Role of lattice QCD in intensity frontier physics

Eigo Shintani (RIKEN-BNL) for RBC/UKQCD collaboration

Frontier of particle physics

Energy scale proton decay neutrino properties Sensitive detectors mu to e (intensity frontier) flavor (quarks) dark matter PAMERA, Fermi (cosmic frontier) LHC -saw Planck Tevatron Collider (energy frontier) GUT log(Energy[GeV]) 17 11 15 3 5 13 Experimental reach (with significant simplifying assumptions)

Plotted by Zoltan Ligeti (LBL)

Grossman, ProjectX, 2012

Too rough picture or make sense ?

precision frontier \Rightarrow high energy scale (beyond SM)

Intensity frontier physics

- Exploration of fundamental physics using intense beam and massivelly sensitive detector
- Search the new physics from variation of the SM
 - Charged lepton

Muon g-2/EDM @ BNL(E821) \Rightarrow FNAL, J-PARC

Charged lepton flavor violating process of muon, tau @ BaBar, SuperKEKB

Nucleon, nuclei and atom EDM

Neutron/Proton EDM @ ILL, BNL, PSI, SNS, Munich, TRIUMF, ACME

Mercury-199, Radon and Radium EDM

Proton decay

SuperKamiokande, Hyper-Kamiokande, LBNE(FNAL), LENA

N-Nbar oscillation @ FNAL

Heavy quark, neutrino oscillation, etc

(Future) experiments

Many other projects are planning under way

Search of NP from intensity frontier

- Variation from the SM predictions
 - ► $\Delta O_{SM} \sim 10^{-10} = O_{NP} / M_{NP}$? Muon/electron g-2, Unitary triangle
 - Complementary signature of NP
 - Precisely theoretical value of the SM need to be known High-order perturbation, <u>non-perturbative effect of QCD</u>
- Bound of undetected observables
 - O_{SM} < 10⁻¹⁵ which is direct constraint on NP
 EDM (nucleon (quark), electron, ...), Proton(neutron) decay, NNbar oscillation, LFV, dark matter search, ...
 - Whose signals are the signature of NP
 - Hadronic correction should be relevant for NP constraint

Lattice QCD plays a key role !

Topics

Introduction

- Lattice QCD works
 - Muon g-2
 - Nucleon EDM
 - (Proton decay)
- Summary and prospects

Lattice QCD

In lattice regularization, the path integral of $\langle O \rangle$ is computed by <u>Monte-Carlo integral</u>:

$$\langle O \rangle = Z^{-1} \int D\Psi O(\Psi) e^{-S(\Psi)} \simeq \frac{1}{N} \sum_{i} O(\Psi_i)$$

- Exact QCD calculation (enough large number of sampling N)
- Gauge invariant
- Translational invariant
- Ultraviolet cut-off a (lattice spacing)
 Infrared cut-off V=L₀^D (lattice volume)
- Continuum limit, and infinite volume are important.
- The development of machine (BG, GPGPU, ...) and algorithm, which make much progress.

Lattice QCD

Hadron spectrum in Nf=2+1 QCD

Good agreement with <u>various lattice action and fermion</u> with experimental results !
Kronfold 1209 3469

Choice of lattice fermion

- There are several kinds of fermion definition on the lattice
 Due to Nielsen-Ninomiya no-go theorem
- Require "realistic" fermion for the precise calculation
 - Wilson-clover and staggered fermions are not appropriate.
 - **Domain-wall** (and also overlap fermion) is even better.
- Domain-Wall fermion (DWF) [Blum Soni, (97), CP-PACS(99), RBC(00), RBC/UKQCD. (05 --)]
 - L, R fermion are localized on boundaries \Rightarrow Chiral symmetry (if L_s $\rightarrow\infty$).
 - Good chiral symmetry Chiral symmetry breaking is suppressed as am_{res} ~ exp(-L_s).
 - Reasonable computational cost 10 × [Wilson], but 1/10 × [overlap]
 - Thanks to development of algorithm, it is possible to perform with recent machine.

