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Outline

® Introduction to GPU Computing
® Lattice QCD

* QUDA: QCD on CUDA

® Supercomputing with QUDA

® Future Directions

® Summary
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== Double Precision: NVIDIA GPU

The March of GPUs

Peak Double Precision FP

Kepler 260
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=@=Double Precision: x86 CPU

Peak Memory Bandwidth

M1060
8-core
Sandy Bridge
3 GHz
Nehalem Westmere
3 GHz 3 GHz
2007 2008 2009 2010 2011 2012
==NVIDIA GPU (ECC off) =@=x86 CPU



Stunning Graphics Realism Lush, Rich Worlds @Dz

nvIiDIA

POWERED BY

<=

: NVIDIA.

Crysis © 2006 Crytek / Electronic Arts

Id software ©

Incredible Physics Effects Core of the Definitive Gaming Platform

Hellgate: London © 2005-2006 Flagship Studios, Inc. Licensed by NAMCO BANDAI Games America, Inc. Full Spectrum Warrior: Ten Hammers © 2006 Pandemic Studios, LLC. All rights reserved. © 2006 THQ Inc. All rights reserved.



TFLOPS

Tesla K20 Family : World’s Fastest Accelerator <

. NVIDIA
>1TFlop Perf in under 225W
Tesla K20X Tesla K20
Tesla K20X
o SR | ———
# CUDA Cores 2688 2496
<ANVIDIA TESLA
— Peak Double Precision 1.32TF 1.17 TF
ﬂ' — P Peak DGEMM 1.22 TF 1.10 TF
Double Precision FLOPS (DGEMM) R Peak Slngle Precision 3.95TF 3.52TF
1.25 1 : Peak SGEMM 290 TF 2.61TF
1
] Memory Bandwidth 250 GB/s 208 GB/s
0.5 1 .43 TFLOPS Memory size 6 GB 5 GB
0.25 -
; Total Board Power 235W 225W

Xeon E5-2690 Tesla M2090 Tesla K20X
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The Kepler Architecture nvipi.

* Kepler K20K

PCle I 8.0 GB/s per direction — 2688 processing cores
— 3995 SP Gflops peak (665.5 fma)
250 GB/s — Effective SIMD width of 32 threads (warp)
* Deep memory hierarchy
— As we move away from registers
* Bandwidth decreases
* Latency increases

— Each level imposes a minimum arithmetic
intensity to achieve peak

* Limited on-chip memory
— 65,536 32-bit registers, 255 registers per thread

Core | | Core C C .
2 2 || — 48 KiB shared memory
Core ... |Core . — 1 5 M-IB L2
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NVIDIA

GPGPU Revolutionizes Computing

Latency Processor + Throughput processor




Low Latency or High Throughput? >

CPU

100s of ALUs

100s of ALUs

-~ GPU
& Optimized for low-latency & Optimized for data-parallel,
access to cached data sets throughput computation
@ Control logic for out-of-order @ Architecture tolerant of memory
and speculative execution latency

& More transistors dedicated to
computation



Small Changes, Big Speed-up >}

Application Code
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NnVIDIA
100X
Medical Imaging Molecular Dynamics Video Transcoding Matlab Computing . Astrophysics .
U of Utah U of Illlinois, Urbana Elemental Tech AccelerEyes RIKEN
30X
Financial Simulation Linear Algebra 3D Ultrasound Quantum Chemistry Gene Sequencing

Oxford Universidad Jaime Techniscan U of lllinois, Urbana U of Maryland



3 Ways to Accelerate Applications

<3

nvibDiA

N

Applications
4 N\ ( N
| : OpenACC Programming
Libraries Direct Languages
|reCt|VGS (C/C++, Fortran, Python, ...)
& J 0 J
“Drop-in” Easily Accelerate Maximum
Acceleration Applications Performance




GPU Accelerated Libraries >
“Drop-in” Acceleration for your Applications

“ #:’.
— P

NVIDIA cuBLAS NVIDIA cuRAND - NVIDIA NPP

Uiy WolIrlk

Vector Signal GPU Accelerated Matrix Algebra on
Image Processing Linear Algebra GPU and Multicore NVIDIA cuFFT

ArrayFire P
TF| {a | X2
“ ‘_/1’.4_\_./
ROGUE WAVE : e
AR C++ Templated
Parallel Algorithms

Building-block Algorithms

IMSL Library Sparse Linear Algebra


http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list

OpenACC Directives

CPU

Program myscience
.. serial code ...

