

Nobuhito Maru (Osaka City University)

2014/3/11-12 @Nagoya

"New Ideas on Electroweak Symmetry Breaking" Christophe Grojean CERN-PH-TH/2006-172

"Holographic Methods and Gauge-Higgs Unification in Flat Extra Dimensions" Marco Serone arXiv: 0909,5619 [hep-ph]

"Lecture on Gauge-Higgs Unification in extra dimensions" Csaba Csa'ki Talk slides in Ringberg Pheno. Workshop

PLAN

◆ Introduction +Higgs mass calculation + Gauge-Higgs sector Matter content \$ Yukawa coupling +Flavor Mixing + Summary

If time permits...

Introduction

One of the problems in the Standard Model: Hierarchy Problem

Quantum corrections to the Higgs mass is sensitive to the cutoff scale of the theory

To get Higgs mass of weak scale, an unnatural fine tuning of parameters are required

$$m_H^2 = m_0^2 + \delta m^2 \approx \mathcal{O}\left(\left(100 GeV\right)^2\right)$$

classical Quantum corrections

Naively, we have

$$m_0^2, \delta m^2 \approx \mathcal{O}\left(\left(10^{18} GeV\right)^2\right)$$

32 digits of fine tuning

Problem: We have NO symmetry forbidding the scalar mass

Indeed, the (local) mass term A_5^2 can be forbidden by the gauge symmetry for 5th component of the gauge field

$$\because A_5 \to A_5 + \partial_5 \mathcal{E}(x, y) + i \Big[\mathcal{E}(x, y), A_5 \Big]$$

In other words, no local counter term is allowed ⇒ No quadratic divergence, finite

This symmetry is very useful in the orbifold model since it is operative even on the branes $G \rightarrow H$ Gersdorff, Irges & Quiros (2002)

$$\therefore A_5 \to A_5 + \partial_5 \mathcal{E}_{G/H}(x, y) + i \left[\mathcal{E}_H(x, y), A_5 \right]$$
Z2 odd Z2 even

No quadratic divergence from brane localized Higgs mass

Explicit calculations of Higgs mass

• D-dim QED on S¹@1-loop Hatanaka, Inami & Lim (1998)

•5D Non-Abelian gauge theory on S¹/Z₂@1-loop Gersdorff, Irges & Quiros (2002)

- 6D Non-Abelian gauge theory on T²@1-loop Antoniadis, Benakli & Quiros (2001)
- •6D Scalar QED on S²@1-loop Lim, NM & Hasegawa (2006)
- •5D QED on S¹@2-loop

NM & Yamashita (2006); Hosotani, NM, Takenaga & Yamashita (2007)

•5D Gravity on S¹ (GGH)

Hasegawa, Lim & NM (2004)

Higgs mass calculation

Consider (D+1)-dim QED on S¹ Hatanaka, Inami & Lim (1998)

$$A_{\gamma} \longrightarrow (\psi^{(n)}) \longrightarrow A_{\gamma}(=H) \qquad \text{Boundary condition} \\ \psi(x_{\mu}, y+L) = e^{i\alpha}\psi(x_{\mu}, y) \\
m_{H}^{2} = ie_{D}^{2}2^{[(D+1)/2]}\int \frac{d^{D}k}{(2\pi)^{D}} \sum_{n=\infty}^{\infty} \left[-\frac{1}{((2\pi n+\alpha)/L)^{2} + \rho^{2}} + \frac{2\rho^{2}}{\left[((2\pi n+\alpha)/L)^{2} + \rho^{2}\right]^{2}} \right] \\
= -ie_{D}^{2}2^{[(D+1)/2]}\int \frac{d^{D}k}{(2\pi)^{D}} \left(1 + \rho \frac{\partial}{\partial\rho}\right) \left(\frac{L}{2\rho}\right) \frac{\sinh(\rho L)}{\cosh(\rho L) - \cos\alpha} \qquad p^{2} = -k^{2} + m^{2} \\
= \frac{e_{D}^{2}L^{2-D}}{2^{D-[(D+1)/2]}\pi^{D/2}\Gamma(D/2)} \int_{0}^{\infty} dk \ k_{E}^{D-1} \frac{1 - \cosh(\sqrt{k_{E}^{2} + m^{2}}L) \cos\alpha}{\left[\cosh(\sqrt{k_{E}^{2} + m^{2}}L) - \cos\alpha\right]^{2}} < \infty$$

Superconvergent!! (Nonlocal mass: Wilson line phase $\alpha = g \oint dy A_y$)

Ex. take D=4 (5 dimension case) & m=0, $a=\pi$

Higgs mass is too small → generic prediction of GHU

Way out to get 125-126 GeV Higgs mass

1: Realizing small Higgs VEV a << 1 by choosing appropriate matter content

m_H ~ m_W/(
$$4\pi a$$
) (m_W = a/R)

Haba, Hosotani, Kawamura & Yamashita etc

2: D > 5 dimensions

 F_{ij}^2 contains the Higgs quartic coupling $g^2[A_i, A_j]^2$ in general. Higgs mass is generated at leading order $m_H = 2m_W$ is predicted in 6D on T^2/Z_3 model Scrucca, Serone, Silvestrini & Wulzer (2003)

3: Warped dimension (ex. Randall-Sundrum model)

Higgs mass is enhanced by curvature scale $k\pi R \sim 30$ Contino, Nomura & Pomarol (2003)

Gauge-Higgs sector

Model building of the gauge-Higgs unification

A₅ is an SU(2) adjoint as it stands, not SU(2) doublet ⇒ need to enlarge the gauge group

 $G \rightarrow SU(2)_L \times U(1)_y$ adj \rightarrow doublet + other reps

Consider 5D SU(3) model on S^1/Z_2 with Parity: P = diag (-,-,+)

$$PA_{\mu}(x, y_{i} - y)P^{\dagger} = A_{\mu}(x, y_{i} + y), PA_{5}(x, y_{i} - y)P^{\dagger} = -A_{5}(x, y_{i} + y)$$

$$A_{\mu} = \begin{pmatrix} (+,+) & (+,+) & (-,-) \\ (+,+) & (+,+) & (-,-) \\ (-,-) & (-,-) & (+,+) \end{pmatrix}, A_{5} = \begin{pmatrix} (-,-) & (-,-) & (+,+) \\ (-,-) & (-,-) & (+,+) \\ (+,+) & (+,+) & (-,-) \end{pmatrix}$$

$SU(2) \times U(1)$ gauge fields

Higgs doublets

$$A_{M}^{(+,+)}(x,y) = \frac{1}{\sqrt{2\pi R}} \left[A_{M}^{(0)}(x) + \sqrt{2} \sum_{n=1}^{\infty} A_{M}^{(n)}(x) \cos\left(\frac{n}{R}y\right) \right]$$
$$A_{M}^{(-,-)}(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} A_{M}^{(n)}(x) \sin\left(\frac{n}{R}y\right)$$

mode expansions

Gauge boson spectrum

$$M_{W_n} = \frac{n+a}{R}, M_{Z_n} = \frac{n+2a}{R}, M_{\gamma_n} = \frac{n}{R}, \langle A_5^{(0)} \rangle = \frac{a}{g_5 R}$$

$$M_{W_n} = \frac{n+a}{R}, M_{Z_n} = \frac{n+2a}{R}, M_{\gamma_n} = \frac{n}{R}, \langle A_5^{(0)} \rangle = \frac{a}{g_5 R}$$

•W, Z, y are identified with zero modes: $M_{W} = a/R, M_{Z} = 2a/R, M_{v} = 0$ $\bullet M_7 = 2M_W \rightarrow \cos \Theta_W = \frac{1}{2} (\sin^2 \Theta_W = \frac{3}{4} \gg 0.23)$ • The spectrum is invariant under $a \Leftrightarrow -a$ \rightarrow physical range [0, 1/2] (this kind of spectrum is specific to GHU compared to UED case: $M_{W_{u}} = \sqrt{M_{W}^{2} + (n/R)^{2}}$) •Non-zero KK modes of A₅ are eaten by non-zero KK modes of A_{μ} (Higgs mechanism)

Hypercharge of the doublet

Check the hypercharge of Higgs doublet

$$\begin{split} \delta_{U(1)} A_5^{(0)} &= g \Big[T^8, A_5^{(0)} \Big] = \frac{g}{2\sqrt{3}} \Bigg[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \begin{pmatrix} 0 & 0 & H^+ \\ H^- & H^{0^*} & 0 \end{pmatrix} \Bigg] \\ &= \frac{g}{2\sqrt{3}} \begin{pmatrix} 0 & 0 & H^+ \\ 0 & 0 & H^0 \\ -2H^- & -2H^{0^*} & 0 \end{pmatrix} - \frac{g}{2\sqrt{3}} \begin{pmatrix} 0 & 0 & -2H^+ \\ 0 & 0 & -2H^0 \\ H^- & H^{0^*} & 0 \end{pmatrix} = \frac{g\sqrt{3}}{2} \begin{pmatrix} 0 & 0 & H^+ \\ 0 & 0 & H^0 \\ -H^- & -H^{0^*} & 0 \end{pmatrix}$$

$$\sin^2 \theta_W = \frac{g_Y^2}{g^2 + g_Y^2} = \frac{\left(\sqrt{3}g\right)^2}{g^2 + \left(\sqrt{3}g\right)^2} = \frac{3}{4} \neq 0.23 (\mathsf{Exp}) \quad \text{Too Big!!}$$

Well-known by Fairlie, Manton (6D on S² w/ monopole bkgd) $\begin{array}{ccc}
G_2 & SO(5) & SU(3) \\
Sin^2\Theta_W & 1/4 & 1/2 & 3/4
\end{array}$

Way out to get a correct $\Theta_{\rm W}$

1: Additional U(1) $SU(3) \times U(1)' \rightarrow SU(2) \times U(1) \times U(1) \times Scrucca, Serone & Silvestrini (2003)$

$$A_{Y} = \frac{g'A_{8} + \sqrt{3}gA'}{\sqrt{3}g^{2} + {g'}^{2}}, A_{X} = \frac{\sqrt{3}gA_{8} - g'A'}{\sqrt{3}g^{2} + {g'}^{2}} \Longrightarrow g_{Y} = \frac{\sqrt{3}gg'}{\sqrt{3}g^{2} + {g'}^{2}}$$

$$\sin^2 \theta_W = \frac{g_Y^2}{g^2 + g_Y^2} = \frac{3}{4 + 3g^2/g'^2}$$

2: Localized gauge kinetic terms

$$\mathcal{L} = -\frac{1}{2g_5^2} TrF_{MN} F^{MN} - \left[\frac{1}{2g_4^2} \delta(y) + \frac{1}{2g_4'^2} \delta(y - \pi R)\right] TrF_{\mu\nu} F^{\mu\nu}$$

SU(3) invariant

 $SU(2) \times U(1)$ invariant

Electroweak symmetry breaking

In GHU, EW symmetry is dynamically broken by the Hosotani mechanism Hosotani (1983,1989)

Higgs potential is radiatively generated since the tree level potential is forbidden by the gauge invariance (Coleman-Weinberg potential)

Wilson line phase

$$W = \mathcal{P}\exp\left(ig\oint_{S^1} dyA_5\right) = \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos(\pi a) & i\sin(\pi a)\\ 0 & i\sin(\pi a) & \cos(\pi a) \end{array}\right) \left(a \mod 2\right) = \begin{cases} SU(2) \times U(1) \text{ for } a = 0\\ U(1)' \times U(1) \text{ for } a = 1\\ U(1)_{\text{em}} \text{ for other cases} \end{cases}$$

$$\langle A_5 \rangle = \frac{a}{gR} \frac{T^6}{2} \equiv A_5^{6(0)} \frac{T^6}{2}$$

$$T^{3} = diag(1, -1, 0)$$
$$T^{8} = diag(1, 1, -2) / \sqrt{3}$$

$$a=1:W=diag(1,-1,-1)\Rightarrow [W,T^3]=[W,T^8]=0$$

 $U(1) \times U(1)'$ unbroken

$$0 < a < 1: \left[W, \sqrt{3}T^3 + T^8 \right] = \left[W, \sin \theta_W T^3 + \cos \theta_W T^8 \right] = 0$$

U(1)em unbroken

Higgs potential (top (15*) + bottom (3) + tau (10))

Cacciapaglia, Csaki & Park (2005)

Higgs mass, top mass,...etc

top

Model a: b(3), r(10) Model b: b(6), r(3)