DWF era

Keon physics

"Lattice determination of the $K \rightarrow (\pi\pi)I=2$ Decay Amplitude A2", RBC/UKQCD, PRD86 (2012) 074513.

"The K \rightarrow (mm)I=2 Decay Amplitude from Lattice QCD", RBC/UKQCD, PRL108 (2012) 141601. "K to mm Decay amplitudes from Lattice QCD", PRD84 (2011) 114503.

B physics

"Nonperturbative tuning of an improved relativistic heavy-quark action with application to bottom spectroscopy", RBC/UKQCD, PRD86 (2012) 116003.

"Neutral B-meson mixing from unquenched lattice QCD with domain-wall light quarks and static b-quarks", PRD82 (2010) 014505.

Nucleon physics

"Nucleon structure from 2+1-flavor dynamical DWF lattice QCD at nearly physical pion mass", RBC/UKQCD, Prog.Part.Nucl.Phys. 67 (2012) 218.

QED+QCD

"Full QED+QCD low-energy constants through reweighting", Ishikawa et al.PRL109 (2012) 072002. "Electromagnetic mass splittings of the low lying hadrons and quark masses from 2+1 flavor lattice QCD+QED",Blum et al., Phys.Rev. D82 (2010) 094508.

On-going project with DWF

Muon g-2

JSPS meeting, ES, 3/26/2013; Bolye et al., UKQCD, Phys.Rev. D85,074504(2012), "Hadronic corrections to the muon anomalous magnetic moment from lattice QCD", Blum et al., PoS LATTICE2012 (2012) 022

Neutron/proton EDM

"Lattice caclulation of neutron and proton EDM in full QCD", ES, PoS(Confinement X)330 "Electric Dipole Moment of the Neutron", ES, PoS(Confinement X)348

Proton decay

"Proton decay matrix elements in 2+1 domain-wall fermion", ES et al., PoS(Lattice 2011)329 "Proton decay matrix elements from lattice QCD", Aoki and ES, International Workshop on Grand Unified Theories (GUT2012), AIP Conf. Proc. 1467, pp. 116-121, Mar 2012.

Preserving the chiral symmetry for DWF is important property to take extrapolation toward physical point, and avoid the systematic error due to lattice artifacts.

Error reduction techniques

Covariant approximation averaging (CAA)

For original observables O, (unbiased) improved estimator

$$\mathcal{O}^{(\text{imp})} = \mathcal{O}^{(\text{rest})} + \frac{1}{N_G} \sum_{g \in G} \mathcal{O}^{(\text{appx}),g}, \quad \mathcal{O}^{(\text{rest})} = \mathcal{O} - \mathcal{O}^{(\text{appx})}$$

which satisfies $\langle O \rangle = \langle O^{imp} \rangle$ if approximation is covariant under lattice symmetry g, and error becomes $\operatorname{err}^{imp} \simeq \operatorname{err}/\sqrt{N_G}$

Muon g-2 from lattice QCD

Muon g-2

Discrepancy from the SM

 $a_{\mu}^{Exp} - a_{\mu}^{SM} = +287(63)_{Exp} (49)_{SM} \times 10^{-11} \sim 3.6 \sigma \text{ discrepancy }!$

New physics model may explain what is a source of this discrepancy; SUSY particle, dark photon, ... ?

Had

Had

- Main uncertainties in the SM
 - Leading order of hadronic contribution (HVP);

~90% of error

 Next-to-leading order of hadronic contribution;(lightby-light) ~ unknown, may be large uncertainty

PDG 2012

Lattice QCD is able to precisely calculate HVP and LbyL, being independent from data set and models.

$$a_{\mu}(HVP)$$

$$\int d^4x \langle T\{V^{\rm em}_{\mu}(x)V^{\rm em}_{\nu}(0)\}\rangle e^{iQx} = (Q^2 \delta_{\mu\nu} - Q_{\mu}Q_{\nu})\Pi_V(Q^2)$$
$$a^{\rm had}_{\mu} = \frac{\alpha}{\pi^2} \int_{m_{\pi}^2}^{\infty} \frac{ds}{s} {\rm Im}\Pi(s)K(s) = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dQ^2 f(Q^2) 4\pi^2 \Big[\Pi_V(0) - \Pi_V(Q^2)\Big]$$

