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The March of GPUs
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Lush, Rich WorldsStunning Graphics Realism

Core of the Definitive Gaming PlatformIncredible Physics Effects
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The Kepler Architecture
• Kepler K20X

– 2688 processing cores

– 3995 SP Gflops peak (665.5 fma)

– Effective SIMD width of 32 threads (warp)

• Deep memory hierarchy

– As we move away from registers

• Bandwidth decreases

• Latency increases

– Each level imposes a minimum arithmetic 
intensity to achieve peak

• Limited on-chip memory

– 65,536 32-bit registers, 255 registers per thread

– 48 KiB shared memory

– 1.5 MiB L2
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GPUCPU

GPGPU Revolutionizes Computing
Latency Processor + Throughput processor



Low Latency or High Throughput?

CPU
Optimized for low-latency 
access to cached data sets
Control logic for out-of-order 
and speculative execution

GPU
Optimized for data-parallel, 
throughput computation
Architecture tolerant of memory 
latency
More transistors dedicated to 
computation



Small Changes, Big Speed-up
Application Code

+

GPU CPUUse GPU to Parallelize

Compute-Intensive Functions
Rest of Sequential

CPU Code



146X

Medical Imaging 
U of Utah

36X

Molecular Dynamics
U of Illinois, Urbana

18X

Video Transcoding
Elemental Tech

50X

Matlab Computing
AccelerEyes

100X

Astrophysics
RIKEN

149X

Financial Simulation
Oxford

47X

Linear Algebra
Universidad Jaime

20X

3D Ultrasound
Techniscan

130X

Quantum Chemistry
U of Illinois, Urbana

30X

Gene Sequencing
U of Maryland

GPUs Accelerate Science



3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in” 
Acceleration

Programming 
Languages

(C/C++, Fortran, Python, …)

Maximum
Performance 

OpenACC 
Directives

Easily Accelerate 
Applications



GPU Accelerated Libraries
“Drop-in” Acceleration for your Applications

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

Matrix Algebra on 
GPU and Multicore NVIDIA cuFFT

C++ Templated 
Parallel Algorithms Sparse Linear AlgebraIMSL Library

GPU Accelerated
Linear Algebra

Building-block Algorithms

http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list


OpenACC Directives
 

Program myscience
   ... serial code ...
!$acc kernels
   do k = 1,n1
      do i = 1,n2
          ... parallel code ...
      enddo
    enddo
!$acc end kernels 
  ...
End Program myscience

CPU GPU

Your original 
Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs & 
multicore CPUs

OpenACC 
Compiler

Hint



GPU Programming Languages

OpenACC, CUDA FortranFortran

OpenACC, CUDA CC

Thrust, CUDA C++C++

PyCUDA, CopperheadPython

GPU.NETC#

MATLAB, Mathematica, LabVIEWNumerical analytics



 

void saxpy(int n, float a,  

   float *x, float *y) 

{ 

  for (int i = 0; i < n; ++i) 

    y[i] = a*x[i] + y[i]; 

} 

 

int N = 1<<20; 

 

 

 

// Perform SAXPY on 1M elements 

saxpy(N, 2.0, x, y); 

__global__  

void saxpy(int n, float a,  

   float *x, float *y) 

{ 

  int i = blockIdx.x*blockDim.x + threadIdx.x; 

  if (i < n) y[i] = a*x[i] + y[i]; 

} 

 

int N = 1<<20; 

cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice); 

cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice); 

 

// Perform SAXPY on 1M elements 

saxpy<<<4096,256>>>(N, 2.0, d_x, d_y); 

 

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost); 

 

 

CUDA C 
Standard C Parallel C 

http://developer.nvidia.com/cuda-toolkit 



Anatomy of a CUDA Application
Serial code executes in a Host (CPU) thread
Parallel code executes in many Device (GPU) threads
across multiple processing elements (GPU parallel functions are called Kernels)

CUDA Application

Serial code

Serial code

Parallel code

Parallel code

Device = GPU
…

Host = CPU

Device = GPU
...

Host = CPU



Quantum Chromodynamics



Quantum Chromodynamics

• The strong force is one of the basic forces of nature 
(along with gravity, em and the weak force)

• It’s what binds together the quarks and gluons in the 
proton and the neutron (as well as hundreds of other 
particles seen in accelerator experiments) 

• QCD is the theory of the strong force

• It’s a beautiful theory, lots of equations etc.

       ...but...
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Lattice Quantum Chromodynamics

• Theory is highly non-linear ⇒ cannot solve directly

• Must resort to numerical methods to make predictions

• Lattice QCD

• Discretize spacetime ⇒ 4-d dimensional lattice of size Lx x Ly x Lz x Lt

• Finitize spacetime ⇒ periodic boundary conditions

• PDEs ⇒ finite difference equations

• High-precision tool that allows physicists to explore the contents of nucleus 
from the comfort of their workstation (supercomputer)

• Consumer of 10-20% of North American supercomputer cycles



Steps in a lattice QCD calculation

1. Generate an ensemble of gluon field (“gauge”) 
configurations
§ Produced in sequence, with hundreds needed per ensemble
§ Strong scaling required with O(10-100 Tflops) sustained for 

several months (traditionally Crays, Blue Genes, etc.)
§ 50-90% of the runtime is in the linear solver



Steps in a lattice QCD calculation

2. “Analyze” the configurations
§ Can be farmed out, assuming O(1 Tflops) per job.
§ 80-99% of the runtime is in the linear solver

Task parallelism means that clusters reign supreme here

  



D. Weintroub





Davies et al



QCD applications

• Some examples
– MILC (FNAL, Indiana, Tuscon, Utah)

• strict C, MPI only

– CPS (Columbia, Brookhaven, Edinburgh)
• C++ (but no templates), MPI and partially threaded

– Chroma (Jefferson Laboratory, Edinburgh)
• C++ expression-template programming, MPI and threads

– BQCD (Berlin QCD)
• F90, MPI and threads

• Each application consists of 100K-1M lines of code
• Porting each application not directly tractable

– OpenACC possible for well-written code “Fortran-style” code (BQCD, maybe MILC)



QUDA



Enter QUDA

• “QCD on CUDA” – http://lattice.github.com/quda
• Effort started at Boston University in 2008, now in wide use as the 

GPU backend for BQCD, Chroma, CPS, MILC, etc.
• Provides:

— Various solvers for several discretizations, including multi-GPU support and 
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge field generation

• Maximize performance
– Exploit physical symmetries
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Cache blocking

http://lattice.github.com/quda
http://lattice.github.com/quda


QUDA is community driven

• Developed on github
• http://lattice.github.com/quda

• Open source, anyone can join the fun
• Contributors

• Ron Babich (NVIDIA)

• Kip Barros (LANL)

• Rich Brower (Boston University)

• Justin Foley (University of Utah)

• Joel Giedt (Rensselaer Polytechnic Institute)

• Steve Gottlieb (Indiana University)

• Bálint Joó (Jlab)

• Hyung-Jin Kim (BNL)

• Claudio Rebbi (Boston University)

• Guochun Shi (NCSA -> Google)

• Alexei Strelchenko (FNAL)

• Frank Winter (UoE -> Jlab)

http://lattice.github.com/quda
http://lattice.github.com/quda


USQCD software stack

(Many components developed under the DOE SciDAC program)



QUDA High-Level Interface

#include <quda.h>

int main() {

  // initialize the QUDA library
  initQuda(device);

  // load the gauge field
  loadGaugeQuda((void*)gauge, &gauge_param);

  // perform the linear solve
  invertQuda(spinorOut, spinorIn, &inv_param);

  // free the gauge field
  freeGaugeQuda();

  // finalize the QUDA library
  endQuda();

}

• QUDA default interface provides a simple 
view for the outside world

• C or Fortran

• Host applications simply pass cpu-side 
pointers

• QUDA takes care of all field reordering 
and data copying

• No GPU code in user application

• Limitations

• No control over memory management

• Data residency between QUDA calls 
not possible 

• QUDA might not support user 
application field order



QUDA Mission Statement

• QUDA is
– a library enabling legacy applications to run on GPUs
– evolving

• more features
• cleaner, easier to maintain

– a research tool into how to reach the exascale 
• Lessons learned are mostly (platform) agnostic
• Domain-specific knowledge is key
• Free from the restrictions of DSLs, e.g., multigrid in QDP 



Solving the Dirac Equation

• Solving the Dirac Equation is the most 
time consuming operation in LQCD

• First-order PDE acting on a vector field

• On the lattice this becomes a large sparse matrix M

• Radius 1 finite-difference stencil acting on a 4-d grid

• Each grid point is a 12-component complex vector (spinor)

• Between each grid point lies a 3x3 complex matrix (link matrix ∈ SU(3) )

• Typically use Krylov solvers to solve M x = b

• Performance-critical kernel is the SpMV 

• Stencil application:

• Load neighboring spinors, multiply by the inter-connecting link matrix, sum and store

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x� = −1
2

4�

µ=1

�
P−µ ⊗ Uµ

x δx+µ̂,x� + P+µ ⊗ Uµ†
x−µ̂ δx−µ̂,x�

�

+ (4 + m + Ax)δx,x�

≡ −1
2
Dx,x� + (4 + m + Ax)δx,x� . (2)

Here δx,y is the Kronecker delta; P±µ are 4 × 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3× 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12×12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x� are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ− ν plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x� matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 × 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Mx,x� =



Wilson Matrix

Mx,x� = −1
2

4�

µ=1

�
P−µ ⊗ Uµ

x δx+µ̂,x� + P+µ ⊗ Uµ†
x−µ̂ δx−µ̂,x�

�
+ (4 + m + Ax)δx,x�

≡ −1
2
Dx,x� + (4 + m + Ax)δx,x�

Dirac spin projector matrices
(4x4 spin space) SU(3) QCD gauge field

(3x3 color space)

Nearest neighbor Local

m quark mass parameter

4d nearest-neighbor stencil operator acting on a vector field

)δx,x�

)δx,x�



Mapping the Wilson Dslash to CUDA

• Assign a single space-time point to each thread
• V = XYZT threads

• V = 244 => 3.3x106 threads

• Fine-grained parallelization

• Looping over direction each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Do the computation

• Save the result (24 numbers)

• Arithmetic intensity

• 1320 floating point operations per site

• 1440 bytes per site (single precision)

• 0.92 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x� = −1
2

4�

µ=1

�
P−µ ⊗ Uµ

x δx+µ̂,x� + P+µ ⊗ Uµ†
x−µ̂ δx−µ̂,x�

�

+ (4 + m + Ax)δx,x�

≡ −1
2
Dx,x� + (4 + m + Ax)δx,x� . (2)

Here δx,y is the Kronecker delta; P±µ are 4 × 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3× 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12×12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x� are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ− ν plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x� matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 × 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x� =

Tesla K20XTesla K20X

Gflops 3995

GB/s 250

AI 16

bandwidth bound



• QUDA interface deals with all data reordering

• Application remains ignorant

Spinor (24 numbers)

Threads read 
non-contiguous data

• GPUs (and AVX / Phi) like Structure of Arrays

• CPU codes tend to favor Array of Structures but these behave badly on GPUs

Threads read contiguous data

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 30 1 2 3

1st read
2nd read
3rd read

Field Ordering



• SU(3) matrices are all unitary complex matrices with det = 1
• 12-number parameterization: reconstruct full matrix on the fly in registers

• Additional 384 flops per site

• Also have an 8-number parameterization (requires sin/cos and sqrt)

