled, naive and staggered fermions with the flavored mass terms we
proposed. We will from now show this spectral flow method can be also applied to
these cases. We first study the case for the minimally doubled and naive fermions. The
associated Hermitean operators for minimally doubled and naive fermions are given by

Hmd(mτ3) = γ5(Dmd − Mτ3), (5.4)

Hnf(mτ3⊗τ3) = γ5(Dn − Mτ3⊗τ3), (5.5)

where the matrix γ5 is regarded as a flavored one, γ5 ⊗ τ3 for minimally doubled fermions
and γ5 ⊗ (τ3 ⊗ τ3) for two dimensional naive fermions in terms of the flavor multiplet.
The flavored mass terms Mτ3 and Mτ3⊗τ3 for d = 2 have been already given in Eq. (3.9)
and (3.18) with the parameters mτ3 for the minimally doubled fermion and mτ3⊗τ3 for
the naive fermion. We here use these parameters as a mass parameter of the continuum
hermitian Dirac operator in (5.2). Thus the eigenvalues are functions of mτ3 and mτ3⊗τ3

as λ(mτ3) and λ(mτ3⊗τ3). (These parameters correspond to the Wilson parameter r in
(4.1) rather than the mass parameter since it is a parameter for the flavored-mass term.)
For now we focus on the two dimensional case.

We then numerically calculate the eigenvalue flows of two dimensional minimally dou-
bled and naive fermions. We consider background configurations proposed in [79] for the
staggered case [30]: we start with a smooth U(1) gauge field with topological charge Q,

Ux,1̂ = eiωx2 , Ux,2̂ =

{
1 (x2 = 1, 2, · · · , L − 1)

eiωLx1 (x2 = L)
, (5.6)

where L is the lattice size and ω is the curvature given by ω = 2πQ. Then, to emulate
a typical gauge configuration of a practical simulation, we introduce disorder effects to
link variables by random phase factors, Ux,µ → eirx,µUx,µ, where rx,µ is a random number
uniformly distributed in [−δπ, δπ]. The parameter δ determines the magnitude of disorder.

Fig. 5.1(a) shows the eigenvalue flow of the minimally doubled Hermitean operator
(5.4). It is calculated with a Q = 1 and δ = 0.25 background configuration on a 16 × 16
lattice. There are two low-lying crossings around m = 0 with positive slopes, which cor-
respond to would-be zero modes. With the formula (5.3), it means the index of the Dirac
operator of the minimally doubled fermion in this case is −2. This result is consistent
with the index theorem for the minimally doubled fermions given by

Index(Dmd) = 2(−1)d/2Q, (5.7)

which contains a factor 2 reflecting two species. This relation is also satisfied by cases
with other topological charges, as shown in Fig. 5.2(a) for the case for Q = 2. Here
the net number of crossings counted with ± depending on the slopes is 4. It means
the corresponding index is −4, which is consistent with (5.7). We also emphasize that
there is a clear separation between low- and high-lying crossings in Fig. 5.1(a) where
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FIG. 3: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 1,

δ = 0.25 background configuration on a 16 × 16 lattice. Two single crossings with positive slopes

are seen in (a), which means the index is −2. Two doubled crossings with positive slopes are seen

in (b), which means the index is −4.

FIG. 4: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 2,

δ = 0.2 background configuration on a 16 × 16 lattice. Six single crossings with positive slopes

and two single crossings with negative slopes are seen in (a), which means the index is −4. Six

doubled crossings with positive slopes and two doubled crossings with negative slopes are seen in

(b), which means the index is −8.

which contains a factor 2 reflecting two species. This relation is also satisfied by cases with

other topological charges, as shown in Fig. 4(a) for the case for Q = 2. Here the net number

of crossings counted with ± depending on the slopes is 4. It means the corresponding index

is −4, which is consistent with (31). We also emphasize that there is a clear separation

between low- and high-lying crossings in Fig. 3(a) where low-lying ones are localized about
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n → n + µ̂ (20)

nµ → −nµ (21)

Dgo = 1 + γ5
Hgw(m)√
H2

gw(m)
(22)

Dso = 1 + Γ55
Hsw(m)√
H2

sw(m)
(23)

Index(Dst) = 2d/2(−1)d/2Q (24)

Hn = γ5(Dn − MP)
= (γ5 ⊗ (τ3 ⊗ τ3))(Dn − m(1 ⊗ (τ3 ⊗ τ3)))
= (γ5 ⊗ (τ3 ⊗ τ3))Dn − m(γ5 ⊗ (1 ⊗ 1)) (25)





+1
+1

−1
−1



 (26)