Aubin, Blum, Phys. Rev. D75, 114502 (2007), Feng, et al., Phys.Rev.Lett. 107, 081802 (2011), Bolye et al., Phys.Rev. D85,074504(2012), Della Morte, et al., JHEP 1203,055(2012), Aubin et al., Phys.Rev.D86, 054509(2012)

$a_{\mu}(HVP)$

Comparison in physical point

Errors are still large ! (far from precision of phenomenological one)

Statistical error

• Using AMA algorithm error is reduced to factor 1/4 -- 1/5 !

Blum, Izubichi, ES, 1208.4349

- Q² dependence
- Direct measurement at $Q^2 = 0$

de Divitiis, et al.arXiv:1208.5914

• Time-like momentum trick ES, Blum, Kim, Izubuchi, under way

Chiral extrapolation

• Direct measurement in physical point A_1 in progress of DWF 48³ × 96 lattice \Rightarrow going to a few % uncertainty

$a_{\mu}(LbyL)$

- Not-yet established in lattice QCD
- Possible two ways
 - Indirect measurement

ES et al., PoS LATTICE2010 (2010) 159, Feng et al.(JLQCD),PRL109, 182001 (2012).

Separate two $\pi^0 \rightarrow \gamma \gamma$ decay diagrams, and connect with pion, eta props.

Easy calculation, but assume pion-dominance-model.

Knecht, Nyffeler, Phys.Rev. D65 (2002) 073034

Direct measurement

Basically there requires four-point function, which is hard to compute.

**** QCD+QED

There is idea of easier calculation with QED+QCD:

Blum et al., arXiv:1301.2607

 $+ O(\alpha^4)$

$a_{\mu}(LbyL)$

- Indirect measurement
 - Form factor of $\pi^0 \rightarrow \gamma \gamma$ is in agreement with PrimEx.
 - Next step is off-shell photon decay amplitude
- Direct measurement
 - There is some progress to reduce statistical error
 - Finite signal appears
 - AMA is helpful.

Blum et al., arXiv:1301.2607

Neutron/proton EDM from lattice QCD

Nucleon EDM in the SM and BSM

- Sensitive to P, CP violation
- Upper limit from experiment: $< 2.9 \times 10^{-26} \text{ e} \cdot \text{cm}$
- Contribution from weak boson: CKM phase

Very tiny, which is 3-loop : $d_N^{KM} \simeq 10^{-30} - 10^{-32} e^{-cm}$

Khriplovich and Zhitnitsky, PLB109, 490 (1982); Czarnecki, Krause, PRL78, 4339 (1997)

• Contribution from QCD: θ term

Unnaturally small (strong CP problem): $\bar{\theta} < 10^{-9\pm1}$

Crewther, et al. (1979), Ellis, Gaillard (1979)

► Contribution from BSM: dim-5,6 operator $\mathcal{O}_{qEDM} = d_q \bar{q} (\sigma \cdot F) \gamma_5 q, \ \mathcal{O}_{cEDM} = d_q^c \bar{q} (\sigma \cdot G) \gamma_5 q, \ \mathcal{O}_{Weinberg} = d^G G G \tilde{G}$ $d_N = d_N^{QCD} \bar{\theta} + d_N (d_q, d_q^c) + d_N (d^G)$ $\sim 10^{-17} [e \cdot cm] \bar{\theta} + (1.4 - 0.47) d_d - (0.12 - 0.35) d_u + O(10^{-2}) d_q^c$ $\sim O(10^{-25} - 10^{-27}) e \cdot cm$ Hisano, Shimizu (04), Ellis, Lee, Pilaftsis (08), Hisano, Lee, Nagata, Shimizu (12)

Nucleon EDM from lattice QCD

Non-perturbative determination of QCD effect

Result of lattice QCD is an important input value of strong interaction contribution inside nucleon.