Sample points

A STANDAR AND A	South and share the second state of the		MALL PARTY SERVICE	Card Landstein Mille	2 Mary Street Works and	ALL AST MUTSAG		ash Malu 200 masa
α	1/R	f	m_H		m_t		m_t'	
0.08	1 TeV	31%	110	GeV	113	GeV	189	GeV
		42%	125		110		186	
0.05	1.6 TeV	11%	120	GeV	149	GeV	381	GeV
		14%	133		149		375	
0.04	2 TeV	7%	124	GeV	154	GeV	519	Gev
		9%	136		154		514	
0.03	2.7 TeV	4%	128	GeV	157	GeV	753	Gev
		5%	140		157		746	
0.02	4 TeV	2%	134	GeV	159	GeV	1224	Gev
		2%	144		159		1213	

Fine-tuning required to Model A (top low) obtain the potential minimum Model B (bottom low)

Quark & Lepton embedding

Consider a fundamental rep of SU(3)

3 = $(q, q-1, 1-2q)^T$ (q: electric charge)

Putting q=2/3, we get $(+, +, -)_{L}$ **3** = **2**_{1/6} + **1**_{-1/3} = $(2/3, -1/3, -1/3)^{T}$ = $(\mathbf{u}_{L}, \mathbf{d}_{R}, \mathbf{d}_{R})^{T}$

Only fundamental reps cannot incorporate right-handed up-type quarks as well as leptons

2-rank sym: $6^* = \begin{cases} 3_{L-1/3} + 2_{L1/6}(Q) + 1_{L2/3} \\ 3_{R-1/3} + 2_{R1/6} + (1_{R2/3}(UR)) \end{cases}$ 3-rank sym: $10 = \begin{cases} 4_{L1/2} + 3_{L0} + 2_{L-1/2}(L) + 1_{L-1} \\ 4_{R1/2} + 3_{R0} + 2_{R-1/2} + 1_{R-1}(eR) \end{cases}$

Many massless exotics \Rightarrow brane localized mass term

Big Hurdle Yukawa coupling = gauge coupling

How can we get fermion mass hierarchy???

As will be shown below, fermion masses except for top quark are relatively easy

1: Localizing fermions@different point in 5th direction

Yukawa ~ exponentially suppressed overlap integral Arkani-Hamed & Schmaltz (1999)

2: Bulk fermions mixed with localized fermions @the fixed points Non-local Yukawa coupling Csaki, Grojean & Murayama (2002) 1: Yukawa coupling from localizing fermions @different points

- 1: To localize fermions at different points along the 5th direction, bulk masses are introduced
- 2: To be consistent with Z₂ orbifold, Z₂ parity of bulk mass must be odd \Rightarrow kink mass

Consider a 5D fermion satisfying the following Dirac equation

$$0 = \left[i\Gamma^{M}D_{M} - M\boldsymbol{\varepsilon}(\boldsymbol{y})\right]\boldsymbol{\psi}(\boldsymbol{x},\boldsymbol{y})$$

$$D_{M} = \partial_{M} - igA_{M}, \Gamma^{M} = (\gamma^{\mu}, i\gamma^{5}), (M = 0, 1, 2, 3, 5), \varepsilon(\gamma) = \begin{cases} 1(\gamma > 0) \\ -1(\gamma < 0) \end{cases}$$

Focusing zero modes

$$\psi(x,y): \psi_{L(R)}^{(0)}(x) f_{L(R)}^{(0)}(y), \gamma^5 \psi_{L(R)} = (-) \psi_{L(R)}$$

Fermion masses except top is easy, but top is hard No need of unnatural fine-tuning for 5D parameters M,R

2: Mixing between bulk and boundary localized fermions

Csaki, Grojean & Murayama (2002) Consider the massive bulk fermion coupling with SM fermions on the branes

$$\mathcal{L}_{Bulk} = \overline{\Psi}(x, y) (i \Gamma^{M} D_{M} - M(\varepsilon)) \Psi(x, y), \Psi = (\psi^{d}, \chi^{s})^{T}$$

$$\mathcal{L}_{Brane} = \delta\left(y - y_L\right) \left[i\bar{Q}_L \bar{\sigma}^{\mu} \partial_{\mu} Q_L + \frac{\varepsilon_L}{\sqrt{\pi R}} \bar{\psi}^d Q_L + h.c. \right] + \delta\left(y - y_R\right) \left[i\bar{q}_L \bar{\sigma}^{\mu} \partial_{\mu} q_L + \frac{\varepsilon_R}{\sqrt{\pi R}} \bar{q}_R \chi^s + h.c. \right]$$

