#### Flavor-singlet scalar in large $N_f$ QCD

#### Takeshi Yamazaki



Kobayashi-Maskawa Institute for the Origin of Particles and the Universe Nagoya University

Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-i. Nagai, H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki

(LatKMI Collaboration)

KMI Topics @ KMI, April 10, 2013

#### Contents

- 1. Introduction
  - Walking technicolor
  - Lattice gauge theory
  - Recent study of LatKMI Collaboration
- 2. Calculation of flavor-singlet scalar
  - Difficulty
  - Method
  - Preliminary result of  $N_f = 12 \text{ QCD}$
  - More preliminary result of  $N_f = 8 \text{ QCD}$
- 3. Summary

## 1. Introduction

# Discovery of "Higgs" particle @ LHC $m_H \sim 126 \ {\rm GeV}$

Still we have lots of things to understand, such as

- Property of "Higgs" particle elementary
- Mechanism of electroweak symmetry breaking  $\langle H \rangle \neq 0$
- Gauge hierarchy problem fine tuning of  $m_H$

#### Standard Model

Beyond Standard Model: SUSY, Little Higgs, Technicolor, ···

## 1. Introduction

# Discovery of "Higgs" particle @ LHC $m_H \sim 126 \ {\rm GeV}$

Still we have lots of things to understand, such as

- Property of "Higgs" particle elementary composite
- Mechanism of electroweak symmetry breaking  $\langle H \rangle \neq 0$  VEV from dynamics
- Gauge hierarchy problem fine tuning of  $m_H$  no fine tuning

Standard ModelTechnicolor: strongly coupled theoryBeyond Standard Model: SUSY, Little Higgs, Technicolor, ···

#### Technicolor

 $N_f$  massless fermions + SU( $N_{TC}$ ) gauge at  $\mu_{TC} = O(1)$  TeV  $N_f$ , representation of fermions,  $N_{TC}$  not determined

 $F^{\mathsf{TC}}, \langle \overline{Q}Q \rangle \neq 0 \rightarrow \text{similar to QCD}$ 

$$F^{\mathsf{TC}} = O(250) \text{ GeV} \rightarrow F_{\pi}^{\mathsf{QCD}} = 93 \text{ MeV}$$

But, Technicolor  $\neq$  scale up of QCD

• FCNC vs quark mass Inconsistency of constraints FCNC  $(K^0 - \overline{K}^0 \text{ mixing}) \iff$  large quark mass  $m_t = O(100)$  GeV

• Small Higgs mass

$$\frac{m_{\rm Higss}}{F^{\rm TC}} \lesssim 1 \Longleftrightarrow \frac{m_{f_0(500)}^{\rm QCD}}{F_{\pi}} = 4 \sim 6$$

## Walking Technicolor

 $N_f$  massless fermions + SU( $N_T_C$ ) gauge at  $\mu_{TC} = O(1)$  TeV

 $\alpha(\mu)$ 

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension  $\gamma^* \sim 1$  in walking region
- Composite, light scalar state



Quark mass enhanced by renormalization of  $\langle \overline{Q}Q \rangle$ 

WTC: 
$$\left(\frac{\mu}{\mu_{\text{TC}}}\right)^{\gamma^*} \iff \text{TC: } 1 + \gamma(g) \log\left(\frac{\mu}{\mu_{\text{TC}}}\right)$$

μ







## Candidate of walking technicolor

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension  $\gamma^* \sim \mathbf{1}$  in walking region
- Composite, light scalar state

#### Question: Such theory really exists?

Nonperturbative calculation is important.

 $\rightarrow$  numerical calculation with lattice gauge theory

## Candidate of walking technicolor

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension  $\gamma^* \sim 1$  in walking region
- Composite, light scalar state

#### Question: Such theory really exists?

Nonperturbative calculation is important.