Methods

Spectrum

$$m_{\uparrow \text{spin}} - m_{\downarrow \text{spin}} = 2d_{N}\theta E$$
 $R_{3} = \frac{\langle N(t)N(0) \rangle_{\theta,E}^{\text{up}}}{\langle N(t)\bar{N}(0) \rangle_{\theta,E}^{\text{down}}} \simeq 1 + d_{N}E\theta t$

Direct measurement of EDM from 2-pt function with external E field, which is defined as $U_t \rightarrow U_t e^{qEt}$, $U_t^{\dagger} \rightarrow U_t^{\dagger} e^{-qEt}$ (although boundary effect is significant)

034507 (2007); ES et al., PRD78, 014503 (2008)

Aoki and Gocksch, PRL63, 1125 (1989); ES, et al., (CP-PACS) PRD75,

Form factor

ES, et al., (CP-PACS), PRD72, 014504 (2005); Berruto, et al. (RBC) PRD73, 05409 (2006).

$$\langle n(P_1) | J_{\mu}^{\text{EM}} | n(P_2) \rangle_{\theta} = \bar{u}_N^{\theta} \Big[\underbrace{\frac{F_3^{\theta}(Q^2)}{2m_N} \gamma_5 \sigma_{\mu\nu} Q_{\nu}}_{\text{P,T-odd}} + \underbrace{F_1 \gamma_{\mu} + \frac{F_2}{2m_N} \sigma_{\mu\nu} Q_{\nu}}_{\text{P,T-even}} + \cdots \Big] u_N^{\theta}$$

$$d_N = \lim_{Q^2 \to 0} F_3(Q^2) / 2m_N$$

 $\begin{array}{l} \mbox{Extraction of CP-odd form factor from 3-pt function, and take into $Q^2 \rightarrow 0$} \\ \mbox{Imaginary } \theta & \\ \mbox{T. Izubuchi, Lattice 2007} \end{array}$

New generation of imaginary θ action: $\langle Oe^{i\theta Q} \rangle \rightarrow \langle Oe^{-\theta^{I}Q} \rangle$

Clear signal is expected, but huge computational cost is needed.

Numerical results in Nf=2

- Wilson-clover fermion [spectrum, form factor, imaginary θ]
- DWF [form factor]

Recent results

• DWF in Nf=2+1 (RBC/UKQCD) $24^3 \times 64$ (2.5 fm³) at $a^{-1} = 1.73$ GeV using m=0.005 (m_{π} = 0.3 GeV), m=0.01 (m_{π} = 0.4 GeV) AMA is very helpful, cost is reduced to 1/5 or less.

Proton decay from lattice QCD

Smoking gun

• Baryon number is accidental symmetry in the SM ? via anomaly, it is very rare event ('tHooft 1976): $\Delta B = \Delta L = 2$: $\tau(d \rightarrow e^+ v_\mu) \sim 10^{120}$ years, $\Delta B = \Delta L = 3$: $\tau(^{3}\text{He} \rightarrow e^+ v_\tau v_\mu) \sim 10^{150}$ years

- Universe looks like made of only baryons
- (SUSY-) GUTs Soudan Frejus Kamiokande IMB Super-K I+II $p \rightarrow e^+ \pi^0$ 0 2 Coupling unification minimal SU(5) minimal SUSY SU(5) $p \to e^{\!\!\!+}\,\pi^{0}$ predictions flipped SU(5), SO(10), 5D SUSY SU(5) Proton decay Suber-K limit x2 $p \rightarrow e^+ K^0$ Experiments $\rightarrow \mu^+ K^0$ $n \rightarrow \overline{v} K^0$ • $\tau(pe^+\pi^0) > 8.2 \times 10^{33}$ years $p \rightarrow \overline{v} K^+$ minimal SUSY SU(5) SUGRA SU(5) • $\tau(pv K^+) > 2.3 \times 10^{33}$ years $p \rightarrow \overline{v} K^+$ predictions SUSY SU(5) with additional U(1) flavor symmetry various SUSY SO(10) SUSY SO(10) with G(224) Nishino et al. (Super-Kamiokande), PRD85, 112001(2012), Kobayashi et al. 10³¹ 10³² 10³³ 10³⁴ 10³⁵ (Super-Kamiokande), PRD72, 052007 τ/B (years) ₂(2005)

