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The Unknown Nature of Gravity

Four known elementary Interactions

Electromagnetic, Weak and Strong Interactions are unified

at quantum level:

Standard Model of elementary particles well understood

The fourth fundamental interactions, Gravity is the oldest one(Newton)

but also the only one not completely understood.

Question:

Has the Gravity to be quantized ?

Probably yes (Covariant and Path Integral approaches,

SuperGR, String Theory, Loop Gravity) unsolved till now

Other questions (Jacobson, Panamandhan and many others)

Is Gravity an emergent phenomena?

Is the Gravity the thermodynamics of the space-time ?

Not easy to answer
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Aim of this talk: making use of

Semiclassical methods: classical gravity and quantum matter

Try to answer to specific the question:

How hot is our (expanding) universe?

main idea: Universe as Dynamical Black Hole

For the FRW de Sitter universe:

ds2 = −dt2 + e2H0td2~x

the answer is well know:

Temperature T =
H0

2π
(Gibbon-Hawking 77)

H0 =
√

Λ
3 , Hubble parameter, cosmological constant Λ > 0.
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We will re-derive this famous result. The key point is

the existence also of the static dS patch:

ds2 = −(1 − H2
0r2)dt2 +

dr2

1 − H2
0r2)

+ r2dΩ2

a Static Spherical Symmetric BH space-time.

Static Hawking effect well understood.

Recall dS space-time is particularly important in modern Cosmology:

Inflation and Dark Energy

What about FRW dS (Dynamical situation)?

Necessity to discuss on general ground:

Hawking effect, and Hawking temperature for

Spherically Symmetric Dynamical BHs.
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Hawking radiation

Hawking radiation is one of the most important predictions

of quantum field theory in curved space-time.

The Hawking effect is associated with the presence of Black Holes

Classically BHs are compact gravitational objects from which matter

(massless and massive) enter but not escape.

If quantum theory enters the game, something can escape:

Thermal Hawking radiation.

It turns out that (stationary) BHs are thermodinamical objects, and

at least three fundamental issues have to be addressed:
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i. BH entropy issue

ii. BH energy or mass issue

iii. BH temperature issue

We will mainly concentrate on the temperature issue.

Within covariant gravitational Lagrangian theories, the Entropy issue

is well understood by the Wald method:

a robust recipe for evalutating BH entropy starting from

the Lagrangian of the model.

For Ex: in f(R) modified gravity, Wald method leads to

Generalized Area Law SBH =
AHf ′

H
4G

The energy issue is more problematic, we only recall :

ADM mass in asymptoticaly flat BH space-times.

For spherically symmetric BHs in Lovelock theories:

(d = 4, R − 2Λ, d = 5, R − 2Λ + αG, G Gauss-Bonnet)

there is the Misner-Sharp quasilocal energy. Others quasilocal

energies can be defined (Brown-York, Bartnich,..).
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The Hawking effect is kinematics: dynamics plays no role

Several derivations have been proposed,

among them the most popular:

i. Bogoliubov transformation method Hawking 75

ii. Damour-Ruffini method 1976

iii. Path-Integral in Kruskal gauge Hartle-Hawking 76

iv. Tunneling method, Parikh and Wilczek 2000

In the following, we will review a variant of tunneling method:

v. Hamilton-Jacobi Method Padmanabahn,our group 03-05

covariant and extendable to the dynamical case

(Hayward, Di Criscienzo, Nadalini, Vanzo, S.Z.)
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H-J tunneling method: introduction

The H-J Tunneling method is reasonably simple:

Gravity at classical level, QM of particle enters in WKB or

Eikonal approximation:

Amplitude ∝ ei I
h̄ (c = 1)

Then computation of the classical action I along a trajectory in

curved space-time which includes the horizon

: First key point: the presence of Horizons leads to Im I 6= 0 and

semiclassical emission rate,

Γ ∝ |Amplitude|2 ∝ e−2Im I
h̄
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Second key point: Appearance of Boltzmann factor with

linear dependence on energy ω

Γ ∝ e−2Im I
h̄ ∝ e−

β
h̄ω

In the static case, the Boltzmann factor suggests

a radiation in thermal equilibrium, and

it is reasonable that T = h̄
β is the BH temperature.