I$acc kernels
dok=1,n1
doi=1,n2

... parallel code .

enddo
enddo

I$acc end kernels

End Program myscience

Your original
Fortran or C code

OpenACC
Compiler
Hint

=

nviDIiA

Simple Compiler hints
Compiler Parallelizes code

Works on many-core GPUs &
multicore CPUs



GPU Programming Languages

Numerical analytics p
Fortran p

Ch

C++ P

Python )

C# P

MATLAB, Mathematica, LabVIEW
OpenACC, CUDA Fortran
OpenACC, CUDA C

Thrust, CUDA C++

PyCUDA, Copperhead

GPU.NET

=

nVvIiDIA
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Standard C

CUDA C N>

Gd saxpy(int n, float a,

float *x, float *y)
{
for (int i = 0; i < n; ++1)
y[il = a*x[i] + y[il;
}

int N = 1<<20;

// Perform SAXPY on 1M elements
saxpy(N, 2.0, x, y);

o

N

v

Parallel C

//ﬁj:;1oba1__ “\\\\
void saxpy(int n, float a,

float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];
}

int N = 1<<20;
cudamemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);

QaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost) ;/

http://developer.nvidia.com/cuda-toolkit




Anatomy of a CUDA Application >

nvinia

* Serial code executes in a Host (CPU) thread

. code executes in many (GPU) threads
across multiple processing elements (GPU parallel functions are called Kernels)

CUDA Application

, Host = CPU g
Device = GPU
EmEN B
Host = CPU
Device = GPU




-

-
.




Quantum Chromodynamics

e The strong force is one of the basic forces of nature
(along with gravity, em and the weak force)

 It’s what binds together the quarks and gluons in the
proton and the neutron (as well as hundreds of other
particles seen in accelerator experiments)

e QCD is the theory of the strong force
o |It’s a beautiful theory, lots of equations etc.

) =

/ U= =L Q0
..but...

1
A

ELEMENTARY
PARTICLES

Force Carriers

Fermi National Accelerator Laborato@ummm
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Lattice Quantum Chromodynamics nVIDIA

Theory is highly non-linear = cannot solve directly

Must resort to numerical methods to make predictions

Lattice QCD

e Discretize spacetime = 4-d dimensional lattice of size L. X L, X L-X L;
» Finitize spacetime = periodic boundary conditions

« PDEs = finite difference equations

High-precision tool that allows physicists to explore the contents of nucleus
from the comfort of their workstation (supercomputer)

Consumer of 10-20% of North American supercomputer cycles



<3

Steps in a lattice QCD calculation nVIDIA

1. Generate an ensemble of gluon field (“gauge”)
configurations
* Produced in sequence, with hundreds needed per ensemble

= Strong scaling required with O(10-100 Tflops) sustained for
several months (traditionally Crays, Blue Genes, etc.)

50-90% of the runtime is in the linear solver

B — SR~
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Steps in a lattice QCD calculation nVIDIA

2. “Analyze” the configurations
= (Can be farmed out, assuming O(1 Tflops) per job.