arXiv:1205.2671v1

Effective operator

Dimension-6 operator

$$\begin{split} \mathcal{L}_{\rm GUT} &= \mathcal{L}_{\rm SM} + \sum_{i} C_{i}(\mu) O_{i}(\mu) / \Lambda_{\rm GUT}^{2} + \mathcal{O}((O(\mu) / \Lambda_{GUT}^{2})^{2}) \\ O_{i}(\mu) &= (qq)_{\Gamma}(ql)_{\Gamma'} \quad \text{``i'' labels chirality (}\Gamma\text{) and flavor (q,l)} \\ \mathbf{C}_{i} \text{ depends on type of GUTs model} \end{split}$$

Decay rate

$$\Gamma_{p \to \pi^0 e^+} = \frac{m_p}{32\pi^2} \left[1 - \left(\frac{m_e}{m_p}\right)^2 \right]^2 \left| \sum_i C_i W_0^i(p \to \pi^0) \right|^2$$

 W_0^i : determine from QCD matrix element (model independent) Precision of W_0 is significant, since the decay rate is affected by twice of that.

Matrix element

Lattice QCD provides each decay channels of W_0 from matrix element;

 $\langle \pi^0 | (ud)_{\Gamma} u_{\Gamma'} | p \rangle = P_{\Gamma'} \left[W_0^{\Gamma} - \frac{i \not q}{m_p} W_q^{\Gamma} \right] u_p$

Aoki et al. (JLQCD), PRD62, 014506 (2000); Aoki et al.(RBC), PRD75, 014507 (2007)

which is extracted from 3-pt function.

Numerical results

Works on RBC collaboration with DWFs

- Quenched QCD (direct/indirect)
 - Y.Aoki, C. Dawson, J. Noaki, and A. Soni, Phys. Rev. D75, 014507 (2007)
- Nf=2+I (indirect)

Y.Aoki et al. (RBC-UKQCD), Phys. Rev. D78, 054505 (2008)

- Direct : measurement of matrix element.
- Indirect: compute low-energy constant in W_0 , possibly including model dependence.
- DWFs in Nf=2+1 (direct)

 $24^3 \times 64$ lattice in RBC/UKQCD collaboration m=0.005, 0.01, 0.02, 0.03 (m_{π} = 0.3 -- 0.8 GeV)

Determination of W_0 at each channels

 $-\!\!<\!\!\pi^0\!|(ud)_R^{}u_L^{}|p\!\!>$ $<\pi^{0}|(ud)_{L}u_{L}|p>$ $< K^{0}|(us)_{R}u_{L}|p>$ $< K^{0}|(us)_{L}u_{L}|p>$ $-\!\!<\!\!K^{\!+}\!|\!(us)_{R}^{}d_{L}^{}|p\!\!>$ $< K^{+}|(us)_{I}d_{I}|p>$ $-\!\!<\!\!K^{\!+}\!|(ud)_{R}^{}s_{L}^{}|p\!\!>$ $< K^+ |(ud)_L s_L| p >$ $- < K^{+}|(ds)_{R}u_{L}|p>$ $- < K^{+}|(ds)_{L}u_{L}|p>$ $<\eta |(ud)_{R}u_{L}|p>$ $<\eta|(ud)_L u_L|p>$

• Estimate all systematic errors

Summary and prospects

- There are many proposals of experiment for Intensity Frontier Physics.
- Theoretical uncertainties of muon g-2, EDM and proton decay may be critical issue for precision test and search of NP.
- Lattice QCD makes it possible

DWFs is even better to pursue high precision of these observables

- RBC/UKQCD plans the big projects:
 - $48^3 \times 96$ lattice (5 fm³) in physical points
 - No need chiral extrapolation, and almost ignore lattice artifacts
 - Using above configs (and also AMA) we will reach muon g-2 (HVP) ~ 1% error, n and p EDM ~ 10% stat error, sys study proton decay ~ 5% error
 - \Rightarrow essential input values for NP search from intensity physics.