From now on h̄ = 1

What about the dynamical case?

Remark: In the dynamical case it is crucial that the argument of

the exponent be a coordinate scalar (invariant quantity) otherwise

no physical meaning can be given to Γ: Life is simple with

Spherical Symmetry and related Hayward Covar. Formalism
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Kodama-Hayward formalism

Generic spherically symmetric (SS) space-time metric

ds2 = γij(x
i)dxidxj + R2(xi)dS2 , i, j = 0,1 ,

First ingredient: 2-dim normal metric, xi related coordinates

dγ2 = γij(x
i)dxidxj

Second ingredient: the scalar quantity in γ R(xi) called

areal radius of sphere S2.

Third ingredient: the further scalar in γ

χ(x) = γij(x)∂iR∂jR .
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One has three cases: the two sphere with areal radius R is called

i. untrapped if χR < 0,

ii. marginal if χR = 0,

iii. trapped if χR > 0.

A hypersurface foliated by marginal spheres is called trapping horizon,

and defined by

χ(xH) = 0 , ∂iχH 6= 0 .

Trapping horizons:

i time-like in evaporating BH and cosmology,

ii. null in Static (eternal) BH,

iii. space-like (accreting BH).
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Fourth ingredient: scalar evaluated on the dynamical horizon

κH =
1

2
2γRH =

1

2
√−γ

∂i(
√
−γγij∂jR)H .

called Hayward dynamical surface gravity.

One has three cases: a trapping horizon is said to be

i. outer if κH > 0,

ii. degenerate if κH = 0,

iii. inner if κH < 0.

Fifth ingredient: conserved Kodama vector

Ki(x) =
1√−γ

εij∂jR , and Kθ = 0 = Kϕ

which gives a preferred flow of time, generalizing the flow of time

given by Killing vector ∂t in static cases.



KM Institute, Nagoya — Febraury 7 2012 12

Ex. 4-dim static Schwarzschild BH x = (t, r), R = r

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dS2

with V (r) = 1 − 2M
r . Here

χ(r) = V (r) = 1 − 2M

r
, χ(rH) = 0 → rH = 2M

example of singular gauge, not defined on the horizon.

The surface gravity kH =
V ′

H
2 = 1

2M . In GR, for spherical horizons,

the Misner-Sharp quasi-local gravitational energy is defined by

EMS(x) =
R(x)

2
(1 − χ(x)) .

This is an invariant quantity on the normal space. Note that on the

horizon EMS(RH) =
RH
2 = M , typically in GR the BH mass.
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Vaidya black hole

As a simple example of dynamical BH:

the Vaidya black hole

ds2 = −(1 − 2m(v)

r
)dv2 + 2dv dr + r2dΩ2

where m(v) is the mass function of advanced time v.

The invariant χ(v)

χ(v) = 1 − 2m(v)

r

Trapping horizon is rH(v) = 2m(v) and Hayward surface gravity

kH(v) =
1

2m(v)
.
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Intermezzo: The First Law in GR

The Kodama vector and κH are geometric kinematical quantities . If

the dynamics enters, one has

Lemma: within GR and on spherical dynamical horizon

κH =
1

2RH
+ 2πRHT

(2)
H ,

where the reduce stess-tensor trace scalar in the normal space

T (2) = γijTij .

Proof: Use the Einstein Equations

Gµν = Rµν − 1

2
gµν = 8πTµν

and evaluated them on the spherical dynamical horizon.



KM Institute, Nagoya — Febraury 7 2012 15

Consequence: Introduce

AH = 4πR2
H , horizon area

VH =
4

3
πR3

H , horizon volume

Then,

κH

8π
dAH = d

(

RH

2

)

+ T
(2)
H dVH .