2

Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual

39

Low-lying crossings are far from high-lying ones

negative-mass mode in DW → massless mode in Dov

Figure 5.1: Spectral flows of (a) Minimally doubled λ(mτ3) and (b) naive λ(mτ3⊗τ3) Her-
mitean operators with a Q = 1, δ = 0.25 background configuration on a 16 × 16 lattice.
Two single crossings with positive slopes are seen in (a), which means the index is −2.
Two doubled crossings with positive slopes are seen in (b), which means the index is −4.
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Details of StWil symmetries

Physical-sector symmetry

Ξ�
jΞ

�
4R

2
j4 = ΞjΞ4 ∼ (1⊗ σj)

Ξ�
4R

2
34R

2
12 = Ξ4Is ∼ (γ4 ⊗ 1)

C0Ξ�
2Ξ

�
4R

2
24 ∼ C

{Ξµ, Is, Rµν} → Γ4 � SW4

{Ξ�
µ, Rµν} → Γ3 � SW4



Ξ2
µ = 1

Details of timeslice symmetries

staggered sym :

Timeslice sym :

{C0,Ξµ, Is, Rµν , T 1/2
µ }

Relevant group at rest

Γ4,1 � W3 ∼ [{Rij ,Ξij} × {C0,Ξ4,Ξ123, Is}]/Z2

= [{Rij , R̃4i ≡ �ijkRjkΞkj} × {C0,Ξ4,Ξ123, C0Ξ4Is}]/Z2

= [SW4 × Γ2,2]/Z2

T 1/2
µ � [{C0,Ξµ} � {Rij , Is}] = (⊗jZNj ) � [Γ4,1 � W3]

T 1/2
µ � [{C0,Ξµ} � {Rµν , Is}] = (⊗jZNµ) � [Γ4,1 � W4]

{C0,Ξ�
µ, Rµν , T �1/2

µ }
Staggered-Wilson

∼ [{Rij ,Ξ�
ij} × {C0,Ξ�

4,Ξ
�
123, Is}]/Z2

= [{Rij , R̃4i ≡ �ijkRjkΞ�
kj} × {C0,Ξ�

4,Ξ
�
123]/Z2

= [SW4 × Γ1,2]/Z2



supersymmetry Q as

QUµ(x) = iψµ(x)Uµ(x),

Qψµ(x) = iψµ(x)ψµ(x) − i
(

φ(x) − Uµ(x)φ(x + µ̂)Uµ(x)†
)

,

Qφ(x) = 0,

Qχ(x) = H(x), QH(x) = [φ(x), χ(x)],

Qφ̄(x) = η(x), Qη(x) = [φ(x), φ̄(x)], (2.1)

where H(x) is an auxiliary fields. Q is nilpotent up to an infinitesimal gauge transformation

with the parameter φ(x). In the expansion H(x) =
∑

a Ha(x)T a, coefficients Ha(x) are

real. φa(x), φ̄a(x) are complex, and the fermionic variables ψa
µ(x), χa(x), ηa(x) may be

regarded as complexified Grassmann3 to be compatible to the U(1)R rotations (2.5). Notice

that in the path integral φa(x) and φ̄a(x) can be treated as independent variables and that

each of Ha(x) is allowed to be shifted by a complex number. Thus, (2.1) is consistently

closed in the path integral expression of the theory.

The lattice action is

SLAT
N=2 = Q

1

2g2
0

∑

x

tr

[

1

4
η(x) [φ(x), φ̄(x)] − iχ(x)Φ(x) + χ(x)H(x)

+ i
2

∑

µ=1

ψµ(x)
(

φ̄(x) − Uµ(x)φ̄(x + µ̂)Uµ(x)†
)



 , (2.2)

where

Φ(x) = −i [U12(x) − U21(x)] , (2.3)

Uµν(x) are plaquette variables written as

Uµν(x) ≡ Uµ(x)Uν(x + µ̂)Uµ(x + ν̂)†Uν(x)†. (2.4)

The action (2.2) is clearly Q-invariant from its Q-exact form. Also, the invariance under

the following global U(1)R rotation holds:

Uµ(x) → Uµ(x), ψµ(x) → eiαψµ(x),

φ(x) → e2iαφ(x),

χ(x) → e−iαχ(x), H(x) → H(x),

φ̄(x) → e−2iαφ̄(x), η(x) → e−iαη(x). (2.5)

The U(1)R charge of each variable is read off from (2.5), and Q increases the charge by

one.

After acting Q in the RHS of (2.2), the action is expressed as

SLAT
N=2 =

1

2g2
0

∑

x

tr

[

1

4
[φ(x), φ̄(x)]2 + H(x)2 − iH(x)Φ(x)

3A complexified Grassmann number takes the form: (complex number) × (real Grassmann number).

– 3 –

P1 = σ1 ⊗ 1 =
�

1
1

�
P2 = σ2 ⊗ 1 =

�
−i1

i1

�

γ̄2 = σ3 ⊗ σ2 =
�

σ2

−σ2

�
γ̄1 = σ3 ⊗ σ1 =

�
σ1

−σ1

�


