NOP-T New approach to CP-violation search

Masaaki Kitaguchi

Center for experimental studies, KMI, Nagoya University Laboratory for Particle Properties (Φ-Lab.)

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

Contents

Neutrons for CP-violation search

T-odd correlation in compound nuclei

Feasibility studies and R&Ds

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

CP invariance

The laws of physics should be the same if a particle is interchanged with its antiparticle (C symmetry), and when its spatial coordinates are inverted (P symmetry).

This means physics is NOT the same between 'particle and antiparticle'

More large CP violation !

Larger CP violation (from unknown source) is required !

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

oade

Fundamental Physics with Neutrons

suitable for precision measurement

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

Neutron EDM

Spin is reversed.

T reversal

Present upper limit

is approaching to the predictions of some physics beyond the standard model of particle physics.

Standerd Model: New Physics (SUSY ...) : $|d_n| \sim 10^{-27} \sim -28 \ e \ cm$

page

ΚM

Neutron Electric Dipole Moment search

CPT theorem says **CP violation is equivalent to T violation.**

EDM signals T violation.

ILL-Sasex experiment with UCNs

Present upper limit $|d_n| < 3.0 \times 10^{-26} e \text{ cm}$ is close to beyond standard model.

Intense UCN sources are now constructing at PSI, TRIUMF, SNS,...

oade

Neutron EDM

Dense UCNs

Precessions of stored UCNs are measured.

$$\frac{\omega_{\pm}}{2\pi} = 3 \times 10^{1} \frac{B}{1\mu T} \pm 5 \times 10^{-8} \frac{d_{n}}{10^{-26} \text{e} \cdot \text{cm}} \frac{E}{10 \text{kV/cm}}$$

$$1 \,\mu \text{T} \qquad 1 \text{fT equiv.}$$

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

T-odd Correlation in Co

σ

n

 ${m k}$

Energy

 $d_{\mu} d_{e}$

 $C_{S,P,T}$

eN couplings

molecules

(YbF, PbO, HfF⁺)

Atoms in traps (TI,Rb,Cs)

Muon EDM

TeV

QCD

nuclear

atomic

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

page 12 I M

 $\boldsymbol{\sigma} \cdot (\boldsymbol{k} imes \boldsymbol{I})$

P-violation is enhanced in p-wave resonance of compound nuclei

P-violation in nucleon

P-violation is enhanced in p-wave resonance of compound nuclei

232Th 139La Т 108**Pd** 10 ²³²Th ¹¹³Cd ¹⁰⁸Pd ²³²Th 238U ¹³¹Xe ¹⁰⁷Ag 232Th longitudinal asymmetry 238 113Cd 232Th ⁸¹Br ²³²Th 121**Sb** 127 🧃 |Al| [%] 115in 🍯 ¹⁰⁹Ag ¹¹⁵In 113**Cd** 9 ¹¹⁷Sn 133Cs 0.1 10 100 1000 1 En [eV] Mitchell, Phys. Rep. 354 (2001) 157

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

page 14

NOP-T

The interference between s-wave and p-wave results in the interference between partial waves with different channel spin. Gudkov, Phys. Rep. 212 (1992) 77.

 $\Delta \sigma_{\rm CP} = \kappa(J) \frac{w}{r} \Delta \sigma_{\rm P}$ T-violation $\kappa(I - \frac{1}{2}) = (-1)^{2I} \left(1 + \frac{1}{2} \sqrt{\frac{2I - 1}{I + 1}} \frac{y}{x} \right)$ $\kappa(I - \frac{1}{2}) = (-1)^{2I+1} \frac{I}{I+1} \left(1 - \frac{1}{2} \sqrt{\frac{2I+3}{I}} \frac{y}{x} \right)$ $x^2 = \frac{\Gamma_{p,1/2}^n}{\Gamma_p^n} \qquad \qquad y^2 = \frac{\Gamma_{p,3/2}^n}{\Gamma_p^n}$ $x^{2} + y^{2} = 1$ $x = \cos\phi \qquad \qquad y = \sin\phi$ Unknown parameter

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

page 16

The interference between s-wave and p-wave results in the interference between partial waves with different channel spin. Gudkov, Phys. Rep. 212 (1992) 77.