Mixing mass term between bulk & brane fermions

Integrating out massive fermion generates mass term as

$$\varepsilon_L \varepsilon_R \pi M R e^{-\pi M R} \overline{q}_R e^{ig \int_0^{\pi R} dy A_y} Q_L \Longrightarrow m_f \propto \varepsilon_L \varepsilon_R \pi M R e^{-\pi M R} M_W$$

Exponentially suppressed coupling⇒ easy to generate fermion masses except for top

How do we obtain top mass???

Top mass generation

Consider large dimensional reps, then an upper bound on fermion mass is modified as follows

$$m_t \leq \sqrt{nm_W}$$
 (n: # of indices of rep)

For $m_t = 2m_w \Rightarrow$ need a 4-index rep top is embedded To saturate this bound, bulk mass should be zero

Simplest example:

$(15^{*})_{-2/3} \rightarrow (1, 2/3)(t_{R}) + (2, 1/6)(t_{L}) + (3, -1/3) + (4, -5/6) + (5, -4/3)$

\sqrt{N} enhancement

Consider a rank N symmetric tensor of SU(3)

Decompose it into SU(2) reps as 3 = 2 + 1 and make a singlet & a doublet

singlet $1 1 1 1 \cdots 1$ uniquedoublet $1 1 2 \cdots 1$ etcN patternsCanonical kinetic term $\Rightarrow 1/JN$

Yukawa = $1_R 2_L 2_H \Rightarrow N \times 1/JN = JN$

Fermion matter content

$3 = 2_{L1/6}(Q) + 1_{L-1/3}$ $2_{R1/6} + 1_{R-1/3}(d_R)$	Down quark sector	ζ.
$6^{*} = 3_{L-1/3} + 2_{L1/6}(Q) + 1_{L2/3}$ $3_{R-1/3} + 2_{R1/6} + 1_{R2/3}(U_{R})$	Up se (excep	quark ctor t for top)
$10 = 4_{L1/2} + 3_{L0} + 2_{L-1/2}(L) + 4_{R1/2} + 3_{R0} + 2_{R-1/2} + 1$	1 _{L-1} C R-1(e _R)	narged lepton sector
$15^{*} = 5_{L-4/3} + 4_{L-5/6} + 3_{L-1/3}$ Top quark $5_{R-4/3} + 4_{R-5/6} + 3_{R-1/3}$	3 + 2 _{L1/6} (0 /3 + 2 _{R1/6}	Q) + 1 _{L2/3} + 1 _{R2/3} († _R)

Unwanted massless exotics (blue reps) & two extra Qs must be massive by brane localized mass terms

"Flavor Mixing in Gauge-Higgs Unification" Adachi, Kurahashi, Lim and NM, JHEP1011 (2010) 015

"D⁰-D⁰bar Mixing in Gauge-Higgs Unification" Adachi, Kurahashi, Lim and NM, JHEP1201 (2012) 047

"B⁰-B⁰bar Mixing in Gauge-Higgs Unification" Adachi, Kurahashi, NM and Tanabe, PRD85 (2012) 096001

$$\mathcal{L} = -\frac{1}{4} F^{MN} F_{MN} - \frac{1}{4} B^{MN} B_{MN} - \frac{1}{4} G^{MN} G_{MN} + \overline{\psi}_{3}^{1,2} \left(i \not{D} - M^{1,2} \varepsilon(y) \right) \psi_{3}^{1,2} + \overline{\psi}_{\overline{6}}^{1,2} \left(i \not{D} - M^{1,2} \varepsilon(y) \right) \psi_{\overline{6}}^{1,2} + \overline{\psi}_{3} i \not{D} \psi_{3} + \overline{\psi}_{\overline{15}} i \not{D} \psi_{\overline{15}} + \delta(y) \sqrt{2\pi R} \overline{Q}_{R}^{i}(x) \left[\eta_{ij} Q_{3L}^{j}(x,y) + \lambda_{ij} Q_{L}^{j}(x,y) \right] (i, j = 1, 2, 3) + \text{brane mass terms for exotics} \qquad Q_{L} = \left(Q_{6L}^{1}, Q_{6L}^{2}, Q_{15L} \right)^{T}$$