Backup

New EDM experiment proposal @ BNL

Storage Ring EDM Collaboration

- Aristotle University of Thessaloniki, Thessaloniki/Greece
- Research Inst. for Nuclear Problems, Be
- Brookhaven National Laboratory, Upton
- Budker Institute for Nuclear Physics, Nc
- Royal Holloway, University of London, ♥
- Cornell University, Ithaca, NY/USA
- Institut für Kernphysik and Jülich Centre Jülich, Jülich/Germany
- Institute of Nuclear Physics Demokritos.
 - University and INFN Fermina, Ferran/Ita Laboratori Mariana, di Frasoni di LIINF
- Joint Institute for Nuclear Research, Dul
- Indiana University, Indiana/USA
- Istanbul Technical University, Istanbul/
- University of Massachusetts, Amherst, M
- Michigan State University, East Lansing
- Dipartimento do Fisica, Universita' "To:
- University of Patras, Patras/Greece
- CEA, Saclay, Paris/France
- KEK, High Energy Accel. Res. Organiz:
- University of Virginia, Virginia/USA

Y. K. SEMERTZIDIS, ProjectX, 2012 Summary

- Proton EDM physics is a must do, > order of magnitude improvement over the neutron EDM
- ✓ E-field issues well understood
- ✓ Working EDM lattice with long SCT and large enough acceptance (1.3 × 10⁻²⁹e•cm/year)
- ✓ Polarimeter work
 - Planning BPM-prototype demonstration including tests at RHIC
- Old accumulator ring could house the proton EDM ring at Fermi; significant cost savings. Upgrade possibilities...

 $d_N^{\theta} < 10^{-29} \,\mathrm{e} \cdot \mathrm{cm} \Rightarrow \bar{\theta} < 10^{-13}?$

>20 Institutions • >80 Collaborators •

Time-like momentum

► Q₄ = iω

$$\int d^4x \langle T\{V_{\mu}^{\rm em}(x)V_{\nu}^{\rm em}(0)\}\rangle e^{iqx} = \Pi_{\mu\nu}(\vec{q},\omega) = (q^2 g_{\mu\nu} - q_{\mu}q_{\nu})\Pi_V(q^2)$$
$$q = (\omega,\vec{q}), \quad g_{\mu\nu} = \text{diag}(1,-1,-1,-1), \quad q^2 = \omega^2 - \vec{q}^2 = -Q^2$$

- ω is "photon energy" which can be controlled by hand.
- Temporal integral from $-\infty < t < \infty$:

$$\Pi_{\mu\nu}(\vec{q},\omega) = \int_0^\infty dt \sum_{\vec{x}} e^{-\omega t - i\vec{x}\vec{q}} \langle V_\mu(\vec{x},t)V_\nu(0)\rangle_c + \int_{-\infty}^0 dt \sum_{\vec{x}} e^{-\omega t - i\vec{x}\vec{q}} \langle V_\nu(0)V_\mu(\vec{x},t)\rangle_c$$

$$\rho \text{ state or } \pi\pi \text{ state}$$
Resonance poles
$$0 \qquad -\vec{q}_1^2 \qquad -\vec{q}_2^2 \qquad -\mathbf{q}^2$$

Time-like momentum

Modeling

To perform the temporal integral, we use a modeling procedure

 $\sum_{\vec{x}} e^{i\vec{q}\vec{x}} \langle V_{\mu}(x)V_{\nu}(0)\rangle \simeq g_{v}e^{-E_{V}t} \quad \text{(asymptotic state dominance at t} \geq t_{cut} \text{)}$ $\int_{0}^{t_{cut}} dt e^{-\omega t} \sum_{\vec{x}} e^{i\vec{q}\vec{x}} \langle V_{\mu}(x)V_{\nu}(0)\rangle \simeq \sum_{t=0}^{t_{cut}} C_{VV}(\vec{q},\omega;t) \quad \text{(numerical integral with lattice data from } 0 \leq t \leq t_{cut} \text{)}$