= 80-99% of the runtime is in the linear solver
Task parallelism means that clusters reign supreme here

U () D G, y; VW] () = nf ()
or “Ax = b”




D. Weintroub
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Davies et al



QCD applications =t

« Some examples

— MILC (FNAL, Indiana, Tuscon, Utah)
 strict C, MPI only

— CPS (Columbia, Brookhaven, Edinburgh)
* C++ (but no templates), MPI and partially threaded

— Chroma (Jefferson Laboratory, Edinburgh)

« C++ expression-template programming, MPI and threads

— BQCD (Berlin QCD)
* F90, MPI and threads

» Each application consists of 100K-1M lines of code

 Porting each application not directly tractable
— OpenACC possible for well-written code “Fortran-style” code (BQCD, maybe MILC)






S
Enter QUDA v

e “QCD on CUDA” - http://lattice.github.com/quda

« Effort started at Boston University in 2008, now in wide use as the
GPU backend for BQCD, Chroma, CPS, MILC, etc.

e Provides:

— Various solvers for several discretizations, including multi-GPU support and
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge field generation
* Maximize performance

— Exploit physical symmetries
— Mixed-precision methods
— Autotuning for high performance on all CUDA-capable architectures

— Cache blocking



http://lattice.github.com/quda
http://lattice.github.com/quda

QUDA is community driven

e Developed on github

e http://lattice.github.com/quda
e Open source, anyone can join the fun

e Contributors

e Ron Babich (NVIDIA)
e Kip Barros (LANL)
e Rich Brower (Boston University)

e Justin Foley (University of Utah)

e Joel Giedt (Rensselaer Polytechnic Institute)
e Steve Gottlieb (Indiana University)

e Balint Joo (Jlab)

e Hyung-Jin Kim (BNL)

e Claudio Rebbi (Boston University)

e Guochun Shi (NCSA -> Google)

e Alexei Strelchenko (FNAL)

e Frank Winter (UoE -> Jlab)



http://lattice.github.com/quda
http://lattice.github.com/quda

>
USQCD software stack nVIDIA

Dslashes QDPQOP

QCD Data Parallel (QDP, QDP++) l
QMP QLA QMT
Message Passing Linear Algebra Threading 4

(Many components developed under the DOE SciDAC program)
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QUDA High-Level Interface nVIDIZ

 QUDA default interface provides a simple
view for the outside world

C or Fortran

Host applications simply pass cpu-side
pointers

QUDA takes care of all field reordering
and data copying

No GPU code in user application

e Limitations

No control over memory management

Data residency between QUDA calls
not possible

QUDA might not support user
application field order

#include <quda.h>
int main() {

// initialize the QUDA library
initQuda(device);

// load the gauge field
loadGaugeQuda( (void*)gauge, &gauge param);

// perform the linear solve
invertQuda(spinorOut, spinorIn, &inv_param);

// free the gauge field
freeGaugeQuda();

// finalize the QUDA library
endQuda();
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QUDA Mission Statement AVIDIA
* QUDA is
— a library enabling legacy applications to run on GPUs
— evolving

* more features
» cleaner, easier to maintain

— a research tool into how to reach the exascale
» Lessons learned are mostly (platform) agnostic
« Domain-specific knowledge is key
* Free from the restrictions of DSLs, e.g., multigrid in QDP



Solving the Dirac Equation

e Solving the Dirac Equation is the most
time consuming operation in LQCD

° First-order PDE acting on a vector field

° On the lattice this becomes a large sparse matrix M

) Radius 1 finite-difference stencil acting on a 4-d grid
o Each grid point is a 12-component complex vector (spinor)

) Between each grid point lies a 3x3 complex matrix (link matrix € SU(3) )

e Typically use Krylov solvers to solve M x = b

° Performance-critical kernel is the SpMV

e Stencil application:

° Load neighboring spinors, multiply by the inter-connecting link matrix, sum and store
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NVIDIA.