Since M =
RH
2 , the Lemma gives: The First Law (Hayward)

dM =
κH

2π
d

(AH

4

)

− T
(2)
H dVH

The viceversa is very interesting:

Assuming the First law and existence of horizons, Einstein equations

follow: gravity emergent phenomena? (Jacobson, Padmanabhan,..)
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H-J tunneling method in action

Several ingredients:

i. Invariant definition of energy of the particle via Kodama vector

ω = −Kµpµ ,

pµ is the 4-momentum of the particle: Working in SS spaces

independence of a specific choice of spacetime coordinates.

ii. Relativistic Hamilton-Jacobi equation ( radial trajectories)

Recall pµ = ∂µI where I classical action

γij∂iI∂jI + m2 = 0 .

The effective mass m here defines two important and complemen-

tary energy scales:
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a. In the Hawking effect as horizon tunnelling we may neglect the

mass,

γij∂iI∂jI = 0 .

Physics comes from horizon singularities.

b. Effects in the bulk away from the horizon, ex decay rate of com-

posite particles, the effective mass becomes relevant as the energy

of the particle can be smaller than the energy scale settled by m, and

branch cut singularity is present.

Then one make two other key assumptions:

a. The near horizon approximation.

b. The null expansion assumption.

This last requirement force us to make use of regular gauges on the

horizon. For example, the usual static Schwarzschild gauge is

singular on the horizon.
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iii. Reconstruction of the action

I =
∫

γ
dxi ∂iI

solving the HJ equation and with γ being a suitable path in the

normal space, which includes the horizon.

iv. Feynman prescription

The classical action is divergent on the horizon and the imaginary

part comes from Feynman prescription (or contour deformation):

∫

γ

f(r)

r − rH
dr →

∫

γ

f(r)

r − rH − i0
dx = iπf(rH) + real part
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A generic spherically symmetric dynamical BH

Starting point: any spherically symmetric metric can be rewritten in

the Eddington-Filkenstein-Bardeen regular gauge

ds2 = −e2ΨCdv2 + 2eΨdvdr + r2dΩ2 ,

where xi = (v, r) as coordinates, and C = C(v, r), Ψ = Ψ(v, r)

smooth functions. Here simply R = r and χ = C,

thus the dynamical horizon C(rH , v) = 0.

The Kodama vector K = (e−Ψ,0), and Kodama energy ω = e−Ψ∂vI

Hayward invariant surface gravity κH =
∂rCH

2 .

First step: expansion on a null direction in the neighbour of the

horizon gives

0 = eΨHdvdr .

No temporal contribution to the imaginary part of the action.
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Second step: from the H-J equation and Kodama energy

∂rI = 2
ω

C

Thus, within a neighborhood of γ containing the horizon where

C(rH , v) = 0

Im I = Im
∫

γ
dr∂rI = 2

∫

γ
dr

ω

C
≃ 2

∫

γ
dr

ω

∂rC

1

(r − rH − i0)
=

πωH

κH
,

where C =
kH
2 (r − rH) around the horizon along the null direction

and the Feynman prescription have been used. Thus

Γ ≃ e
− 2π

κH
ωH

with κH and ωH scalars on the normal space: Γ invariant. This

result is valid for generic SS space-time, in particular for a static BH

space-time.
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Here we present the operational interpretation.

Static observers in static BH become in the dynamical case

Kodama observers whose velocity

vi
K =

Ki

√
χ

, γijv
i
Kv

j
K = −1

Lemma:

Kodama observers are such that R = R0, constant areal radius

The energy measured by this Kodama observer at fixed R0 is

E = −vi
K∂iI = −Ki∂iI√

χ0
=

ω
√

χ0

The tunneling rate can be rewritten as

Γ ≃ e
− 2π

κH

√
χ0E ≃ e

− E
T0

and the local quantity T0 at radial radius R0 is also invariant:

it contains an invariant factor
√

χ

T0 =
TH√
χ0

, TH =
kH

2π
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In the static case χ = grr = −g00 and recalling Tolman’s theorem:

For a gravitational system at thermal equilibrium, T
√−g00 = constant,

it follows TH =
κH
2π is the intrisic temperature of the BH:

the Hawking temperature.

In the dynamical case and for slow changes in the geometry, the

question is :

Is still TH =
κH
2π the dynamical Hawking temperature ?

It is an unsolved issue till now.

However, in a generic SS space-time and in GR, Hayward surface

gravity κH and ωH are invariant quantities and recalling the Area

Law SH =
AH
4G (Bekenstein-Hawking Entropy), the First Law can be

rewritten as

dM = THdSH − T
(2)
H dVH .

A further hint that TH =
κH
2π could be a sort of temperature.
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General static black hole space-time

The starting point may be a BH metric in the Schwarzschild static

singular gauge

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dS2

with V (rH) = 0, V ′
H 6= 0.

Horizon located at r = rH, and the Kodama vector coincides with the

usual Killing vector (1,0,0,0), Hayward surface gravity is the Killing

surface gravity, namely κH = κ =
V ′

H
2 .

One can use of regular Painleve’ gauge (Parikh-Wilczek)

ds2 = −V (r)dt2 −
√

1 − V (r)dt dr + dr2 + r2dS2
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But, the final result has to be gauge-invariant, and we use the com-

plete and regular time dependent Kruskal gauge.

Introduce the tortoise coordinate

dr∗ =
dr

V (r)

−∞ < r∗ < ∞. Thus

ds2 = V (r∗)(−dt2 + (dr∗)2) + r2(r∗)dS2

Then Kruskal-like coordinates

X =
1

κ
eκr∗ coshκt , T =

1

κ
eκr∗ sinhκt

with

− T2 + X2 =
1

κ2
e2κkr∗

and a conformally flat normal metric appears

ds2 = V (r∗)e−2κr∗(−dT2 + dX2) + r2(T, X)dS2

new coordinates being T and X while r∗ = r∗(T, X).
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In this gauge, the metric is still spherically symmetric, regular on

the horizon: the conformal factor eΨ = V (r∗)e−2κr∗ well defined for

r = rH, but time dependent. The trapping horizon

(∂T r)H = (∂Xr)H ,

equivalent to T = ±X and r∗ → −∞. The Killing-Kodama vector

K = e−Ψ(r∗) (∂Xr,−∂T r)

Hayward surface gravity is the Killing (recall κH is invariant):

κH =
e−ΨH

2

(

−∂2
T r + ∂2

Xr
)

H
=

V ′
H

2

Thus

Γ ≃ e
− 4π

V ′(rH)
ωH ≃ e

− E
T0 , T0 =

V ′
H

4π
√

V0
, T0 =

TH√
V0

Important check of the H-J dynamical tunneling method.
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The FRW Spacetime

FRW space-times are important in cosmology.

The flat FRW space as Spherical Symm. Dynamical BH

ds2 = −dt2 + a2(t)dr2 + [a(t)r]2dS2

The normal reduced metric is diagonal, areal radius R = a(t)r and

the invariant χ

χ(t, r) = 1 − a(t)r2H2(t) , H(t) =
ȧ(t)

a(t)

The dynamical horizon is implicitly given by χH = 0,

RH := a(t)rH =
1

H(t)
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Hayward surface gravity is

κH = −
(

H2(t) +
1

2
Ḣ(t)

)

RH(t) ,

and the minus sign refers to the fact the Hubble horizon is, in

Hayward’s terminology, of the inner type.

In the flat case RH = 1
H(t)

, Hubble radius, and we rewrite

κH = −
(

H(t) +
Ḣ(t)

2H(t)

)
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Thus the rate has the exponential form

Γ ≃ e
− 2π

(κH)
ωH ≃ e

− E
T0(t)

the local time dependent “factor” at R0

T0(t) =
TH

√

1 − R2
0H2

.

For slowly metric changing, it seems suggestive to interpret

TH = −κH
2π as dynamical temperature associated with FRW space-

times, explicitely

TH =
1

2π

(

H(t) +
Ḣ(t)

2H(t)

)

For dS space T0 =
TH

√

1−R2
0H2

0

, TH = H0
2π , real temperatures.

It should be important to have a QFT confirmation of

the H-J tunnelling result:

Quantum Field Theory in action.
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Quantum field theory in conformally flat space-
times

A quantum field theoretical approach, with a quantum probe is used

to unveil the intrinsic temperature associated with static space-times

with horizons.

The probe: a conformally coupled massless scalar field Φ

We work on conformally FRW flat space-time, conformal time η

dη = dt
a ,

ds2 = a2(η)(−dη2 + d~x2) , x = (η, ~x)

The knowledge of Wightman function W (x, x′) is crucial

W (x, x′) =< Φ(x)Φ(x′) >=
∑

~k

f~k
(x)f∗

~k
(x′) , Φ(x) =

∑

~k

f~k
a~k

+ h.c.

The modes functions f~k
(x) satisfy the conformally invariant equation

(R being the curvature scalar) sastisfied by Φ(x)
(

2 − R
6

)

f~k
(x) = 0 .
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The solution of this equation is a vacuum choice

f~k
(x) =

e−iηk

2
√

ka(η)
e−i~k·~x k = |~k|

W (x, x′) can be computed in an exact way

Wε(x, x′) =
1

4π2a(η)a(η′)
1

|~x − ~x′|2 − |η − η′ − iǫ|2 .

As is usual in distribution theory we shall leave understood the limit

as ǫ → 0+. However, it has been shown by Takagi and Schlicht that

it is necessary the covariant form

Wε(x, x′) =
1

4π2a(η)a(η′)
1

[(x − x′) − iǫ(ẋ + ẋ′)]2
.

where an over dot stands for derivative with respect to proper time
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The Unruh-De Witt detector

The Unruh-De Witt detector approach is a well known and used

technique for exploring quantum field theoretical aspects in curved

space-time.

The transition probability per unit proper time of the detector de-

pends on the response function per unit proper time which, for radial

trajectories, at finite proper time τ , and this depends on Wightman

function

Ḟ (E, τ) =
1

2π2
Re

∫ τ−τ0

0
dse−iEsWε(x(τ), x(τ − s))

where τ0 is the initial detector proper time, E is two-level positive

detector transition energy. The Wightman function W (x(τ), x(τ −s))

is singular at s = 0 because x → x′ is singular and ǫ → 0+ cures the

singularity.
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Subtracting the leading divergence at s = 0 and using the normalisa-

tion condition

gµνẋµẋν ≡ [a(τ)ẋ(τ)]2 = −1 ,

introducing the geodesic distance

σ2(τ, s) ≡ a(τ)a(τ − s)[x(τ) − x(τ − s)]2 ,

which for small s

σ2(τ, s) = −s2[1 + s2d(τ, s)] .

one may take the limit ǫ → 0 (Louko, Satz 08)
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Final expression

Ḟ (E, τ) =
1

2π2

∫ ∞

0
ds cos(Es)

(

1

σ2(τ, s)
+

1

s2

)

+ Jτ(E) ,

where the “tail” or finite time fluctuating term is

Jτ(E) := − 1

2π2

∫ ∞

∆τ
ds

cos(E s)

σ2(τ, s)
.

In the important stationary cases:

σ(τ, s)2 = σ2(s) = σ2(−s)

Ḟ (E, τ) =
1

4π2

∫ ∞

−∞
ds e−iEs

(

1

σ2(s)
+

1

s2

)

+ Jτ = Ḟ (E) + Jτ(E) .

The first term is τ independent, and all the time dependence is

contained only in the fluctuating tail, and Jτ(E) → 0 for large τ
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Quantum thermometers in static and stationary
spaces

Applications:

Rindler space (Unruh effect)

Generic static black hole (Hawking effect)

I will talk only on Hawking effect. The important case of the de Sitter

space, independence of the coordinates choice (gauge independence)

will be explicitly verified.
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The generic static black hole

Recall for a static black hole reads

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dS2 ,

the horizon is located at r = rH

the surface gravity, is κH = κ = V ′
H/2.

Recall the Kruskal gauge

ds2 = e−2κHr∗ V (r∗)[−dT2 + dX2] + r2(T, X)dS2 ,

coordinates are T and X, r∗ = r∗(T, X), and the normal metric turns

out to be conformally flat. For Kodama observers the areal radius

r(T, X) and r∗ are constant, say r = r0.
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the proper time along Kodama trajectories reads

dτ2 = V0 dt2 = V0e−2κr∗0(dT2 − dX2) = a2(r0)(dT2 − dX2) .