• Additional 856 flops per site

• Impose similarity transforms to increase sparsity

• Still memory bound - Can further reduce memory traffic by truncating the precision
• Use 16-bit fixed-point representation
• No loss in precision with mixed-precision solver
• Almost a free lunch (small increase in iteration count)

a1 a2 a3
b1 b2 b3
c1 c2 c3

( ) c = (axb)*
a1 a2 a3
b1 b2 b3( )

Reducing Memory Traffic



Kepler Wilson-Dslash Performance
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Temporal Extent

200

300

400

500

600

700

800
G

FL
O

PS
Half 8 GF
Half 8
Half 12
Single 8 GF
Single 8
Single 12

K20X Dslash performance
V = 243xT
Wilson-Clover is ±10%



Krylov Solver Implementation

• Complete solver must be on GPU

• Transfer b to GPU  (reorder)

• Solve Mx=b

• Transfer x to CPU  (reorder)

• Entire algorithms must run on GPUs

• Time-critical kernel is the stencil application (SpMV)

• Also require BLAS level-1 type operations

• e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

• Roll our own kernels for kernel fusion and custom precision

while (|rk|> ε) {
βk = (rk,rk)/(rk-1,rk-1)
pk+1 = rk - βkpk

α = (rk,rk)/(pk+1,Apk+1)
rk+1 = rk - αApk+1
xk+1 = xk + αpk+1
k = k+1

}

conjugate 
gradient



Kepler Wilson-Solver Performance

K20X CG performance
V = 243xT
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Mixed-Precision Solvers

• Often require solver tolerance beyond limit of single precision

• But single and half precision much faster than double

• Use mixed precision

– e.g.defect-correction

• QUDA uses Reliable Updates (Sleijpen and Van der Worst 1996)

• Almost a free lunch

– Small increase in iteration count

while (|rk|> ε) {
rk = b - Axk
solve Apk = rk
xk+1 = xk + pk

}

High precision
mat-vec and 
accumulate

Inner low 
precision solve



Preliminary, NVIDIA Confidential – not for distribution 

Chroma (Lattice QCD) –  
High Energy & Nuclear Physics 

Chroma 
243x128 lattice 
Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge 
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Supercomputing with QUDA



The need for multiple GPUs

• Only yesterday’s lattice volumes fit on a single GPU
• More cost effective to build multi-GPU nodes

• Better use of resources if parallelized

• Gauge generation requires strong scaling
• 10-100 TFLOPS sustained solver performance 



Supercomputing means GPUs

Tsubame 2.0, Tianhe 1A, 
Blue Waters, etc.



TITAN: World’s Most Efficient Supercomputer
18,688 Tesla K20X GPUs 

 27 Petaflops Peak, 17.59 Petaflops on Linpack 

90% of Performance from GPUs 



Multiple GPUs

• Many different mechanisms for controlling multiple GPUs
• MPI processes
• CPU threads
• Multiple GPU per thread and do explicit switching
• Combinations of the above

• QUDA uses the simplest: 1 GPU per MPI process
• Allows partitioning over node with multiple devices and 

multiple nodes
• cudaSetDevice(local_mpi_rank);
• In the future likely will support many-to-one or threads 



CUDA Stream API

• CUDA provides the stream API for concurrent work queues
• Provides concurrent kernels and host<->device memcpys
• Kernels and memcpys are queued to a stream

• kernel<<<block, thread, shared, streamId>>>(arguments)

• cudaMemcpyAsync(dst, src, size, type, streamId)

• Each stream is an in-order execution queue
• Must synchronize device to ensure consistency between 

streams
• cudaDeviceSynchronize()

• QUDA uses the stream API to overlap communication of the halo 
region with computation on the interior



1D Lattice decompositionQUDA Parallelization

1D decomposition
(in ‘time’ direction)

Assign sub-lattice 
to GPU

face
exchange

face
exchange

face
exchange

face
exchange

wrap
around

Friday, January 28, 2011



Multi-dimensional lattice decompositionMulti GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011



