Commissioning of the Belle II Time-Of-Propagation counter

Maeda Yosuke (N-lab) for the Belle II TOP group 9th Nov, 2016 KMI topics

content

introduction role of particle identification Belle II Time-Of-Propagation (TOP) counter operation test before installation commissioning after installation summary and prospects

Belle → Belle II

- The Belle experiment finished data taking at Jun, 2010
 Jupgrade to Belle II is on-going
- Belle II
 - ×40 luminosity by accelerator upgrade (KEKB → SuperKEKB)
 - □ integrated lumi. : 1 ab⁻¹ (Belle) \rightarrow 50 ab⁻¹
 - detector upgrade
 - outer structure is reused
 - to handle higher rate and improve performance

Particle ID in Flavor Physics

B⁺ DECAY MODES

9th Nov, 2016

0.5

Scale factor/

Confidence level (MeV/c)

2310

1911

2258

1839

2306

2065

2254

Fraction (Γ_i/Γ)

energy frontier case

high energy pp collision (ATLAS, CMS,...)

■Most hadronic objects are observed as a bundle of particle trac →do(can) not identify track by track

from ATLAS public page

PID algorithm in general

BELLE

muon

- penetrating track through the outer detector
- electron
 - energy in calorimeter (E/p)
- hadrons (protons, kaons, pions)
 - **\Box** time of flight, dE/dx \rightarrow protons
 - Identification of high-p kaons and pions is achieved with dedicated PID detectors.

6/29

 $B_1 \rightarrow J/\psi \overline{K}^{*}$

 $B_2 \rightarrow D^+\pi^-$

made by M. Yokoyama

 $\rightarrow K^-\pi^+\pi^+$

tools to identify particles

9th Nov, 2016

KMI topics

Cherenkov radiation for PID

 threshold type
 use Cherenkov threshold; see "hits" or "no hits"
 ex) Aerogel Cherenkov Counter (ACC) in Belle

 ring imaging Cherenkov counter
 measure the Cherenkov angle to get velocity information

RICH type PID detector

9th2010v, 2016

10m

5m

15m

Time-Of-Propagation counter

challenges

extreme timing resolution for each single photon (<50 ps) not only for photo sensor, but also for readout electronics mechanical property of radiator □ flatness, alignment... radiation tolerance

TOP counter in the Belle II exp't

from production to installation

- module production at Fuji hall
 initial operation test
- transportation to Tsukuba hall
 2nd check before installation
 commissioning
- after installation

data analysis scheme

this is temporary readout scheme; in the real experiment, only energy and timing information is read

first complete laser data

clear sharp peak
 All channels (512 ch.) are working.

9th Nov, 2016

657

10.87/10

49.8 3.5

239.7 0.0

8681

246 2 / 4

239.8 ± 0.01351

 0.2958 ± 0.009556

Mean

RMS

Underflow Overflow

 χ^2 / ndf

Constant

other data

hits from mirror reflection

Overflow γ^2 / ndf

Prob

Mean

first complete laser data

hit rate map (2D)

cosmic ray data

timing distribution (to trigger timing) clear hit peak of cosmic ray reflection by the mirror is seen in the expected timing

cosmic ray data

count # of hits in each event consistent with simulation expectation (~20)

module test schedule

Testing should finish in 5 months all the 16 modules in both Fuji and Tsukuba

Date (JST)	Major Activity	KEK Expert	KEK shifters	Remote/Data shifter
Mon Apr 18	Fuji M16	Tao, Maeda	Dmitri, Kichimi, Umberto	Hulya
Tue Apr 19	Install M07	Tao, Maeda	Dmitri, Umberto	Hulya
Wed Apr 20	Install M14	Maeda	Dmitri, Kichimi, Umberto	Hulya
Thu Apr 21	Install M02/M15	Maeda	Dmitri, Kichimi, Ale	Boqun
Fri Apr 22	Tsukuba M11	Maeda	Dmitri, Ale, Umberto	Boqun
Sat Apr 23		Maeda	Dmitri, Ale	Hulya
Sun Apr 24		Maeda	Dmitri, Ale	Hulya
Mon Apr 25	Tsukuba M10	Maeda	Kichimi, Ale	Kichimi
Tue Apr 26		Maeda	Kichimi, Ale	Hulya
Wed Apr 27		Tao, Maeda	Hulya	Hulya
Thu Apr 28	Tsukuba M16	Tao, Maeda	Kichimi	Kichimi
Fri Apr 29		Maeda	Kichimi	Hulya
Sat Apr 30		Maeda	Hulya	Hulya
Sun May 01	Tsukuba M17	Maeda	Hulya	Hulya
Mon May 02	last produ	Maeda	Ale	Bryan
Tue May 03		Maeda	Ale	Bryan
Wed May 04	module	Maeda	Ale	Bryan
Thu May 05		???	Ale, Hulya	Hulya
Fri May 06		???	Ale, Hulya	Hulya
Sat May 07		???	Kichimi, Ale	Kichimi

tested at the same time.

Belle II detector

TOP modules

installation

■ The first module was installed in Feb, and the rest in Apr-May

Belle2 Collaboration @belle2collab

フォロー中

Installation Of The Belle II TOP Detector Completed. More info: bit.ly/1V7bQWM

③ 翻訳を表示

operation after installation

- Many components to be used in the real exp't are available.
- need to find problems before installation of inner detectors
- concern : operation in the magnetic field
 - performance of MCP-PMTsmechanical effect to PMTs

operation in the mag.-field

problems in the first magnet excitation

PMT side tubes were magnetic
 Strongly affected by magnetic force in 1.5-T field
 Motion of PMTs broke optical and electrical contant

9th Nov, 2016

readout

electronics

countermeasure

insert plastic spacer

protection to the movement in the magnetic field

silicon rubber

MMMM

21th Sep, 2016

in-situ cosmic ray data taking

trigger counters were prepared for the in-situ cosmic ray data taking

reuse of scintillator bars and PMTs from the Belle TOF counter

non-magnetic support structure

□trigger rate

□~0.05 Hz in the 1.5-T field

2-week data taking with the field

cosmic ray data

cosmic ray signals are successfully observed in both 0-T and 1.5-T field

no drastic drop in # of photons

black:0T

9th Nov, 2016

current status

After the performance test in the magnetic field, no serious problems were found

→inner detector (CDC) was installed

Belle² Collaboration @belle²collab · 10月14日 Belle II Central Drift Chamber was successfully installed!

summary and prospect

- PID is an essential part of flavor physics.
- The Belle II TOP counter is a novel PID detector, using propagation time to reconstruct Cherenkov ring image
- We successfully finished detector installation and commissioning, where we confirmed good
- Still, we do not succeeded in evaluation of PID performance.
 - →will be done in Belle II global cosmic data taking.