Thus t = τ/
√

V0 and, as a function of proper-time τ

X(τ) =
1

κH
eκHr∗0 cosh

(

κH
τ√
V0

)

T (τ) =
1

κH
eκHr∗0 sinh

(

κH
τ√
V0

)

.
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The geodesic distance reads

σ2(τ, s) = V0e−2κr∗0
[

− (T (τ) − T (τ − s))2 + (X(τ) − X(τ − s))2
]

,

and one gets

σ2(τ, s) = −4V0

κ2
H

sinh2

(

κH s

2
√

V0

)

.

Stationarity: σ2(τ, s) = σ2(s) = σ2(−s), Ḟ can be exactly computed

Ḟ (E) =
1

2π

E

exp

(

2π
√

V0E
κH

)

− 1
.

Planck distribution: Unruh-DeWitt detector in the generic SSS BH

space-time detects a quantum system in thermal equilibrium at the

local temperature

T0 =
κH

2π
√

V0
.
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Again Tolman’s theorem: T
√−g00 = constant.

Generic static black hole has intrinsic constant temperature, the

Hawking temperature, i.e.

TH =
κ

2π
=

V ′
H

4π
.

Another form of Tolmann factor: the Killing-Kodama observers with

r = r0 constant, have an invariant acceleration

a2
0 =

V ′2
0

4V0
,

where aµ = uν∇νuµ, uµ being the observer’s four-velocity. Thus, the

local equilibrium temperature can be rewritten in the form

T0 = TH
2a0

V ′
0

.
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de Sitter space in the static patch

The static de Sitter metric is a particular case with

V (r) = 1 − H2
0r2 , H2

0 =
Λ

3
.

The horizon is located at rH = H−1
0 and the surface gravity is

kH = H0

The acceleration at fixed r0 reads a2
0 =

H4
0r20

1−H2
0r20

, thus

a2
0 + H2

0 =
H2

0

1 − H2
0r20

.

and de Sitter local temperature felt by the Unruh detector is

(Narnhofer-Thirring )

TdS(r0) =
1

2π

√

a2
0 + H2

0 .
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de Sitter space in FRW coordinates

In this case the de Sitter metric is a SS dynamical BH

ds2 = −dt2 + e2H0t(dr2 + r2dS2) , a(t) = eH0t.

with H(t) = H0 constant. For Kodama observers r = R0e−H0t and

denoting V0 = 1 − H2
0R2

0

τ =
√

V0 t , a(τ) = e

H0√
V0

τ
,

and

η(τ) = − 1

H0
e
− H0√

V0
τ

, r(τ) = R0 e
− H0√

V0
τ

,

so, the geodesic distance is

σ2(τ, s) = −4V0

H2
0

sinh2

(

H0 s

2
√

V0

)

.



KM Institute, Nagoya — Febraury 7 2012 41

Again stationarity: σ2(τ, s) = σ2(s) = σ2(−s), and

Ḟ (E) =
1

2π

E

e
2π

√
V0E

H0 − 1

,

In the FRW de Sitter space one detects a quantum system in thermal

equilibrium at a temperature T0 = H0
2π

√
V0

.

Recall that 4-acceleration of a Kodama observer in a FRW space-

time is

a2 = aµaµ = R2
0







Ḣ(t) + (1 − H2(t)R2
0)H

2(t)

(1 − H2(t)R2
0)

3
2







2

where aµ := uν∇νuµ, uµ being the 4-velocity of the detector.
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As a result, for dS space in a time dependent patch we have

a2
0 =

R2
0H4

0

1 − R2
0H2

0

,

showing that

H0
√

1 − H2
0R2

0

=
√

H2
0 + a2

0

in agreement with the dS static patch calculation.

This is an important check of the approach, since

it shows the coordinate independence of the result for the important

case of de Sitter space.

When R0 = 0, one has V0 = 1 and the classical Gibbons-Hawking

result TdS = H0
2π is recovered.
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Wath about a generic FRW space-time?