Multi-dimensional Ingredients

• Packing kernels
– Boundary faces are not contiguous memory buffers
– Need to pack data into contiguous buffers for communication
– One for each dimension

• Interior dslash
– Updates interior sites only

• Exterior dslash
– Does final update with halo region from neighbouring GPU
– One for each dimension 



Multi-dimensional Kernel Computation

2-d example
• Checkerboard updating scheme employed, so 

only half of the sites are updated per application

– Green: source sites

– Purple: sites to be updated

– Orange: site update complete



Multi-dimensional Kernel Computation

Step 1
• Gather boundary sites into contiguous buffers to 

be shipped off to neighboring GPUs, one 
direction at a time.
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Multi-dimensional Kernel Computation

Step 1
• Gather boundary sites into contiguous buffers to 

be shipped off to neighboring GPUs, one 
direction at a time.



Multi-dimensional Kernel Computation

Step 2

• An “interior kernel” updates all local sites to the 
extent possible.  Sites along the boundary 
receive contributions from local neighbors.

•



Multi-dimensional Kernel Computation

Step 3

• Boundary sites are updated by a series of kernels 
- one per direction.

• A given boundary kernel must wait for its ghost 
zone to arrive

• Note in higher dimensions corner sites have a 
race condition - serialization of kernels required
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Multi-dimensional Kernel Computation

Step 3

• Boundary sites are updated by a series of kernels 
- one per direction.

• A given boundary kernel must wait for its ghost 
zone to arrive

• Note in higher dimensions corner sites have a 
race condition - serialization of kernels required



Multi-dimensional 
Communications Pipeline
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Figure 3: Gauge field layout in host and GPU mem-

ory. The gauge field consists of 18 floating point

numbers per site (when no reconstruction is em-

ployed) and is ordered on the GPU so as to en-

sure that memory accesses in both interior and

boundary-update kernels are coalesced to the extent

possible.

terior kernel so that it computes the full results for the in-
ner spinors and the partial results for spinors in the bound-
aries. The interior kernel computes any contributions to the
boundary spinors that does not involve with ghost spinors,
e.g. if a spinor is located only in the T+ boundary, the in-
terior kernel computes the space contribution for this spinor
as well as the negative T direction’s. The positive T direc-
tion’s contribution for this spinor, will be computed in the
exterior kernel for T dimension using the ghost spinor and
ghost gauge fields from the T+ neighbor. Since spinors in
the corners belong to multiple boundaries, For the interior
kernel and T exterior kernel, the 4-d to 1-d mapping strat-
egy is the same for the spinor and gauge field, with X being
the fastest changing index and T the slowest changing in-
dex, and all gauge field and spinor access are coalesced. The
use of memory padding avoids the GPU memory partition
camping problem [23] and further improves the performance.
However, in the X, Y, Z exterior kernels, the ghost spinor
and gauge field follows different mapping scheme, but the
reading and writing of the destination spinors, which is lo-
cated in local spinor region, still follows the T slowest 4-D
to 1-D mapping scheme. Such different data mapping makes
complete coalesced access impossible and one has to choose
one or another. We choose to compute our index using the
X, Y, Z slowest 4-D to 1-D mapping schedule with X-, Y-, Z-
exterior kernels to minimize the un-coalesced access penalty
since most of the data trafic comes from the gauge field and
source spinors. It is also clear from the above description
that because of the spinors in corners, the exterior kernels
has data dependency with each other and must be executed
in sequential order.