- Brane mass matrices η, λ : off-diagonal elements Flavor mixing
- Brane localized fields QR
- $M^3 = 0$ to avoid $m_{\psi} \sim M_w exp[-\pi MR]$

$$\mathcal{L}_{BM}^{Q} \sim \delta(y) \overline{Q}_{R} \begin{bmatrix} \eta \ \lambda \end{bmatrix} \begin{bmatrix} Q_{3} \\ Q \end{bmatrix}_{L} = \delta(y) \overline{Q}'_{R} \begin{bmatrix} m_{diag} \ 0_{3\times 3} \end{bmatrix} \begin{bmatrix} Q_{H} \\ Q_{SM} \end{bmatrix}_{L} \\ \begin{bmatrix} Q_{3} \\ Q \end{bmatrix}_{L} = \begin{bmatrix} U_{1} \ U_{3} \\ U_{2} \ U_{4} \end{bmatrix} \begin{bmatrix} Q_{H} \\ Q_{SM} \end{bmatrix}_{L}, \ U^{\overline{Q}} Q_{R} = Q'_{R} \end{cases}$$

$$\mathcal{L}_{Yukawa} = g_5 A_y^6 \overline{d}^i Q_3^i + g_5 A_y^6 \overline{u}^i Q^i \quad \leftarrow \text{Gauge interaction}$$
$$\rightarrow g_5 \left\langle A_y^6 \right\rangle \left(\overline{d}_R^{i(0)} Y_d^{ii} U_3^{ij} Q_{SM}^{j(0)} + \overline{u}_R^{i(0)} Y_u^{ii} U_4^{ij} Q_{SM}^{j(0)} \right)$$

 $Y^{ii} = \int_{-\pi R}^{\pi R} dy f_L^{i(0)} f_R^{i(0)} \approx 2\pi R M^i e^{-\pi R M^i}$

Diagonalization

 $\begin{cases} \hat{Y}_d = V_{dR}^{\dagger} Y_d U_3 V_{dL} \\ \hat{Y}_u = V_{uR}^{\dagger} Y_u U_4 V_{uL} \end{cases}$

$$V_{CKM} = V_{uL}^{\dagger} V_{dL} \quad \left(U_3^{\dagger} U_3 + U_4^{\dagger} U_4 = \mathbf{1}_{3\times 3} \right)$$

$M_{3,6} \propto 1$ (Y_{u,d} $\propto 1$) case (flavor symmetry restored)

$$\begin{split} \left\{ \begin{aligned} \hat{Y}_{d} &= V_{dR}^{\dagger} Y_{d} U_{3} V_{dL} \rightarrow V_{dR}^{\dagger} U_{3} V_{dL} \Longrightarrow \hat{Y}_{d}^{\dagger} \hat{Y}_{d} = V_{dL}^{\dagger} U_{3}^{\dagger} U_{3} V_{dL} \\ \hat{Y}_{u} &= V_{uR}^{\dagger} Y_{u} U_{4} V_{uL} \rightarrow V_{uR}^{\dagger} U_{4} V_{uL} \Longrightarrow \hat{Y}_{u}^{\dagger} \hat{Y}_{u} = V_{uL}^{\dagger} U_{4}^{\dagger} U_{4} V_{uL} \\ \xrightarrow{U_{3}^{\dagger} U_{3} + U_{4}^{\dagger} U_{4} = 1} \rightarrow V_{uL} \propto V_{dL} \\ &\implies V_{CKM} = V_{uL}^{\dagger} V_{dL} \propto V_{dL}^{\dagger} = 1 (\text{No mixing}) \end{aligned}$$

Lesson

To get flavor mixing, we need non-degenerate bulk masses as well as the off-diagonal brane masses (specific to gauge-Higgs unification)