Dirac spin projector matrices
(4x4 spin space) SU(3) QCD gauge field

l wﬁ Space\
4

Mo = =y D (PO U gy + P OUL o) + ()

=——Dyo +(4+m)iy f

m quark mass parameter

Nearest neighbor Local

4d nearest-neighbor stencil operator acting on a vector field




Mapping the Wilson Dslash to CUDA =

e Assign a single space-time point to each thread
e V =XYZT threads
e V =24%=> 3.3x10° threads

e Fine-grained parallelization

e Looping over direction each thread must

e Load the neighboring spinor (24 numbers x8)

e Load the color matrix connecting the sites (18 numbers x8) Tesla K20X

e Do the computation

e Save the result (24 numbers)
e Arithmetic intensity

e 1320 floating point operations per site

e 1440 bytes per site (single precision)

e 0.92 naive arithmetic intensity



Field Ordering <3

nvibiA

. CPU codes tend to favor Array of Structures but these behave badly on GPUs

Threads read ] 11read
non-contiguous data — grd reactli
+ \ — rea

< >
Spinor (24 numbers)

. GPUs (and AVX / Phi) like Structure of Arrays

0123 0123

0123

AAAA

Threads read contiguous data

o QUDA interface deals with all data reordering

o Application remains ignorant
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Reducing Memory Traffic

e SU(3) matrices are all unitary complex matrices with det = 1
e 12-number parameterization: reconstruct full matrix on the fly in registers

ai az as a1 az as
b1 b2 b3 b by bz J €= (axb)*
C1 C2 C3

e Additional 384 flops per site
e Also have an 8-number parameterization (requires sin/cos and sqrt)
o Additional 856 flops per site
e Impose similarity transforms to increase sparsity

 Still memory bound - Can further reduce memory traffic by truncating the precision
e Use 16-bit fixed-point representation
e No loss in precision with mixed-precision solver
e Almost a free lunch (small increase in iteration count)



Kepler Wilson-Dslash Performance =

v—V¥ Half 8 GF
Half 8
A—A Half 12
Single 8 GF
B Single 8 K20X Dslash performance

@—@ Single 12 V= 243XT
Wilson-Clover is £10%

N
al}
Q 500
[
5

32
Temporal Extent




Krylov Solver Implementation

* Complete solver be on GPU

Transfer b to GPU (reorder)
Solve Mx=b

Transfer x to CPU (reorder)

* Entire algorithms must run on GPUs

Time-critical kernel is the stencil application (SpMV)
Also require BLAS level-1 type operations
e e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

e Roll our own kernels for kernel fusion and custom precision

conjugate
gradient

while (Jri/> €) {
Bk = (ri,rk)/(r-1,re-1)
Pi+1 = I'k - PPk

o = (ri,rx)/(Pr+1,Api+1)
ri+1 = Ik - 0APk+1

Xk+1 = Xk T OPk+1

k =k+1



Kepler Wilson-Solver Performance

n
a9
o
—
o
O

N
(@)
(@)

<4—« Single-12 / Half-8-GF
A—A Single-12 / Half-8

Single-12 / Half-12
B Single-12 / Single-8
@—@ Single-12

32
Temporal Extent

A

—————

nvibDiAa

K20X CG performance
V = 243xT
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NVIDIA.

Often require solver tolerance beyond limit of single precision
But single and half precision much faster than double
Use mixed precision

— e.g.defect-correction

while (|rx|> €) {

High precision ” rr = b - Axx
mat-vec and solve Apx = rx «__ Inpgr low
H precision solve

accumulate Xx+1 = Xk + Pk

QUDA uses Reliable Updates (Sleijpen and Van der Worst 1996)
Almost a free lunch
— Small increase in iteration count




Chroma (Lattice QCD) —

High Energy & Nuclear Physics

Chroma

Relative to 2x CPU
O =~ N W d O O N

243x128 lattice
Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge

0.5

1xCPU

CPU

1.0

2xCPU

6.8

K20X
Single-Socket

Dual-Socket

<3

NVIDIA
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The need for multiple GPUs >

* Only yesterday’s lattice volumes fit on a single GPU

* More cost effective to build multi-GPU nodes
e Better use of resources if parallelized

e Gauge generation requires strong scaling
e 10-100 TFLOPS sustained solver performance



o

Supercomputing means GPUs nvIDIA

Tsubame 2.0, Tianhe 1A,
Blue Waters, etc.