6.2.2 Computation, Communication and Streams
CUDA streams are extensively used to overlap computa-

tion with communication as well as overlapping the differ-
ent type of communications. Two streams per dimension
are used, one for gathering and exchanging spinors in the
forward direction and the other in the backward direction.
One extra stream is used for interior and exterior kernels,
making the total CUDA streams number up to 9, as shown
in Fig. 4. The gather kernels for all directions are launched
in GPU at the beginning so that the communications in all
directions can start early. The interior kernel is executed
after all gather kernels finishes, overlapping completely with
the communications. We use different streams for different
dimensions so that the different communication components
can overlap with each other, including the device to host cu-
daMemcpy, memcpy from pinned host memory to pagable
host memory, MPI send and receive, memcpy from pagable
memory to pinned memory and host to device memory copy.
While the interior kernel can be overlapped with communi-
cations, the exterior kernels have data dependency with the
ghost data, the interior kernel and other exterior kernels
therefore must be placed in the same stream and be syn-
chronized with the communication in the corresponding di-
mension.The accumulation of communication over multiple
dimensions is likely to exceed the interior kernel run time,
leading to the idle GPU (see Fig. 4), thus degrading the
overall dslash performance.
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Figure 4: Usage of CUDA streams in dslash compu-

tation, and multiple stages of communications. One

stream is used for interior and exterior kernels and

two streams per dimension are used for gather ker-

nels, PCIe data transfer, host memcpy and inter-

node communications

When communicating over multiple dimensions, the com-
munication cost dominates the computations and any reduc-
tion in the communication is likely to improve the perfor-
mance. The two host memcpy are required due to the fact
GPU pinned memory is not compatible with the MPI pinned
memory and the GPU direct technology [24] is not readily
available in the existing GPU cluster. We expect these extra
memcpys to be removed in the future when better support
from GPU and MPI venders are available. The recent avail-
able CUDA SDK 4.0 has an interesting GPU to GPU direct
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Results from TitanDev
- Clover propagator
- 483x512 aniso clover
- scaling up 768 GPUs



• Non-overlapping blocks - simply have to 
switch off inter-GPU communication

• Preconditioner is a gross approximation
– Use an iterative solver to solve 

each domain system
– Require only 10 iterations of 

domain solver  !  16-bit  
– Need to use a flexible solver !   GCR

• Block-diagonal preconditoner impose λ cutoff
• Smaller blocks lose low frequency modes

– keep wavelengths of ~ O(ΛQCD-1),   ΛQCD -1 ~ 1fm 

• Aniso clover:  (as=0.125fm, at=0.035fm)  !    83x32 blocks are ideal
– 483x512 lattice: 83x32 blocks  !    3456 GPUs

Domain Decomposition



Results from TitanDev
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- scaling up 768 GPUs



Results from TitanDev
- 483x512 aniso clover
- scaling up 768 GPUs

102 Tflops
  37 Tflops

  7.5 Tflops
  32 Tflops



Preliminary, NVIDIA Confidential – not for distribution 

Chroma (Lattice QCD) –  
High Energy & Nuclear Physics 

Chroma 
483x512 lattice 
Relative Scaling (Application Time)  

XK7 (K20X) (BiCGStab) 

XK7 (K20X) (DD+GCR) 

XE6 (2x Interlagos) 
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Clover Propagator Benchmark on Titan: Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

B. Joo,  F. Winter (JLab), M. Clark (NVIDIA)



HISQ RHMC with QUDA

Single-precision Rational HMC on a 24
3x64 lattice.

5.7x net gain in performance

>7.7x gain by porting remaining CPU routines.

Justin Foley, University of Utah Many-GPU calculations in Lattice QCD

Routine Single Double Mixed

Multi-shift 
solver

156.5 77.1 157.4

Fermion 
force 191.2 97.2

Fat link 
generation 170.7 82.0

Gauge 
force 194.8 98.3

Absolute performance (364 lattice) QUDA vs. MILC (24364)



MILC on QUDA

• Gauge generation on 256 BW nodes
• Volume = 963x192

• QUDA: solver, forces, fat link

• MILC: long link, momentum exp.