Parametrization of Unitary matrices $U_{3,4}$ (CP violation ignored)

$$\begin{aligned} U_4 &= R_u \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}, U_3 &= R_d \begin{pmatrix} \sqrt{1 - a_1^2} & 0 & 0 \\ 0 & \sqrt{1 - a_2^2} & 0 \\ 0 & 0 & \sqrt{1 - a_3^2} \end{pmatrix} \\ R_u &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta'_2 & \sin\theta'_2 \\ 0 & \sin\theta'_2 & \cos\theta'_2 \end{pmatrix} \begin{pmatrix} \cos\theta'_3 & 0 & \sin\theta'_3 \\ 0 & 1 & 0 \\ -\sin\theta'_3 & 0 & \cos\theta'_3 \end{pmatrix} \begin{pmatrix} \cos\theta'_1 & -\sin\theta'_1 & 0 \\ \sin\theta'_1 & \cos\theta'_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ R_d &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_2 & \sin\theta_2 \\ 0 & \sin\theta_2 & \cos\theta_2 \end{pmatrix} \begin{pmatrix} \cos\theta_3 & 0 & \sin\theta_3 \\ 0 & 1 & 0 \\ -\sin\theta_3 & 0 & \cos\theta_3 \end{pmatrix} \begin{pmatrix} \cos\theta_1 & -\sin\theta_1 & 0 \\ \sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

Physical observables: 6 quark masses + 3 CKM angles # of parameters: $a_{1,2,3}$, $b_{1,2,3}=I_{RL}^{1,2(00)}$, $\theta_{1,2,3}$, $\theta'_{1,2,3}$ \Rightarrow 11-9=2 free parameters (6-5=1 for 2 generations)

Parameter fitting

Numerical results reproducing quark masses & mixings (2 parameter scan technically hard ⇒ 3 angles fixed & m_t unfixed)

(i) No up-type mixing case $R_u = 1_{3\times3} : a_1^2 \approx 0.1023, b_1^2 \approx 4.335 \times 10^{-9}, \sin \theta_1 \approx -2.587 \times 10^{-2}$ $a_2^2 \approx 0.9887, b_2^2 \approx 1.302 \times 10^{-4}, \sin \theta_2 \approx 2.224 \times 10^{-2}$ $a_3^2 \approx 0.9966, \quad \sin \theta_3 \approx 2.112 \times 10^{-4}$

(ii) No down-type mixing case

$$\begin{split} R_d &= 1_{3\times 3} : a_1^2 \approx 0.0650, b_1^2 \approx 3.973 \times 10^{-9}, \sin\theta_1' \approx 0.6704 \\ a_2^2 \approx 0.9931, b_2^2 \approx 2.235 \times 10^{-4}, \sin\theta_2' \approx -3.936 \times 10^{-2} \\ a_3^2 \approx 0.9966, \qquad \qquad , \sin\theta_3' \approx 1.773 \times 10^{-2} \end{split}$$

FCNC @tree level even in QCD sector

$$\mathcal{L}_{strong} \supset \frac{g_s}{\sqrt{2\pi R}} G_{\mu}^{(0)} \Big(\overline{\psi}_R^{i(0)} \gamma^{\mu} \psi_R^{i(0)} + \overline{\psi}_L^{i(0)} \gamma^{\mu} \psi_L^{i(0)} \Big) \\
+ g_s G_{\mu}^{(n)} \overline{\psi}_R^{i(0)} \gamma^{\mu} \psi_R^{j(0)} \Big(V_{dR}^{\dagger} I_{RR}^{(0n0)} V_{dR} \Big)_{ij} \\
+ g_s G_{\mu}^{(n)} \overline{\psi}_L^{i(0)} \gamma^{\mu} \psi_L^{j(0)} \Big[V_{dL}^{\dagger} \Big(U_3^{\dagger} I_{LL}^{(0n0)} U_3 + U_4^{\dagger} I_{LL}^{(0n0)} U_4 \Big) V_{dL} \Big]$$

0 mode sector: No mixing O.K.