>
TITAN: World’s Most Efficient Supercomputer nvioi

18,688 Tesla K20X GPUs
27 Petaflops Peak, 17.59 Petaflops on Linpack

90% of Performance from GPUs

]




Multiple GPUs >

nVvIDIA

e Many different mechanisms for controlling multiple GPUs
* MPI processes

e CPU threads

* Multiple GPU per thread and do explicit switching
e Combinations of the above
e QUDA uses the simplest: 1 GPU per MPI process

e Allows partitioning over node with multiple devices and
multiple nodes

® cudaSetDevice(local mpi_ rank);
® |n the future likely will support many-to-one or threads
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NVIDIA.

* CUDA provides the stream API for concurrent work queues
e Provides concurrent kernels and host<->device memcpys
e Kernels and memcpys are queued to a stream

* kernel<<<block, thread, shared, streamId>>>(arguments)

* cudaMemcpyAsync(dst, src, size, type, streamld)
 Each stream is an in-order execution queue

* Must synchronize device to ensure consistency between
streams

* cudaDeviceSynchronize()

* QUDA uses the stream API to overlap communication of the halo
region with computation on the interior




1D Lattice decomposition

1D decomposition Assign sub-lattice
(in ‘time’ direction) to GPU

/ face | I face \ face \ face

~exchange _exchange _exchange

o @ o o
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Multi-dimensional lattice decomposition nvioia

@y Lt Led
. s

Qﬁ =
-
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NVIDIA.

 Packing kernels
— Boundary faces are not contiguous memory buffers
— Need to pack data into contiguous buffers for communication
— One for each dimension
* Interior dslash
— Updates interior sites only
 Exterior dslash
— Does final update with halo region from neighbouring GPU
— One for each dimension




Multi-dimensional Kernel Computation

2-d example

* Checkerboard updating scheme employed, so
only half of the sites are updated per application

— Green: source sites
— Purple: sites to be updated
— Orange: site update complete

1
1
1
4
)
)
)
)
1
1
1
1
1
]
1
)
-
1
)
]
1
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Multi-dimensional Kernel Computation nvioa

Step 1

» Gather boundary sites into contiguous buffers to
be shipped off to neighboring GPUs, one
direction at a time.

- --h--

® o
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Multi-dimensional Kernel Computation nvioa

Step 1

» Gather boundary sites into contiguous buffers to
be shipped off to neighboring GPUs, one
direction at a time.

- bl

:

o=@
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Multi-dimensional Kernel Computation nvioa

Step 1

» Gather boundary sites into contiguous buffers to
be shipped off to neighboring GPUs, one
direction at a time.
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Multi-dimensional Kernel Computation nvioa

Step 1

» Gather boundary sites into contiguous buffers to
be shipped off to neighboring GPUs, one
direction at a time.
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Multi-dimensional Kernel Computation nvioa
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Step 2

An “interior kernel” updates all local sites to the
extent possible. Sites along the boundary
receive contributions from local neighbors.




Multi-dimensional Kernel Computation

Step 3

Boundary sites are updated by a series of kernels
- one per direction.

A given boundary kernel must wait for its ghost
zone to arrive

Note in higher dimensions corner sites have a
race condition - serialization of kernels required




Multi-dimensional Kernel Computation

Step 3

Boundary sites are updated by a series of kernels
- one per direction.

A given boundary kernel must wait for its ghost
zone to arrive

Note in higher dimensions corner sites have a
race condition - serialization of kernels required
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Multi-dimensional Kernel Computation nvioa
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Step 3

Boundary sites are updated by a series of kernels
- one per direction.

A given boundary kernel must wait for its ghost
zone to arrive

Note in higher dimensions corner sites have a
race condition - serialization of kernels required
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Multi-dimensional Kernel Computation nvioa

Step 3

Boundary sites are updated by a series of kernels
- one per direction.