In the stationary case, in the limit τ → ∞, one has

Ḟ (E) =
1

4π2

∫ ∞

−∞
ds e−iEs

(

1

σ2(s)
+

1

s2

)

=
1

2π

E

exp
(

E
T0

)

− 1
.

This is a sort of Fluctuation-Dissipation Theorem, since Ḟ (E) is a

Fourier transform of a renormalized correlation function (Wightman

function). Note that in this case Detailed Balance Principle holds

Ḟ (E)

Ḟ (−E)
= e

− E
T0 , Ḟ (−E) − Ḟ (E) =

E

2π

Viceversa, if the above relations hold then Ḟ (E) is the Plank distri-

bution. Thus we can define the local equilibrium temperature:

T0 =
E

ln Ḟ (−E) − ln Ḟ (E)

Alternatively

T0 =
E

ln

(

1 + E
2π(Ḟ (E))

)
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Thus, in general, we may define the local effective temperature by

Ḟ (E, τ)

Ḟ (−E, τ)
= e

− E
T0(τ) .

Thus

T0(τ) =
E

ln Ḟ (−E, τ) − ln Ḟ (E, τ)

or

T0(τ) =
E

ln

(

1 + E
2π(Ḟ (E,τ)−J(τ))

)

In the stationary case, Ḟ is time independent, and for large ∆τ

T0 =
E

ln

(

1 + E
2π(Ḟ )

)
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dS asymptotically space-times

Important physical ex: flat FRW universe with Λ > 0 and matter

p = 0. The solution of Friedman eq. ( asymptotically dS)

a(t) = a0 sinh2/3
(

3

2
h t

)

→ eh t t → ∞

with h ≡ √
ΩΛH0, Ωm + ΩΛ = 1; H0 =

√

8πρcr/3.

Take for simplicity the comoving observer R0 = 0. Expansion in ∆τ

1

σ2(τ, s)
=

1

σ2
dS(s)

− h2
∞
∑

n=1



e−3hn∆τ
3n−1
∑

k=1

g(n, k) ek hs



 ,

g(n, k) computable numerical coefficients. Note pure de Sitter con-

tribution,

σ2
dS(s) = −4h−2 sinh2

(

hs

2

)

with the effective Hubble constant h =
√

ΩΛH0.
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Direct computation

Ḟτ(E) = ḞdS(E) + JdS,τ(E) − h2

2π2

∞
∑

n=1

3n−1
∑

k=1

g(n, k) e−3n h∆τ × (1)

ehk∆τ(hk cos(E∆τ) + E sin(E∆τ)) − hk

h2k2 + E2

JdS,τ is the dS tail. The numerical coefficients g(n, k) appear in

another tail which decays exponentially in time with

oscillating terms vanishing in the limit ∆τ → ∞.

Thus the detector clicks close to a de Sitter response and reaches

thermalization through decaying oscillations as ∆τ is sufficiently large

and the local effective temperature goes to dS temperature

TdS = h =
√

ΩΛH0
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Buchholz Quantum Thermometer

Another proposal to detect local temperature associated with sta-

tionary space-time admitting an event horizon has been put forward

by Buchholz and collaborators. The idea may be substantiated by

the following argument.

Let us start with a free massless quantum scalar field Φ(x) in thermal

equilibrium at temperature T in flat space-time. It is well known that

finite temperature effects may be investigated by considering the

scalar field defined in the Euclidean manifold S1 × R3,

with imaginary time τ = −it, compactified in the circle S1, with period

β = 1
T .
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Let us consider the local quantity < Φ(x)2 >. Formally, this is a di-

vergent quantity: product of valued operator distribution in the same

point x: regularisation and renormalisation are required.

Within zeta-function regularisation (Dowker, Hawking, and many

others)

< Φ(x)2 >= ζ(1|Lβ)(x) ,

where ζ(z|Lβ)(x) is the analytic continuation of the local zeta-

function associated with the operator elliptic self-adjoint Lβ

Lβ = −∂2
τ −∇2 ,

defined on S1 × R3. The local zeta-function is defined with Re z

sufficiently large by means

ζ(z|Lβ)(x) =
1

Γ(z)

∫ ∞

0
dttz−1Kt(x, x) ,

where the heat-kernel is ( spectral theorem)

Kt(x, x) =< x|e−tLβ|x >=
1

β(4πt)3/2

∑

n
e
−4π2

β2 n2
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Jacobi-Poisson formula leads to

Kt(x, x) =
1

(4πt)2

∑

n
e−

n2β2

4t .

