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Motivation




Late time expansion

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
Galaxies, Planeots, otc.

Inflation

Fluctuations

1st Stars
about 400 million yra

Big Bang Expansion

13.7 billion years

Awarded Nobel Prize in 2011!

What can be a source for this?e



Acceleration

3a

— = —4nG(3p+p)

m=) The universe is accelerating if p < —3p

: : 1
or pressure-density ratio: w = P < —=

p 3

Cosmological scale

EOM (Friedmann eq.) T3%nesae \uofomma

a [8rG B
H = - = 3 P for flat background '

Observationally 5 ~ 0.7 =) DE domination

—122 3 74
1012274



= [l WMAP+BAO+H,
E [ ]WMAP+BAO+H,+D,,

- For cosmological constant B WMAP+BAO+SN

Cosmological constq:ni

M IR B B B
-8 =16 =14 =12 =10

w

« For time-varying DE

WMAP+BAO+HO+DA+SN suggests @, | Time varying DE
w = wg + wa(1 — a(t)) - '. -

wo = —0.93 +£0.13
we = —0.411072 (68% CL) _ :
e.g. Stringy Quintessence models I AP SN

. [l WMAPsBAOIH,+SN
[Kiwoon, 99], [Svrcek, 06], [Kaloper, Sorbo, 08], F [[] WMAP+BAOi Hy+D,+SN

[Pandaq, YS, Trivedi, 10], [Cicoli, Pedro, Tasinato, 12]... -a b '

-1.2 =1.0
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Metastable vacua
in moduli space

Landscape

« Inflation

rolling down
(& tunneling)

i

i tunneling

« AdS vacua?¢

—
®
2
o
2
D

We may stay here for a while.
> But how likely with tiny CC?2
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Stringy Landscape

There are many types of vacua in string theory, as a result of
a variety of (Calabi-Yau) compactification.

dsi, = dsi + ds¢

A class of Calabi-Yau gives Swiss-cheese type of volume.

_ _ e
Ve =v1(Ty +T1) — ZVi(Ti +T)), ||

=2
E.g. workable models:  [Denef, Douglas, Florea, 04] J

g

. 4 s 2,1 — .
Plia601 1 2, h 272 All can be stabilized

e Fi AV =3, h?1 =111 > (ala KKLT),

. Fig hM =5, 21 =89 but in various way.

4

Any implication of multiple vacua?
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Keys in this talk

Assuming products of random variables:  z = y;y,y;3 -

P(z), Uniform Piz), Normal
:!;.- e &

Sharper peak
in distribution

Many termse = R@ejiesllelilolg through stabilization

0 2=y fL YY) still peaked

We apply this mechanism for cosmological constant (CC)
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Before proceeding...

| have o say

we don't solve cosmological constant problem
completely.

But here,

we infroduce a tool to make cosmological
constant smaller, maybe up to a certain value.

YA Stringy Mechanism for A Small Cosmological Constant”
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Moduli stabilization

~random approach~
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Gaussian suppression on stabillity

Various vacua in string landscape
=) Mass matrix given randomly at extrema

mm) How likely stable minima exist?

Positivity of mass matrix == Positivity of Hessian 0¢,04;V

min

Real/complex symmetric matrix

« Gaussian Orthogonal Emsemble
[Aazami, Easther, 05], [Dean, Majumdar, 08], [Borot, Eynard, Majumdar, Nadal, 10]

a e-b.\r‘—c.-\r
P

1
Z= j dM;j e 2" M = MT

01F

001 |

_4 2

107

N — 1 InN — 0.01?2I
24

Gaussian term dominates even at lower N. |
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Hierarchical setup

Assuming hierarchy between diag. and off-diag. comp.

Actual models are likely to have minima at AdS.

+ upliftfing term toward dS vacua.

Hessian = A + B where A: diagonal positive definite with gy

Still Gaussianly suppressed, but a chance for dS

P =q e—sz—CN

[X. Chen, Shiu, YS, Tye, 11]

When applying a model in type IIA,
quite finy chance remains.

Assuming more randomness in SUGRA at SUSY AdS

P = e bN*

>

[Bachlechner, Marsh, McAllister, Wrase, 12]

Ayouoialy

120107
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Moduli stabilization

~concrete models~




/7/30/2012

Type lIB

Sources: Hs, Fy, F3, Fs, dilaton, localized sources
Metric: ds?, = e?4ds? + e 24d§?