 $\rightarrow$  numerical calculation with lattice gauge theory

#### Lattice gauge theory



Lattice spacing aMomentum cutoff:  $|p| \le \pi/a$ 4-dim. Spacetime  $= L^3 \times T$ Fermion  $\psi(x)$ : on site Gauge  $U_{\mu}(x)$ : link between sites

Nonperturbative calculation by Monte Carlo simulation  $\langle \mathcal{O}(\overline{\psi}, \psi, U) \rangle = \int \mathcal{D}U \operatorname{Prob}[U] \mathcal{O}(\overline{\psi}, \psi, U) = \frac{1}{N_{\text{conf}}} \sum_{i}^{N_{\text{conf}}} \mathcal{O}(D^{-1}[U_i], U_i) + \delta \left( 1/\sqrt{N_{\text{conf}}} \right)$   $+\delta \left( 1/\sqrt{N_{\text{conf}}} \right)$   $\operatorname{Prob}[U] \propto \int \mathcal{D}\overline{\psi} \mathcal{D}\psi \, e^{N_f \overline{\psi} D[U] \psi - S_g[U]}, \quad \text{Grassmann integral: } \psi \overline{\psi} \to D^{-1}[U]$   $\operatorname{Most of all computational cost}$   $D[U] : (L^3 \cdot T \cdot N_{\text{color}} \cdot N_{\text{dirac}}) \times (L^3 \cdot T \cdot N_{\text{color}} \cdot N_{\text{dirac}}) \quad \text{matrix}$ 

#### Lattice gauge theory

2-point function; 
$$P(t) = \sum_{\vec{x}} \overline{\psi}(\vec{x}, t) \gamma_5 \psi(\vec{x}, t), \ J^P = 0^-$$
  
 $\langle 0|P(t)P^{\dagger}(0)|0 \rangle = \sum_i \langle 0|P|\pi_i \rangle \langle \pi_i |P^{\dagger}|0 \rangle e^{-m_{\pi_i} t}$   
 $\xrightarrow{t \gg 1} |\langle 0|P(0)|\pi_0 \rangle|^2 e^{-m_{\pi_0} t}$   
 $\rightarrow m_{\pi_0} \text{ and } F_{\pi_0} \text{ from } |\langle 0|P(0)|\pi_0 \rangle|$ 

 $|\pi_i\rangle$ : *i*-th state with same quantum numbers as operator P

same  $m_{\pi_0}$  obtained if different operator P' has same quantum numbers as P $\langle 0|P'(t)(P')^{\dagger}(0)|0\rangle \xrightarrow{t\gg1} |\langle 0|P'(0)|\pi_0\rangle|^2 e^{-m_{\pi_0}t}$ But  $|\langle 0|P(0)|\pi_0\rangle| \neq |\langle 0|P'(0)|\pi_0\rangle|$ 

call 0th state of pseudoscalar  $\rightarrow \pi$  in all  $N_f$ 

#### Purpose of our project

Systematic investigation of  $N_f$  dependence SU(3) gauge theory with  $N_f$  (massless) fermions  $N_f = 0, 4, 8, 12, 16$ 

- Search for candidate of walking technicolor Mearsure  $m_{\text{meson}}$ ,  $F_{\pi}$ ,  $\langle \overline{\psi}\psi \rangle$  c.f.  $g^2(\mu), \gamma_m$  from  $Z_m(\mu)$
- If candidate exists, property of theory Scalar state in (approximate) conformal theory

PRD86(2012)054506; arXiv:1302.6859

Unique setup for all  $N_f$ : Improved staggered action (HISQ/Tree)

Cheapest calculation cost in lattice fermion actions

+ small a systematic error

#### Simulation parameters

- $\beta \equiv 6/g^2 \rightarrow$  lattice spacing a
- *L*, *T* ~ *O*(10)
- $m_f \neq 0 \rightarrow \text{IR} \text{ scales } m_f \gg 1/L$