The term n = 0 leads to divergent integral
∫∞
0 dttz−3, but within

Gelfand analytic continuation it vanishes and one has

ζ(z|Lβ)(x) =
Γ(2 − z)

8π2Γ(z)

(

β2

4

)z−2

ζR(4 − 2z) ,

where ζR(z) is the Riemann zeta-function. This analytic continuation

is regular at z = 1, recalling that ζR(2) = π2

6 , one has

< Φ(x)2 >=
1

12β2
=

T2

12
.

The regularised vacuum expectation value of the observable Φ2 gives

the temperature of the quantum field in thermal equilibrium:

a quantum thermometer.
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Another derivation (more traditional)

Quantum thermal Euclidean Wigthman function periodic of period β

in the imaginary time is

Wβ(x, x′) =< Φ(x)Φ(x′) >=
1

4π2

∑

n

1

|~x − ~x′|2 + (τ − τ ′ + nβ)2

The term n = 0 is singular when x → x′.
Subtracting this term (renormalization), one has in the coincidence

limit

Wβ(x, x) =< Φ(x)2 >=
1

2π2β2

∞
∑

n=1

1

n2

Again

< Φ(x)2 >=
1

12β2
=

T2

12
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Motivated by this argument, consider again the quantum probe in a

FRW conformally flat space-time.

Off-diagonal Wigthman function is

W (x, x′) =< Φ(x)Φ(x′) >=
1

4π2

1

σ2(x, x′)
,

where

σ2(x, x′) = a(x)a(x′)(x − x′)2 ,

recall a(x) being the conformal factor. In the limit x → x′, formally

one has

< Φ(x)2 >= W (x, x) ,

but W (x, x) is ill defined:

again regularisation and renormalisation
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Use point splitting regularization: take W (x, x′) and evaluate the limit

x′ → x. Then subtract the leading divercence and define the local

temperature as

T2

12
=< Φ(x)2 >R= F.P. lim

x′→x
W (x, x′) ,

where F.P. stands for finite part prescription, the two points are

joined by a Kodama trajectory parametrized by the proper time.

In the stationary space-times we have considered, the relevant

Wightman functions of the probe all have the specific form

W (s, s + ε) = − 1

4π2

α2
0

4 sinh2(ε α0
2 )

.
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In fact,

for a generic static black hole

α0 =
κH√
V0

, κH =
V ′

H

2
,

and for the de Sitter space-time in flat FRW form

α0 =
H0

√

1 − R2
0H2

0

.

In invariant form

α0 =
κH√
χ0
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Within point splitting regularization

W (s, s + ε) = − 1

4π2

α2
0

4 sinh2(ε α0)
2

= − 1

4π2ε2
+

1

12

(

α0

2π

)2
+ O(ε) .

Naive Renormalization (F.P. prescription) gives

T0 =
α0

2π
=

TH√
χ0

in agreement with H-J tunneling and Unruh-DeWitt detector tech-

nique.

Again, the local dependence comes from the localisation of the Ko-

dama observer at R = R0, R being the areal radius of BH.
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Summary and Concluding remarks

Aim of the talk: understand the

temperature-versus-surface gravity paradigm.

The tunnelling in its H-J covariant version leads to a very simple

result for a spherically symmetric dynamical black hole

RateΓ ≃ e
−ωH

TH ≃ e
− E

T0 , T0 =
TH√
χ0

where kH is the Hayward dynamical surface gravity. To what extend

one may talk of dynamical temperature?

Answer has been tested with QFT techniques as the Unruh-DeWitt

detector and the Buchholz proposal.

In the stationary cases ( static black holes, dS-FRW ) complete

agreement with QFT methods.

In the dynamical case, positive answer for asymptotically dS space-

times. In general, still an unsolved issue. Work in progress.
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