• MILC is multi-process only
• 1 GPU per process
• 4x net gain in performance

• But potential >5x gain in performance

• Porting remaining functions

• or

• Fix host code to run in parallel

(Mixed-) Double-precision Rational HMC on a 96
3x192 lattice

on Titan

Justin Foley, University of Utah Many-GPU calculations in Lattice QCD



MILC on QUDAPreliminary look at strong scaling on Titan

Justin Foley, University of Utah Many-GPU calculations in Lattice QCD

Preliminary strong scaling on Titan (V = 963x192)



Future Directions
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Future Directions

• LQCD coverage (avoiding Amdahl)
– Remaining components needed for gauge generation
– Contractions
– Eigenvector solvers

• Solvers
– Scalability
– Optimal solvers (e.g., adaptive multigrid)

• Performance
– Locality
– Learning from today’s lessons (software and hardware)



QUDA - Chroma Integration

• Chroma is built on top of QDP++
– QDP++ is a DSL of data-parallel building blocks
– C++ expression-template approach 

• QUDA only accelerates the linear solver
• QDP/JIT is a project to port QDP++ directly 

to GPUs (Frank Winter)

– Generates ptx kernels at run time 
– Kernels are JIT compiled and cached for later use
– Chroma runs unaltered on GPUs

• QUDA has low-level hooks for QDP/JIT 
– Common GPU memory pool
– QUDA accelerates time-critical routines
– QDP/JIT takes care of Amdahl

QUDA integration

Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 21 / 26

Benchmark Measurements Chroma

lfn://ldg/qcdsf/clover_nf2/b5p20kp13420-16x32/ape.003.004600.dat
Significant reduction of execution time when using QDP++(GPU)
QUDA inverter gains speedup too (residuum calculation with QDP++)

Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 24 / 26



Exploiting Locality
Wilson SP Dslash Performance with GPU generation
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Future Directions - Communication

• Only scratched the surface of domain-
decomposition algorithms

– Disjoint additive
– Overlapping additive
– Alternating boundary conditions
– Random boundary conditions
– Multiplicative Schwarz
– Precision truncation



Future Directions - Latency

• Global sums are bad
– Global synchronizations
– Performance fluctuations

• New algorithms are required
– S-step CG / BiCGstab, etc.
– E.g., Pipeline CG vs. Naive

• One-sided communication
– MPI-3 expands one-sided communications
– Cray Gemini has hardware support
– Asynchronous algorithms?

• Random Schwarz has exponential convergence
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Future Directions - Precision

• Mixed-precision methods have become de facto
– Mixed-precision Krylov solvers
– Low-precision preconditioners

• Exploit closer coupling of precision and algorithm
– Domain decomposition, Adaptive Multigrid
– Hierarchical-precision algorithms
– 128-bit <-> 64-bit <-> 32-bit <-> 16-bit <-> 8-bit

•Low precision is lossy compression
• Low-precision tolerance is fault tolerance



Summary

• Introduction to GPU Computing and LQCD computation
• Glimpse into the QUDA library

– Exploiting domain knowledge to achieve high performance
– Mixed-precision methods
– Communication reduction at the expense of computation
– Enables legacy QCD applications ready for accelerators

• GPU Supercomputing is here now
– Algorithmic innovation may be required
– Today’s lessons are relevant for Exascale

mclark at nvidia dot com

mailto:mclark@nvidia.com
mailto:mclark@nvidia.com


Backup slides



QUDA Interface Extensions

• Allow QUDA interface to accept GPU pointers
– First natural extension
– Remove unnecessary PCIe communications between QUDA function calls

• Allow user-defined functors for handling field ordering
– User only has to specify their field order
– Made possible with device libraries (CUDA 5.0)

• Limitations
– Limited control of memory management
– Requires deeper application integration



QUDA Low-Level Interface (in development)

• Possible strawman under consideration

• Here, src, sol, etc. are opaque objects that know about the GPU
• Allows the user to easily maintain data residency
• Users can easily provide their own kernels
• High-level interface becomes a compatibility layer built on top
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QUDA - Chroma Integration

• Chroma is built on top of QDP++
– QDP++ is a DSL of data-parallel building blocks
– C++ expression-template approach 

• QDP/JIT is a project to port QDP++ directly 
to GPUs (Frank Winter)