A given boundary kernel must wait for its ghost
zone to arrive

'
'
'
L
'
'
'
'
'
'
'
'
'
'
'
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Note in higher dimensions corner sites have a
race condition - serialization of kernels required




Multi-dimensional
Communications Pipeline

Total 9 cuda Streams

exterior
kernels

Interiorkernel X Y Z T

—_—

2: X-forward GPU kernel

cudaMemcpy

memcpy (host)

7: T-backward
MPI send/recv

/ § GPU idle

gather kernel’

8: T-forward




Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

100 TTiops

=
v
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S
j=8
S
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3—£] Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBiCGStab solver

| | | | | | |
. 6 3z 128 256 512 1024 2048 4096 8192
Results from TitanDev Interlagos Sockets (16 core/socket)
- Clover propagator
- 483x512 aniso clover

- scaling up 768 GPUs




Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

100 TTiops
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3—8] Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
v—v¥ Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver

| | | | | | | |
) 6 32 64 128 256 512 1024 2048 4096
Results from TitanDev Interlagos Sockets (16 core/socket)
- Clover propagator
- 483x512 aniso clover

- scaling up 768 GPUs




Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

100 THlops
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3—8] Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver

O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver

v—v¥ Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver
O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver

| | | | | | |
: 16 32 64 128 256 512 1024 2048 4096
Results from TitanDev Interlagos Sockets (16 core/socket)
- Clover propagator
- 483x512 aniso clover

- scaling up 768 GPUs




Domain Decomposition

Non-overlapping blocks - simply have to
switch off inter-GPU communication

Preconditioner is a gross approximation

— Use an iterative solver to solve
each domain system

— Require only 10 iterations of
domain solver o 16-bit

— Need to use a flexible solver o GCR
Block-diagonal preconditoner impose A cutoff
Smaller blocks lose low frequency modes

— keep wavelengths of ~ O(Aqco™?), Aaqcp '~ 1fm
Aniso clover: (as=0.125fm, at=0.035fm) =  83x32 blocks are ideal

— 483x512 lattice: 83x32 blocks o 3456 GPUs
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Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

100 Tflops

3—8] Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
v—v¥ Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver
O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver

—

| | | | |

|

Results from TitanDev o

- 483x512 aniso clover
- scaling up 768 GPUs

|
64 128 256 512 1024 2048
Interlagos Sockets (16 core/socket)

4096




Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

7.5 Tflops
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3—8] Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver

O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver

v—v¥ Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver

O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver

A2 Titan, XK6 nodes, GPU only: Mixed Precision (half/single) GCR solver with Domain
Decomposed preconditioner

L ' L '

Results from TitanDe 16 32 64 128 256 512 1024 2048 4096
. . v Interlagos Sockets (16 core/socket)
- 483x512 aniso clover

- scaling up 768 GPUs




Chroma (Lattice QCD) - n%%;\
High Energy & Nuclear Physics

Chroma
- :
48°x512 lattice S “XK7” node = XK7 (1x K20X + 1x Interlagos)
Relative Scaling (Application Time) “XE6” node = XE6 (2x Interlagos)
18 1 XK7 (K20X) (DD+GCR) _
16 A T
14 A
£ 12 3.58x vs. XEB
3 XK7 (K20X) (BiCGStab) 7%
»n 10 1 @1152 nodes
S 8-
E ¢
g °] .
all XE®6 (2x Interlagos)
y)
0 128 256 384 512 640 768 896 1024 1152 1280

# Nodes



Clover Propagator Benchmark on Titan: Strong Scaling, QUDA+Chroma+QDP-JIT(PTX) @
450 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 1 ﬁvﬁA.

400

350
GO BiCGStab: 72°x256

31 DD+GCR: 72°x256
31 BiCGStab: 96 x256
A=A DD+GCR: 96°x256
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HISQ RHMC with QUDA nvipte

2+1-flavor RHMC on 2x(K20X + Sandybridge)

N MILC
H MILC+QUDA

Multi-shift 156.5
solver

Fermion

¢ 191.2
orce

Fat lmk. 170.7
generation

Gauge
force

194.8

?inear solves Fermion force* Fattening* Gauge force

Absolute performance (36* lattice) QUDA vs. MILC (24364)