Calabi-Yau
Then EOM becomes [Giddings, Kachru, Polchinski, 02]

) o2A
Vi(e*t —a) = liG; —*¢ G3|? + e %4]|0(e*? — a)|? + (local sources)

_6ImT W

positive contributions

LHS=0 when integrating out

et = q, iG3 =*4 G3: imaginary self-dual condition

where a is a functioninFs, Gs = F; —TtH;, 1=Cy+ie™?
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No-scale structure

Take a scaling: Gmn = A Gmn
et = q, iG; =*4 G3: invariant
The other equations are also unchanged.

No-scale structure
> superpotential W, = [ G; A Q is independent of Kahler

4D effective potential with K = —31In(T + T), W, = const

3
V= eK/MIZJ (KI]DIWO D]WO _W|W|2) =0
P

Kahler directions remain flat.
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A bonus in type |IB

Hierarchical structure of mass matrix/potential helps to
stabilize moduli at positive cosmological constant.

[X. Chen, Shiu, YS, Tye, 12]

« Fluxes ) Complex structure & dilaton

« Non-perturbative effect, a’-correction, localized branes

- Kahl [KKLT, 03], [Balasubramanian, Berglund, Conlon, Quevedo, 05],
anter [Balasubramanian, Berglund, 04]...

V - VFlux + VNP + Va, + -

g Complex L& Kahler

Hierarchy
between Kahler and Complex

No scale structure ==)
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KKLT

Non-trivial potential for Kahler is generated by NP-corrections.

£.g. Gluino condensation on D7-branes

D7-branes wrapping the four cycle: Wyp = A e~@87°/9p7 = g ¢=aT

Together with the superpotential from fluxes: W = W, + Wyp

Supersymmetric vacuum v
D;W = 0 existes.

But exponentially small W, is 11l
reqUired- -1.5x10'ﬁ

=2.x107%3
|[Wo| ~ A e 2T, naturally realized?,., .-
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Large Volume Scenario

[Balasubramanian, Beglund, Conlon, Quevedo, 05]
a'-corrections can break no-scale structure too.

0(a'*)-correction in type Il action [Becker, Becker, Haack, Louis, 02]

K=-2In (V + g (—i(r + f))3/2> —In(—i(t + D) + -

scales differently
E.Q. P}11160 Model (assuming complex sector is stabilized)

1 (32 302
V=—of 32 -¢t3%),  W=W,+A4e "
9\/5(1 ") -

Solution: Wy ~ =20, 4; ~ 1, t; ~ 105, t,
Vimin ~ —107%° : AdS vacua

W |Wo| > [Wapl, V > &: naturally realized
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1t [Balasub ian, Berglund, 04],
Kahler uplifting  fstseromerion cerguna. g,
de Alwis, Gi 11
Same setup as that of LVS [de Alwis, Givens, 1]

K=-2m(vad)te,  Von@eT) - Y nm T
=2

W=W,+Ae %" + 7 A;e~ i
i=2
! Interested in a region
where this term plays a roll.

ﬁ less large volume than LVS, but still |Wy| > [Wyp|, V > &

E.g. single modulus [Rummel, Westphal, 11]

~

, X1 = aqty

B Wya3 A, ( 2C e—x1) - —27 Wy & Cl:f/z

2 V12 9xf/2 x12 64 \/EV1A1

When WyA; < 0, the € « & term conftributes the uplifting.
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KKLT vs Kahler upllf’rmg

KKI—T 2x10'155
Add an uplifting potential by hand x|

o [—

V =Vsygra + Vp3-p3

Vps-p3 = 2T3 jd‘*x —Ys

—Lx10

2.x107E L

Backreaction of D32 m===) A singularity exists, but finite action

Safe or not? [DeWolfe, Kachru, Mulligan, 08], [McGuirk, Shiu, YS, 09],
[Bena, Giecold, Grana, Halmagyi, Massai, 09-12], [Dymarsky, 11],..

2C

Kahler uplifting
V =Vsycra SUGRA + a'-correction: =




Staftistical approach




/7/30/2012

Further approximation

3
_ WeaiA, [ C e 1 ¢ _ T27Woa,?
Mg 21 -

9/2 2
9x,°%/ x?