Large enough L at each  $m_f$ :  $m_{\pi}L \gtrsim 6 \ (\gtrsim 4 \text{ in } N_f = 4)$ 

| $N_f$ | $\beta$ | $L^3 \times T$                    | $m_{f}$     |
|-------|---------|-----------------------------------|-------------|
| 4     | 3.7     | $12^3 \times 18 - 20^3 \times 30$ | 0.005-0.05  |
| 8     | 3.8     | $18^3 \times 24 - 36^3 \times 48$ | 0.015-0.016 |
| 12    | 3.7     | $18^3 \times 24 - 30^3 \times 40$ | 0.04-0.2    |
| 12    | 4.0     | $18^3 \times 24 - 30^3 \times 40$ | 0.05-0.2    |

Machines:  $\varphi$  at KMI, CX400 at Kyushu Univ.

Search for candidate of walking technicolor

PRD86(2012)054506; arXiv:1302.6859

chiral broken  $\rightarrow$  walking  $\rightarrow$  conformal increasing  $N_f$ 

Signal of phase

• Chiral broken phase

Simulations at 
$$m_f \neq 0$$
  
 $m_f \rightarrow 0: \ m_\pi \rightarrow 0 \text{ and } F_\pi \neq 0 \Rightarrow \frac{F_\pi}{m_\pi} \xrightarrow{m_\pi \rightarrow 0} \infty$ 

#### Conformal phase

Simulations at  $m_f \neq 0$ : scale invariance breaking  $\rightarrow$  confinement phase Hyperscaling with anomalous dimension  $\gamma^*$  at small  $m_f$ 

$$m_H = C_H \ m_f^{1/(1+\gamma^*)}$$
  

$$F_\pi = C_F \ m_f^{1/(1+\gamma^*)} \Rightarrow \frac{F_\pi}{m_\pi} \xrightarrow{m_\pi \to 0} \text{ constant}$$

Different  $m_f(m_\pi)$  dependence in two phases











PRD86(2012)054506; arXiv:1302.6859

Possible explanation through walking coupling



PRD86(2012)054506; arXiv:1302.6859

Possible explanation through walking coupling



 $m_f$  is regarded as IR scale cutoff of system.

Large  $m_f \gg m_D$ 

Confine system at  $m_f$ 

Not care spontaneous chiral symmetry breaking

 $\rightarrow$  same as conformal system with large  $m_f$ 

Small  $m_f \lesssim m_D$ 

Contain spontaneous chiral symmetry breaking effect

Dual nature maybe signal of walking coupling

Search for candidate of walking technicolor

PRD86(2012)054506; arXiv:1302.6859

- $N_f = 4$  QCD: Spontaneous chiral symmetry breaking
- $N_f = 12$  QCD: Consistent with conformal phase
- $N_f = 8$  QCD seems to have
  - Spontaneous chiral symmetry breaking

 $F_{\pi} \neq 0$  in  $m_f \rightarrow 0$ 

- Slow running (walking) coupling in wide scale range Dual nature of  $F_{\pi}$  and if explanation is true
- Large anomalous mass dimension  $\gamma^* \sim 1$  in walking region if explanation is true,  $\gamma = 0.62-0.97$  from larger  $m_f$
- Composite, light scalar state <= Important to check!

Next: Flavor-singlet scalar in (approximate) conformal theory

Search for candidate of walking technicolor

PRD86(2012)054506; arXiv:1302.6859

- $N_f = 4$  QCD: Spontaneous chiral symmetry breaking
- $N_f = 12$  QCD: Consistent with conformal phase
- $N_f = 8$  QCD seems to have
  - Spontaneous chiral symmetry breaking

 $F_{\pi} \neq 0$  in  $m_f \rightarrow 0$ 

- Slow running (walking) coupling in wide scale range Dual nature of  $F_{\pi}$  and if explanation is true
- Large anomalous mass dimension  $\gamma^* \sim 1$  in walking region if explanation is true,  $\gamma = 0.62-0.97$  from larger  $m_f$
- Composite, light scalar state  $\leftarrow$  Important to check!