Nonzero KK gluon couplings induce nontrivial flavor mixing

⇒ flavor mixing@tree level

KL-Ks mass difference

$$\Delta m_{K} \left(\mathsf{K}\mathsf{K} \right) = 2 \left\langle \overline{K} \left| \mathcal{L}_{eff}^{\Delta S=2} \right| K \right\rangle \approx \alpha_{S} C B_{1} R^{2} f_{K}^{2} m_{K} \sum_{n} \frac{1}{n^{2}} \left[I_{RR}^{1(0n0)} - I_{RR}^{2(0n0)} \right]^{2} I_{RR}^{i(0n0)} = \frac{1}{\sqrt{\pi R}} \int_{-\pi R}^{\pi R} \left(f_{R}^{(0)} \left(y \right) \right)^{2} \cos \left(\frac{n}{R} y \right)$$

Bag parameter: B1=0.57, $f_K \sim 1.23 f_{\pi}$, $m_K \sim 497 MeV$

Mode sum is finite

Exp. constraint:

$$\Delta m_{K}(NP) < 3.48 \times 10^{-12} \, MeV$$

 $R^{-1} \ge 2.8 TeV \sim 43 TeV$

Similar analysis applied to D & B systems

 $R^{-1} \ge 0.8 TeV \sim 14 TeV$

$K^0 - \overline{K}^0 : \mathcal{O}(10) TeV$ $D^0 - \overline{D}^0 : \mathcal{O}(1) TeV$ $B_d^0 - \overline{B}_d^0, B_s^0 - \overline{B}_s^0 : \mathcal{O}(1) TeV$

"GIM-like" mechanism

Above results is smaller than naïve order estimate

$$\frac{1}{M_{KK}^{2}} \overline{\psi} \psi \overline{\psi} \psi \Rightarrow \begin{cases} M_{KK} \geq 1000 TeV \left(K^{0} - \overline{K}^{0}, D^{0} - \overline{D}^{0}\right) \\ M_{KK} \geq 400 TeV \left(B_{d}^{0} - \overline{B}_{d}^{0}\right) \\ M_{KK} \geq 70 TeV \left(B_{s}^{0} - \overline{B}_{s}^{0}\right) \end{cases}$$

This apparent discrepancy can be understood since the "GIM-like" mechanism works in GHU

i.e. FCNC processes are automatically suppressed for 1st & 2nd generation of quarks

In the large bulk mass limit, the KK mode sum can be approximated as follows

$$S_{KK}^{LR} = \pi R \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \left(I_{RR}^{1(0n0)} - I_{RR}^{2(0n0)} \right)^{2} \qquad \text{exponential suppression!!} \\ \approx -\frac{\pi^{2}}{2} \left(e^{-2\pi RM^{1}} + e^{-2\pi RM^{2}} \right) \qquad \text{exponential suppression!!} \\ -\frac{\pi}{2R} \frac{\left(M^{1} \right)^{2} - M^{1} M^{2} + \left(M^{2} \right)^{2}}{M^{1} M^{2} \left(M^{1} - M^{2} \right)} \left(e^{-2\pi RM^{1}} - e^{-2\pi RM^{2}} \right) \left(\pi RM^{i} \gg 1 \right) \\ e^{-2\pi RM^{i}} \Leftrightarrow \frac{m_{q^{i}}^{2}}{m_{W}^{2}} \qquad \text{similar to } \\ \mathbf{GIM \ suppression} \qquad \frac{m_{c}^{2} - m_{u}^{2}}{m_{W}^{2}} \\ S_{KK}^{LL(RR)} = \pi R \sum_{n=1}^{\infty} \frac{1}{n^{2}} \left(I_{RR}^{1(0n0)} - I_{RR}^{2(0n0)} \right)^{2} \approx \frac{\pi}{8R} \frac{\left(M^{1} - M^{2} \right)^{2}}{M^{1} M^{2} \left(M^{1} + M^{2} \right)} \\ \mathbf{Power \ suppression} \end{cases}$$

More intuitive understanding of "GIM-like" suppression

FCNC is controlled by the factor

$$\left(I_{RR}^{1(0n0)} - I_{RR}^{2(0n0)}\right)^2 \qquad I_{RR}^{i(0n0)} = \frac{1}{\sqrt{\pi R}} \int_{-\pi R}^{\pi R} dy \frac{M^i}{e^{2\pi R M^i} - 1} e^{2M^i y} \cos\left(\frac{n}{R}y\right)$$

In $\pi MR \gg 1$ limit & for small mode index n

Width "1/M" of - Period $2\pi R/n$ of O mode function KK gluon mode function

Almost flat KK gluon mode function for fast exponential dumping 0 mode fermions

Almost flavor universal (similar to 0 mode sector)

As for the 3rd generation, GIM-like mechanism does not work M³=0 for top mass

Suppressed FCNC due to small mixing between 1-3 & 2-3 generations