, X1 = aqt
64VZy2A, 1 1l

[Rummel, Westphal, 11]
The stability constraint with positive CC at stationery points:

V>0 — 365<(C<389 <«—— 02/ >0

2C ¢~

9x%2 X2
00010

Further focusing on smaller CC region: € ~ 3.65

9 0.0006 [

— AN — —_—

(C —3.65)

V 1(2)2 —Woa3i Ay ol

M3z 9\5 i 1

—0.0004 |

Neglecting the parameters a4, y4, €, the model is simplified to be

A = wiw,(c — cp),
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Stringy Random Landscape

Starting with the simplified potential: [YS. Tye, 12]
A=W1W2(C_C0), CO<C—&<C1
Wy

Since W,, A; are given model by model (various ways of
stabilizihg complex moduli), here we impose reasonable
randomness on parameters.

—— wi, w, € [0,1], uniform distribution (for simplicity)

Probability distribution function

P(A) = N, j dc j dw,dw, S(wyw,(c — cg) — A) 8 (% _ c)

Ny: normalization constant
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Divergence in product distribution

When z = wyw,,

1 1
P(z) = deldwz S(wyw, — z) = > ln; log divergence at z =0

) ) Wq
With constraint? A = wyw;(c — cy), Co<C= <G
¢\ — o oositivity > stability

€1
) P = C1 In c,an st diverging!!

Comparison to the full-potential (randomizing W,, A; without approx.)
P(.:\) P(in(A))

04l

EE‘ o | Good agreement
: at smaller A

02F

orf

5.x10°¢ 0.00001 0.000015 0.00002 0.000023
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Zero-ness of parameters

We assumed the parameters W,, A; passing through zero value,
but is it true?

o Eg T® model: WO = (Cl + Z diUi> — (Cz + z el-Ui>S

SUSY conditfion
[1(dy — exs)
2i(d; +e5)[1;.:(d; — ¢s)

I:> WO - 2 (Cl +C2$)

easy to be zero

s = Re(S)

[Baumann, Dymarsky, Klebanov,

* Brane pOSITIOﬂ dependence of A Maldacena, McAllister, Murugan, 06]

1/n

A= 4W(FO)" o = [ u

f(X;) = 0 when D3-brane hits D7-brane (divisor, at u)

known as Ganor zero
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Comments on sum distribution

Sum distribution smooths out the divergence and moves the peak.

Eg. z=x1+x,2+ °--+x;ljp

14k
- Each has divergent peak: P(w; = x;") « w, n

« Independent of each other, no correlations.

=) But uncorrelated summation gives P(z) « z

When all n; = 2, and x; € normal dis’rribu’ripc())n,

known as Chi-squared distribution
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Bousso-Polchinski

4-form quantization

S=jd4xw/_—g iR — A —LFZ
M2 bare ™ 3414

p
1 J
) A= Apgre +§Zn§ q?
Assume randomness in Bousso-Polchinski;

n;: random integer, 0 < g; < 1: uniform,

—100 < Apgre < 0: uniform P(A)

But... Moduiifields couple each term

C e %1
A~—-W,A —
o <9x19/2 x12 )

correlation generated via stabilization |
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Multi-moduli analyses
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Multi-moduli stabilization

[Sumitomo, Tye, in preparation]
Again, we work in the region: |W,| » |Wypl|, V > €.

Assuming stabilization of complex structure moduli and dilaton
at higher energy scale,

V. AWpai[2C xe™ ZBixie‘xi
ME o 2y, \9V3 D2 : vz )’

1=2

3 —27W,yEa’?
_Xf/z 26)63/2, xX; = a;t;, C = 64\/_0614 , Bi=—
2y144

« Now we have Ng X Ny mass matrix.

All upper-left sub-determinants are positive (Sylvester’s criteria).
mE) Ny extremal equations + N stability constraints

« Stability at positive CC requires B; > 0.
=) Uplifting is controlled by the first term.
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Multl-Kahler statistics

Still complicated system

mm=) We just randomize W,, A; obeying uniform distribution,
while keeping other parameters fixed.

m=) Solve fort; (or x;) —15<W,<0,0<4; <1

SN neglecting Ny=1
N = 1: blue [ \ neg 9 Ne=T)

N = 3:red

0.0006 |
0.0004

0.0002

A 00000 e L e e e )
0.001 0.002 0.003 ©.004 2 5

More moduli bring shaper peak.