Next: Flavor-singlet scalar in (approximate) conformal theory

# Flavor-singlet scalar in (approximate) conformal theory

All results are preliminary.

#### Previous study of flavor-singlet scalar meson

 $N_f \leq 2 + 1 \text{ QCD}$ 

- 1. McNeile and Micheal; PRD63(2001)114503
- 2. Kunihiro et al. (SCALAR); NPPS119(2003)275
- 3. Hart et. al.; PRD74(2006)114504
- 4. Bernard et. al.; PRD76(2007)094504
- 5. Prelovsek and Mohler; PRD79(2009)014503
- 6. Prelovsek et al.; PRD82(2010)094507
- 7. Fu; JHEP07(2012)142
- 8. Cossu et al. (JLQCD); PoS(Lattice 2012)197

Only one study in large  $N_f$  QCD, but  $N_f = 12$  QCD at unphysical phase Jin and Mawhinney; PoS(Lattice 2011)066

No realistic calculation in large  $N_f$  QCD

## Difficulty

• Flavor-nonsinglet scalar meson  $S_{NS}(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_b(\vec{x}, t) \ (a \neq b)$  $\langle 0|S_{NS}(t)S_{NS}^{\dagger}(0)|0 \rangle = \left\langle \swarrow \right\rangle = -C(t)$ 

c.f.  $m_{\pi}, F_{\pi}$  from nonsinglet pseudoscalar

O(100) configuration  $\times$  O(1)  $D^{-1}[U](x,y) = \psi(x)\overline{\psi}(y)$ 

• Flavor-singlet scalar meson  $S(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_a(\vec{x}, t)$   $\langle 0|S(t)S^{\dagger}(0)|0 \rangle = -C(t) + D(t) \text{ (disconnected)}$  $D(t) = \langle \times \rangle - \langle \times \rangle^2$ 

Essential for flavor-singlet but much harder

## Difficulty

$$\langle 0|S(t)S^{\dagger}(0)|0\rangle, \quad S(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t)\psi_a(\vec{x}, t)$$
$$D(t) = \left\langle \begin{array}{c} \swarrow & & \\ \end{array} \right\rangle - \left\langle \begin{array}{c} \swarrow & \\ \end{array} \right\rangle^2$$
$$1. \quad \swarrow & = \psi(x)\overline{\psi}(x) = D^{-1}[U](x, x) \text{ at each } U$$

 $O(L^3 imes T) \ D^{-1}[U]$  in naive mehtod  $O(1000) \ D^{-1}[U]$  in simple mehtod

2.  $\langle Large + small \rangle - \langle Large \rangle = \langle small \rangle + (stat. error)$  $\langle small \rangle$ :  $exp(-m_{\sigma}t)$ ; stat. error: independent of t

Huge calculation cost necessary

## Difficulty

$$\langle 0|S(t)S^{\dagger}(0)|0\rangle, \quad S(t) = \sum_{\vec{x}} \overline{\psi}_{a}(\vec{x},t)\psi_{a}(\vec{x},t)$$
$$D(t) = \left\langle \times \right\rangle \quad \left\langle \times \right\rangle \quad \left\langle \times \right\rangle \right\rangle^{2}$$

2.  $\langle Large + small \rangle - \langle Large \rangle = \langle small \rangle + (stat. error)$  $\langle small \rangle$ :  $exp(-m_{\sigma}t)$ ; stat. error: independent of t $\rightarrow O(10000)$  configuration

Reduce calculation cost and use huge  $N_{conf}$ 

### Calculation method

Random source propagator

$$\phi_i(x,t) = \sum_{x_0,t_0} D^{-1}\xi_i(x_0,t_0), \quad \lim_{N_r \to \infty} \frac{1}{N_r} \sum_{i=1}^{N_r} \left[\xi_i^{\dagger}(x,t)\xi_i(x_0,t_0)\right] = \delta_{x,x_0}\delta_{t,t_0}$$