Longitudinal part will be

$$\Pi_{\text{long}}(\vec{q},\omega) = \frac{g_V}{E_V + \omega} e^{-(E_V + \omega)t_{\text{cut}}} + \frac{g_V}{E_V - \omega} e^{-(E_V - \omega)t_{\text{cut}}} + \sum_{t=0}^{t_{\text{cut}}} 2F(t) \cosh \omega t$$

Finally we consider the particular momentum $q_{\mu} \neq 0, q_{j\neq\mu} = 0$

$$\Pi_{\text{long}}(\vec{q},\omega) = -\omega^2 \Pi_V(q^2), \quad q^2 = \omega^2 - q_\mu^2$$

Application of AMA

In $24^3 \times 64$, 300 MeV pion, Nf=2+1 DWF (37 configs)

HVP with time-like momentum

Very preliminary

t_{cut} = 9 (24³), 10 (32³) Fitting range at large t [8,13] (24³), [10,15] (32³)

- Similar behavior with results obtained in Euclid momentum
- Slight discrepancy from HVP in space-like momentum, especially for light mass.
- More carefully systematic study is necessary !

Spectrum method

- Given by 2-pt function: $m_{\uparrow \text{spin}} m_{\downarrow \text{spin}} = 2d_N \theta E$
- Direct measurement of EDM.
 It is simple extraction method from 2-pt function
- Ratio of spin up and down

$$R_3 = \frac{\langle N(t)\bar{N}(0)\rangle_{\theta,E}^{\rm up}}{\langle N(t)\bar{N}(0)\rangle_{\theta,E}^{\rm down}} \simeq 1 + d_N E\theta t$$

 \rightarrow Linear response, its slope is a signal of EDM.

- Reweighting with small θ : $\langle O \rangle_{\theta} = \langle O e^{i\theta Q} \rangle$ and introduce external Minkowski E field: $U_t \to U_t e^{qEt}$, $U_t^{\dagger} \to U_t^{\dagger} e^{-qEt}$
- Temporal periodicity is broken by Minkowski electric field.
 - \Rightarrow additional systematic error

In imaginary θ method we can avoid this issue.

Nf=2 Clover (Wilson-type) fermion:

- 24³ × 48 lattice (~2 fm³), pion mass ~ 500 MeV
- Signal of EDM in full QCD ensembles, O(1000) statistics
- Central value is larger than other phenomenological model.
- Statistical noise (and boundary effect) is still large contribution.

Form factor

Matrix element

$$\begin{split} \langle n(P_{1})|J_{\mu}^{\mathrm{EM}}|n(P_{2})\rangle_{\theta} &= \bar{u}_{N}^{\theta} \Big[\underbrace{\frac{F_{3}^{\theta}(Q^{2})}{2m_{N}}\gamma_{5}\sigma_{\mu\nu}Q_{\nu}}_{\mathrm{P,T-odd}} + \underbrace{F_{1}\gamma_{\mu} + \frac{F_{2}}{2m_{N}}\sigma_{\mu\nu}Q_{\nu}}_{\mathrm{P,T-even}} + \cdots \Big]u_{N}^{\theta} \\ &\sum_{s} u_{N}^{\theta}(s)\bar{u}_{N}^{\theta}(s) = \frac{ip\cdot\gamma + m_{N}e^{i\alpha_{N}^{\theta}\gamma_{5}}}{2E_{N}} \\ \langle \theta|\eta_{N}J_{\mu}^{\mathrm{EM}}\bar{\eta}_{N}|\theta\rangle &= \langle 0|\eta_{N}J_{\mu}^{\mathrm{EM}}\bar{\eta}_{N}|0\rangle + i\theta\langle 0|\eta_{N}J_{\mu}^{\mathrm{EM}}Q\bar{\eta}_{N}|0\rangle \\ \langle 0|\eta_{N}(t_{1})J_{\mu}^{\mathrm{EM}}(t)Q\bar{\eta}_{N}(t_{0})|0\rangle & \qquad \\ &= \frac{\alpha_{N}}{2}\gamma_{5}\Big[F_{1}\gamma_{\mu} + F_{2}\frac{q_{\nu}\sigma_{\mu\nu}}{2m_{N}}\Big]\frac{ip\cdot\gamma + m_{N}}{2E_{N}} + \frac{1+\gamma_{4}}{2}\Big[F_{1}\gamma_{\mu} + F_{2}\frac{q_{\nu}\sigma_{\mu\nu}}{2m_{N}}\Big]\frac{\alpha_{N}}{2}\gamma_{5} & \end{bmatrix} \\ \begin{array}{l} \text{Computation} \\ \text{Subtraction} \\ &+ \frac{1+\gamma_{4}}{2}\Big[F_{3}\frac{q_{\nu}\gamma_{5}\sigma_{\mu\nu}}{2m_{N}} + F_{A}(iq^{2}\gamma_{\mu}\gamma_{5} - 2m_{N}q_{\mu}\gamma_{5})\Big]\frac{ip\cdot\gamma + m_{N}}{2E_{N}} & \end{bmatrix} \\ \begin{array}{l} \frac{ip\cdot\gamma + m_{N}}{2E_{N}} \\ \end{array}$$