~ —3770.23 ,—0.027 Ng p14
(though mild suppression) (A) ~ 1.1 X 107N ™e Mp
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Cosmological moduli problem

m3
Reheating for BBN: T,. > 0(10) MeV T ~ Mply, Ty ~ M_f
) mg =0(10) TeV ~ 1071 Mp

What happens in lightest (physﬁc(gl) moduli mass?
(M min) 2
- (m min)

[ (neglecting Nx=1) gt
203

0.10F

005k

o.0of

0.00 L 1 I L L L |N
1 2 3 4 5 5 7oK

(m?.: ) = 0.031 NgPe 010Nk MZ : also suppressed

Suppression of mass is relatively faster than A.

=) (m2 ) ~ 1073°M3 is likely met earlier than (A) ~ 10~122M#
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More peaked parameters

So far we assumed uniform distribution for W,, A;. But realistic
models have a number of complex moduli and others.

mm) Different distributions for W, 4;

Consider the effect of multiple independent parameters.

4, = y Dy O

Wo = —wiwy - wy, Yi Yo "Yn

1 .
0<w; <157, 0 < y]-(l) < 1, all obey uniform distribution.
P(A;)
Now, 1 s
P(W,) = 1
(Wo) 15(n — 1)!

P(4;) =

1
(n—1)!
See how CC is aoffected by “n”
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Cosmological constant

We cannot simply consider effect of the coefficient.

ME ov: v L VP
v Dynamics also affects.

(A>NK=1 = 4.7 X 1073 n0-080,-140n

The result:

(A

0.001 .\'\~ Red: Nx =1 <A)NK ,=3.7x10" —3 097 ,=1.497
- Blue: Ny =2

-3 L ~ )
10 N Green: Ng =3 (A)NK 3=34x10 nlSe~1.55n

More than the effect of
the coefficient!

<A1W0) ~ 15 e—1.39n
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Modull mass

We worry about the cosmological moduli problem.

VJﬁmiﬂz)l
2

—_ 0.14 ,-1.40n
01pf Red: NK — 1 >NK=1 —_— 0-18 n e
Blue: N = 2 _ — 0.061 n®73¢-156n
Green: Ny =3

’l,;.:\. in)y =0_039n1.23—1.66n

™
.~
L S
\\\
8.
1

- -

—=_n Compare with CC

10 13

(A) e e—1.40n’ e—1.49n, e—1.55n

4

Suppression in mass is getting
larger as increasing N.

also suggests
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Estimation

Using the estimated functions, we get

M) ~ 1020 [~ 197 [n~ 188 [n~182  pomy e O
E product in Wy, 4;
(m2) ~1073°M3|| n~48 | n~44 | n~42

Rather considerable number, e.g.

) IP)EL1,1,1,6,9]: htt =2, h*! =272 e Fyp: K1 =3, W21 =111

and the other moduli (e.g. brane position, open string) come
in a complicated way, like

A 1 ,
A=A W)(FXD)TT PO = T1XP -
While, without help of product distribution in W, 4;
Ng ~ 10100 for (A) ~ 107122M72, Ny ~ 1350 for (m?) ~ 1073°M3
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Mass matrix

Physical mass matrix is a linear combination of 8,0, Vi -

Assuming uniformly distributed —15 < W, <0, 0 < A4; <1,
X, Xy Xy

74 e e 4
4 60 1 - 1 some

K

<|axiava|min|>~10_3x IR hierarchical

S S S | structures
4 1 - 1 60

Though off-diagonal comp. are relatively suppressed,
eigenvalue repulsion gets more serious when increasing Ng.

1

e.g. 2 x 2 matrix: (Z IZ) =) A4 =§(a+ci\/(a—c)2 +4_bz)

The lowest mass eigenvalue is generically suppressed
more than CC.
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Summary & Discussion
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Summary & Discussion

« Stringy Random Landscape

We may expect that stringy motivated models have the
following properties:

{ « Product of parameters

« Correlation of each term by dynamics

mm=) Both works for smaller CC.

« A number of Kahler moduli

Correlation makes CC smaller. But the effect is modest.

« A number of complex moduli and other moduli
Those are likely to produce more peakiness in parameters
) Interesting to see detailed effect in concrete models
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Summary & Discussion

« A potential problem
Lightest moduli mass is suppressed simultaneously.

) cosmological moduli problem
before reaching A ~ 107122Mm3.

Other than “product” and “correlation” effect,
“eigenvalue repulsion” also makes the value smaller.

This is presumably a generic problem
when taking statistical approach without fine-tuning.

m=) Once finding a way out, the stringy mechanism
naturally explain why CC is so small.

Thermal inflation, coupling suppression to SM,
or some other corrections may helpe