Simple method

$$\bigstar = \frac{1}{N_r} \sum_{i=1}^{N_r} \left[ \sum_x \xi_i^{\dagger}(x,t) \phi_i(x,t) \right]$$

#### Noise reduction method in staggered action

(Kilcup and Sharpe;NPB283(1987)493, Venkataraman and Kilcup;hep-lat/9711006)

$$\bigstar = \frac{1}{N_r} \sum_{i=1}^{N_r} \left[ m_f \sum_x \phi_i^{\dagger}(x,t) \phi_i(x,t) \right] \to m_f \times (\pi \text{ correlator})$$

Regarded as integrated Ward-Takahashi identity  $(a \neq b, m_a = m_b)$  $\overline{\psi}_a \psi_a(x_0, t_0) = m_a \sum_{x,t} \overline{\psi}_a \gamma_5 \psi_b(x, t) \overline{\psi}_b \gamma_5 \psi_a(x_0, t_0)$ 

Jin and Mawhinney,  $N_f = 12 \sigma$ ; Gregory *et al.*,  $N_f = 2 + 1 \eta'$ 

20 configuraions in  $N_f = 12$  QCD with  $m_f = 0.06$ ,  $24^3 \times 32$ ,  $\beta = 4$ 

 $N_r$  dependence of D(t)



How many  $N_r$  is necessary for convergence?

20

20 configuraions in  $N_f = 12$  QCD with  $m_f = 0.06$ ,  $24^3 \times 32$ ,  $\beta = 4$ 

 $N_r$  dependence of D(t)

Simple method

Noise reduction method

20 configurations in  $N_f = 12$  QCD with  $m_f = 0.06$ ,  $24^3 \times 32$ ,  $\beta = 4$ 

 $N_r$  dependence of D(t)



Convegence in Reduction method with  $N_r = 64$ 

20-b

20 configuraions in  $N_f = 12$  QCD with  $m_f = 0.06$ ,  $24^3 \times 32$ ,  $\beta = 4$ 

 $N_r$  dependence of D(t)

Simple method

Noise reduction method

20 configuraions in  $N_f = 12$  QCD with  $m_f = 0.06$ ,  $24^3 \times 32$ ,  $\beta = 4$ 

 $N_r$  dependence of D(t)



Reduction method is  $\sim$  10 times efficient.

## $N_f = 12 \text{ QCD}$ (Preliminary)

Consistent with conformal phase (LatKMI; PRD86(2012)054506)

Simulation parameters

- $\beta = 4$
- Noise reduction method with  $N_r = 64$
- $O(10^3 \sim 10^4)$  configuration at each  $m_f$  and L, T

|       |         | -     |
|-------|---------|-------|
| L,T   | $m_{f}$ | confs |
| 18,24 | 0.06    | 5000  |
|       | 0.08    | 5000  |
|       | 0.10    | 5000  |
| 24,32 | 0.05    | 3600  |
|       | 0.06    | 14000 |
|       | 0.08    | 15000 |
|       | 0.10    | 9000  |
| 30,40 | 0.05    | 1500  |
|       | 0.06    | 3800  |
|       | 0.08    | 10000 |
|       | 0.10    | 4000  |
|       |         |       |

# Effective mass in $N_f = 12$ ( $m_f = 0.06, 24^3 \times 32$ with $N_{conf} = 14000$ , Preliminary)

$$m_{\text{eff}}(t) = \log(C_H(t)/C_H(t+1)) \xrightarrow{t \gg 1} m_H$$



# Effective mass in $N_f = 12$ ( $m_f = 0.06, 24^3 \times 32$ with $N_{conf} = 14000$ , Preliminary)

$$m_{\text{eff}}(t) = \log(C_H(t)/C_H(t+1)) \xrightarrow{t \gg 1} m_H$$



Good signal of  $m_{\sigma}$  from D(t)