MILC on QUDA

* Gauge generation on 256 BW nodes
e Volume = 963x192
e QUDA: solver, forces, fat link
e MILC: long link, momentum exp.

e MILC is multi-process only

e 1 GPU per process
e 4x net gain in performance
e But potential >5x gain in performance
e Porting remaining functions
or
e Fix host code to run in parallel

o

“\J7a s n

2+1+1-flavor RHMC on 256 XK7

B MILC
B MILC+QUDA

?.inear solves Fermion force* Fattening*  Gauge force Other



MILC on QUDA

2+1+1-flavor RHMC on Titan

1 256 nodes
B 512 nodes

?.inear solves Fermion force* Fattening*  Gauge force Other

Preliminary strong scaling on Titan (V = 96°x192)
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Future Directions

* LQCD coverage (avoiding Amdahl)
— Remaining components needed for gauge generation
— Contractions
— Eigenvector solvers
* Solvers
— Scalability
— Optimal solvers (e.g., adaptive multigrid)
* Performance

- Locality
- Learning from today’s lessons (software and hardware)
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QUDA - Chroma Integration

(can spill cached

Chroma is built on top of QDP++
— QDP++ is a DSL of data-parallel building blocks
— C++ expression-template approach
QUDA only accelerates the linear solver
QDP/JIT is a project to port QDP++ directly
to GPUs (Frank Winter)

— Generates ptx kernels at run time
— Kernels are JIT compiled and cached for later use

— Chroma runs unaltered on GPUs

QUDA has low-level hooks for QDP/JIT

— Common GPU memory pool
— QUDA accelerates time-critical routines
— QDP/JIT takes care of Amdahl



Exploiting Locality
Wilson SP Dslash Performance with GPU generation

Temporal locality

M Naive
M Actual

Spatial locality
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* Only scratched the surface of domain-
decomposition algorithms

— Disjoint additive

— Overlapping additive

— Alternating boundary conditions
— Random boundary conditions

— Multiplicative Schwarz

— Precision truncation




Future Directions - Latency

* Global sums are bad
— Global synchronizations
— Performance fluctuations

e New algorithms are required
- S-step CG / BiCGstab, etc.
— E.g., Pipeline CG vs. Naive

* One-sided communication
— MPI-3 expands one-sided communications
— Cray Gemini has hardware support

— Asynchronous algorithms?
« Random Schwarz has exponential convergence



S

Future Directions - Precision

* Mixed-precision methods have become de facto
— Mixed-precision Krylov solvers
— Low-precision preconditioners

» Exploit closer coupling of precision and algorithm
— Domain decomposition, Adaptive Multigrid
— Hierarchical-precision algorithms
— 128-bit <-> 64-bit <-> 32-bit <-> 16-bit <-> 8-bit

e Low precision is lossy compression

» Low-precision tolerance is fault tolerance



mclark at nvidia dot com

Summary

* Introduction to GPU Computing and LQCD computation

e Glimpse into the QUDA library
— Exploiting domain knowledge to achieve high performance
— Mixed-precision methods
— Communication reduction at the expense of computation
— Enables legacy QCD applications ready for accelerators

* GPU Supercomputing is here now
— Algorithmic innovation may be required
— Today’s lessons are relevant for Exascale


mailto:mclark@nvidia.com
mailto:mclark@nvidia.com
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QUDA Interface Extensions VIDIA

* Allow QUDA interface to accept GPU pointers
— First natural extension
— Remove unnecessary PCle communications between QUDA function calls

 Allow user-defined functors for handling field ordering
— User only has to specify their field order
— Made possible with device libraries (CUDA 5.0)
* Limitations
— Limited control of memory management
— Requires deeper application integration



QU DA Low-Level Interface (in development)

<3

™Y\ 70 ' N

* Possible strawman under consideration

lat = QUDA new lattice(dims, ndim, lat param);

u = QUDA new link field(lat, gauge param);

source = QUDA new site field(lat, spinor_param);
solution = QUDA new site field(lat, spinor param);
QUDA load link field(u, host u, gauge order);

QUDA load site field(source, host source, spinor order);
QUDA solve(solution, source, u, solver);

QUDA save site field(solution, host solution, spinor order);
QUDA destroy site field(source);

etc...