– Generates ptx kernels at run time 
– Kernels are JIT compiled and cached for later use
– Chroma runs unaltered on GPUs

• QUDA has low-level hooks for QDP/JIT 
– Common GPU memory pool
– QUDA accelerates time-critical routines
– QDP/JIT takes care of Amdahl

QUDA integration

Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 21 / 26

Benchmark Measurements Chroma

lfn://ldg/qcdsf/clover_nf2/b5p20kp13420-16x32/ape.003.004600.dat
Significant reduction of execution time when using QDP++(GPU)
QUDA inverter gains speedup too (residuum calculation with QDP++)

Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 24 / 26



Low Latency or High Throughput?

CPU architecture must minimize latency within each thread
GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switch

W
1

W
2

W3

W4

T1 T2 T3 T4



Memory Coalescing

• To achieve maximum bandwidth threads within a warp 
must read from consecutive regions of memory

– Each thread can load 32-bit, 64-bit or 128-bit words
– CUDA provides built-in vector types 

type 32-bit 64-bit 128-bit

int int int2 int4

float float float2 float4

double double double2

char char4

short short2 short4



Run-time autotuning

§ Motivation:
— Kernel performance (but not output) strongly dependent on launch 

parameters:
§ gridDim (trading off with work per thread), blockDim
§ blocks/SM (controlled by over-allocating shared memory)

§ Design objectives:
— Tune launch parameters for all performance-critical kernels at run-

time as needed (on first launch).
— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.



Auto-tuned “warp-throttling”

§ Motivation: Increase reuse in limited L2 cache.
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Run-time autotuning: Implementation

§ Parameters stored in a global cache:
static	
  std::map<TuneKey,	
  TuneParam>	
  tunecache;

§ TuneKey is a struct of strings specifying the kernel name, 
lattice volume, etc.

§ TuneParam is a struct specifying the tune blockDim, gridDim, 
etc.

§ Kernels get wrapped in a child class of Tunable (next slide)
§ tuneLaunch() searches the cache and tunes if not found:

TuneParam	
  tuneLaunch(Tunable	
  &tunable,	
  QudaTune	
  enabled,	
  
QudaVerbosity	
  verbosity);



Run-time autotuning: Usage

§ Before:
myKernelWrapper(a,	
  b,	
  c);

§ After:
MyKernelWrapper	
  *k	
  =	
  new	
  MyKernelWrapper(a,	
  b,	
  c);
k-­‐>apply();	
  	
  //	
  <-­‐-­‐	
  automatically	
  tunes	
  if	
  necessary

§ Here MyKernelWrapper inherits from Tunable and optionally 
overloads various virtual member functions (next slide).

§ Wrapping related kernels in a class hierarchy is often useful 
anyway, independent of tuning.



Virtual member functions of Tunable

§ Invoke the kernel (tuning if necessary):
— apply()

§ Save and restore state before/after tuning:
— preTune(), postTune()

§ Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam()  // simply calls the above by default

§ Performance reporting
— flops(), bytes(), perfString()

§ etc.



Domain Decomposition

Solve for χl   l=k,k-1,...,0:

Compute correction for x:

(Re)Start Generate Subspace Update Solution

repeat for all k or 
until residuum drops Full precision restart

if not converged
Quantities with ^ are 
in reduced precision

normalize ẑk

Orthogonalize ẑ-s

Apply Preconditioner:
reduced precision inner solve

Reduced Precision 
M v



Future Directions - Locality

• Where locality does not exist, let’s create it
– E.g., Multi-source solvers
– Staggered Dslash performance, K20X
– Transform a memory-bound 

into a cache-bound problem
– Entire solver will remain

bandwidth bound
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The High Cost of Data Movement
Fetching operands costs more than computing on them

20mm

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

500 pJ Efficient
off-chip link

28nm

256-bit
buses

16 nJ DRAM
Rd/Wr

256-bit access
8 kB SRAM

50 pJ