# Comparison of effective mass in $N_f = 12$ $(m_f = 0.06, 18^3 \times 24 \text{ with } N_{\text{conf}} = 5000, 24^3 \times 32 \text{ with } N_{\text{conf}} = 14000, \text{ Preliminary})$ Results: comparison with other of the prelimination of the p



Larger error in glueball correlator Reasonably consistent in large t

 $\rightarrow$  show only meson results

Tuesday, 19 March 13

 $m_{\sigma}$  from effective mass of D(t) at t = 5



Clear  $m_f$  dependence Large finite volume effect at only  $m_f = 0.06$ , L = 18

 $m_{\sigma}$  from effective mass of D(t) at t = 5



Flavor-singlet scalar is relatively light?

Hyperscaling is seen as in  $m_{\pi}$ ?

 $m_{\sigma}$  from effective mass of D(t) at t = 5



Flavor-singlet scalar is relatively light? Lighter than  $\pi$ 

Hyperscaling is seen as in  $m_{\pi}$ ?

 $m_{\sigma}$  from effective mass of D(t) at t = 5



Flavor-singlet scalar is relatively light? Lighter than  $\pi$ 

Hyperscaling is seen as in  $m_{\pi}$ ?  $m_{\sigma} = C m_f^{1/(1+\gamma)}$  with  $\gamma = 0.414$  from hyperscaling of  $m_{\pi}$ 

 $m_{\sigma}$  from effective mass of D(t) at t = 5



Flavor-singlet scalar is relatively light? Lighter than  $\pi$ 

```
Hyperscaling is seen as in m_{\pi}?

\frac{m_{\sigma}}{m_{\pi}} \xrightarrow{m_f \to 0} constant

Not inconsistent with hyperscaling
```

## $N_f = 8 \text{ QCD}$ (Preliminary)

Chiral broken phase and might be walking theory

LatKMI; arXiv:1302.6859

Simulation parameters

- $\beta = 3.8$
- Noise reduction method with  $N_r = 64$
- Only one parameter

| L,T   | $m_{f}$ | confs |
|-------|---------|-------|
| 24,32 | 0.06    | 7600  |

## Effective mass in $N_f = 8$ (More preliminary) $m_{\text{eff}}(t) = \log(C_H(t)/C_H(t+1)) \xrightarrow{t \gg 1} m_H$



 $m_\sigma \,{\lesssim}\, m_\pi$  at  $m_f = 0.06$ 

Important to study  $m_f$  dependence and if  $m_\sigma \sim F_\pi$  in  $m_f \rightarrow 0$ 

#### Summary

Important to study flavor-singlet scalar for walking technicolor model if  $m_\sigma \sim F_\pi$ 

Flavor-singlet scalar is difficult due to huge noise in lattice simulation. Noise reduction method and Huge  $N_{conf}$ 

Preliminary results of  $N_f = 12 \text{ QCD}$  (comformal phase)

- Consistent  $m_{\sigma}$  from meson and glueball correlators
- $m_{\sigma} < m_{\pi}$ ; much different from small  $N_f$  QCD
- Not inconsistent with hyperscaling

More preliminary results of  $N_f$  = 8 QCD (might be walking theory) -  $m_\sigma \lesssim m_\pi$  at  $m_f$  = 0.06

#### Encouraging results

#### Discussion

#### Why flavor-singlet scalar calculation is possible?

- Nice noise reduction methods
- Huge  $N_{\text{conf}}$
- Small  $m_\sigma \rightarrow$  slow exp. dump of correlator
- Small  $O(a^2)$  error  $\leftarrow$  improved action, etc.

#### Future perspectives

- $N_f = 8$  QCD; Important to check  $m_\sigma \sim F_\pi$  in  $m_f \rightarrow 0$
- Decay constant  $f_{\sigma}$ ; probably possible at present
- Coupling?, scattering amplitude?; much difficult