Here, src, sol, etc. are opaque objects that know about the GPU
Allows the user to easily maintain data residency

Users can easily provide their own kernels

High-level interface becomes a compatibility layer built on top



500

IN
o
o

400

350

“
w0
2
C
9]
S
o
—
>
%]
©
9]
1S
_
=
x
Y
o
o)
S
£
c
9]
2
>
O
Q
x
w

allocate/free
(can spill cached
objects)

QDP:CPU,QUDA
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QUDA - Chroma Integration """

* Chroma is built on top of QDP++
— QDP++ is a DSL of data-parallel building blocks
— C++ expression-template approach

* QDP/JIT is a project to port QDP++ directly
to GPUs (Frank Winter)
— Generates ptx kernels at run time
— Kernels are JIT compiled and cached for later use
— Chroma runs unaltered on GPUs

 QUDA has low-level hooks for QDP/JIT

— Common GPU memory pool
— QUDA accelerates time-critical routines
— QDP/JIT takes care of Amdahl



Low Latency or High Throughput? <,

* CPU architecture must minimize latency within each thread
* GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor — High Throughput Processor Computation Thread/Warp

T, } Processing

Waiting for data

Ready to be processed

CPU core — Low Latency Processor

T, BT,

__RE

8T, [ ] Context switch
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Memory Coalescing NVIDIA.

 To achieve maximum bandwidth threads within a warp
must read from consecutive regions of memory

— Each thread can load 32-bit, 64-bit or 128-bit words
— CUDA provides built-in vector types

int2 int4
float float float2 float4
double double double?2
char

short
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Run-time autotuning AVIDIA

= Motivation:

— Kernel performance (but not output) strongly dependent on launch
parameters:

= gridDim (trading off with work per thread), blockDim
= blocks/SM (controlled by over-allocating shared memory)

= Design objectives:

— Tune launch parameters for all performance-critical kernels at run-
time as needed (on first launch).

— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.
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Auto-tuned “warp-throttling” nVIDIA

= Motivation: Increase reuse in limited L2 cache.

500
450
400
350
300
250
200
150
100
50
0 -

M BlockDim only
M BlockDim & Blocks/SM

GTX 680 | GTX580 | GTX 680

GTX 580

GTX 580 | GTX 680
Double
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Run-time autotuning: Implementation "~

» Parameters stored in a global cache:
static std::map<TuneKey, TuneParam> tunecache;

= TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

= TuneParam is a struct specifying the tune blockDim, gridDim,
etc.

= Kernels get wrapped in a child class of Tunable (next slide)

= tuneLaunch() searches the cache and tunes if not found:

TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled,
QudaVerbosity verbosity);
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Run-time autotuning: Usage nviDIA

= Before:
myKernelWrapper(a, b, c);

= After:
MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary

* Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

* Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.
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Virtual member functions of Tunable ™"

* [nvoke the kernel (tuning if necessary):
— apply()
= Save and restore state before/after tuning:
— preTune(), postTune()
* Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam() // simply calls the above by default
* Performance reporting
— flops(), bytes(), perfString()
" etc.
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Domain Decomposition e

(Re)Start Generate Subspace Update Solution

Apply Preconditioner:
reduced precision inner solve

Reduced Precision
Mv

repeat for all k or
until residuum drops Full precision restart

if not converged

Quantities with A are
in reduced precision
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Future Directions - Locality

* Where locality does not exist, let’s create it
— E.g., Multi-source solvers
- Staggered Dslash performance, K20X

- Transform a memory-bound
into a cache-bound problem

- Entire solver will remain
bandwidth bound

GFLOPS
[9%)
S
<)

7 8 9 10 11 12
f sources



The High Cost of Data Movement
Fetching operands costs more than computing on them

20mm
< >
64-bit DP DRAM
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