- Subtraction of CP-odd phase, $\alpha_{\rm N}$, in n propagator and CP-even part ${\sf F}_{\rm I,2}$

$$d_N = \lim_{Q^2 \to 0} F_3(Q^2) / 2m_N$$

Form factor

Result of Nf=2 clover fermion

- Size is $24^3 \times 48$ lattice (~2 fm³), pion mass is around 500 MeV
- Ignoring disconnected diagram in 3-pt function
- momentum transfer $Q^2 \rightarrow 0$ limit is with linear func.

Imaginary θ

 Analytical continuation to pure imaginary

$$\langle Oe^{i\theta Q} \rangle \to \langle Oe^{-\theta^I Q} \rangle$$

- There is <u>no sign problem</u>, then expect better signal.
- \blacktriangleright Distribution of Q is shifted by θ^{I}
- \blacktriangleright EDM is regarded as the slope of θ
- Need to generate the new QCD ensemble for each θ^{I}

 \Rightarrow it will be challenging work when going to realistic lattice (larger lattice and physical quark mass)

0.06

lzubuchi(07), Horsley et al. (08)

Results with Nf=2 Wilson fermion

I 6³ × 32 lattice, m_π = 700 MeV (heavey) Fermionic insertion of imaginary theta: $\mathcal{L}_{\theta} = \bar{m}\theta^{I}\bar{q}\gamma_{5}q/2$

Imaginary θ

- generate ensemble with 4 different θ^{I}

 Clear signal, but systematic error (lattice artifacts) due to chiral symmetry breaking of clover fermion has not been taken into account.
 ⇒ need careful check with chiral fermion (DWF etc)

Imaginary θ

Problem with Wilson fermion

Fermionic insertion of imaginary theta should be changed by Wilson term:

 $\mathcal{L}_{\theta} = \bar{m}\theta^{I}\bar{q}\gamma_{5}q/2 \rightarrow \mathcal{L}_{\theta}^{W} = \bar{m}(1+\kappa_{P})\theta^{I}\bar{q}\gamma_{5}q, \, \kappa_{P} \sim \mathcal{O}(a) : \text{renom. const.}$

Recent results (preliminary)

Nf=2+1 DWF configurations Blum, Izubuchi, ES (2012) All-mode-averaging (AMA) which is a new error reduction techniques ⇒ reduction of computational cost is more than 15 times (in bigger lattice AMA can do more large error reduction)

> 24³ × 64 lattice (3 fm³), $m_{\pi} = 0.3$ GeV, 384 configs with AMA

Using AMA, signal of neutron (and proton) EDM (plateau region) can be observed. Recent results (preliminary)

Nf=2+1 DWF configurations

Linear extrapolation to zero transfer momentum

Small slope of q² dependence (one of the input parameter of effective model. Vries, Timmermans, Mereghetti and Kolck 1006.2304)