- $\boldsymbol{J} = \boldsymbol{l} + \boldsymbol{s} + \boldsymbol{I}$ $P: |lsI\rangle \rightarrow (-1)^l |lsI\rangle$
- $egin{aligned} m{j} = m{l} + m{s} \ S = m{s} + m{I} \end{aligned} \qquad T: |lsI
 angle o (-1)^{i\pi S_y} K |lsI
 angle \end{aligned}$

$$\begin{split} |((Is)S,l)J\rangle &= \sum_{j} \left\langle (I,(sl)j)J|((Is)S,l)J \right\rangle |(I,(sl)j)J\rangle \\ &= \sum_{j} (-1)^{l+s+I+J}\sqrt{(2j+1)(2S+1)} \left\{ \begin{array}{cc} I & s & l \\ J & S & j \end{array} \right\} |(I,(sl)j)J\rangle \\ x &= \sqrt{\frac{\Gamma_{p}^{n}(j=1/2)}{\Gamma_{p}^{n}}} \quad y = \sqrt{\frac{\Gamma_{p}^{n}(j=3/2)}{\Gamma_{p}^{n}}} \quad x_{S} = \sqrt{\frac{\Gamma_{p}^{n}(S=I-1/2)}{\Gamma_{p}^{n}}} \quad y_{S} = \sqrt{\frac{\Gamma_{p}^{n}(S=I+1/2)}{\Gamma_{p}^{n}}} \\ z_{j} &= \left\{ \begin{array}{cc} x & (j=1/2) \\ y & (j=3/2) \end{array} \right\}, \quad \tilde{z}_{S} = \left\{ \begin{array}{cc} x_{S} & (S=I-1/2) \\ y_{S} & (S=I+1/2) \end{array} \right\} \quad \tilde{z}_{S} = \sum_{j} (-1)^{l+I+j+S} \sqrt{(2j+1)(2S+1)} \left\{ \begin{array}{cc} l & s & j \\ I & J & S \end{array} \right\} z_{j} \end{split}$$

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

page 17

Gudkov, Phys. Rep. 212 (1992) 77.

NOP-T

T-violation is also enhanced?

$$\Delta \sigma_{\rm CP} = \kappa(J) \frac{w}{v} \Delta \sigma_{\rm P}$$

T-violation

 $\begin{array}{ccc} g_{CP}/g_P & P-violation \\ 10^{-3} & 10^{-2} \sigma tot \end{array}$

Estimation in effective field theory

Y.-H.Song et al., Phys. Rev. C83 (2011) 065503

 $\begin{aligned} \left| \Delta \sigma_{\rm T}^{nA} \right| &\leq 10^6 \times \kappa(J) \left[\bar{g}_{\pi}^{(0)} + 0.26 \bar{g}_{\pi}^{(1)} - 0.0012 \bar{g}_{\eta}^{(0)} + 0.0034 \bar{g}_{\eta}^{(1)} \right. \\ &\left. -0.0071 \bar{g}_{\rho}^{(0)} + 0.0035 \bar{g}_{\rho}^{(1)} + 0.0019 \bar{g}_{\omega}^{(0)} - 0.00063 \bar{g}_{\omega}^{(1)} \right] \end{aligned}$

 $\simeq 10^5 [b] \times \kappa(J) \times \bar{g}_{\pi}^{(0)}$

$$compare with EDM$$

$$d_n = \frac{e}{m_N} \frac{g_\pi(\bar{g}_\pi^{(0)} - \bar{g}_\pi^{(2)})}{4\pi^2} \ln \frac{m_N}{m_\pi}$$

$$\simeq 0.14(\bar{g}_\pi^{(0)} - \bar{g}_\pi^{(2)})$$

from upper limit of EDM $|d_n| < 2.9 \times 10^{-26} \,\mathrm{e\,cm}$ $\rightarrow \bar{g}_{\pi}^{(0)} < 2.5 \times 10^{-10}$

page 18

$$\left| \Delta \sigma_{\mathrm{T}}^{nA} \right| < 2.5 \times 10^{-4} [\mathrm{b}] \times \kappa(J)$$

More sensitive measurement with $0.25[mb] \times \kappa(J)$

Masaaki Kitaguchi, Nagoya University

page 19

KM

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

	¹³⁹ La	⁸¹ Br	¹¹⁷ Sn	¹³¹ Xe	¹¹⁵ In
large $\Delta \sigma_{P}$	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
low E _p [eV]	\bigcirc	\bigcirc	0	0	\bigtriangleup
small nonzero I	7/2 $ riangle$	3/2 〇	1/2 (3/2 〇	9/2 $ riangle$
isotopic abn	\bigcirc	0	×	\bigtriangleup	\bigcirc
large [κ(J)]	?	?	?	◎?	?
method of pol.	DNP			OP	

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

Feasibility studies and R&D

Target of NOP-T

Target nuclei

Large T-violating effect

Easy to polarize

Epithermal neutrons

High-intensity beamline

Polarized neutrons

Target of NOP-T

NOP-T

Nuclei with large $\kappa(J)$ is suitable.

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

Cross section of the (n,gamma) reaction

$$\frac{\mathrm{d}\sigma(\mathbf{n}_{\gamma},\lambda)}{\mathrm{d}\Omega} = \frac{1}{2} \{ a_0 + a_1(\mathbf{n}_n \cdot \mathbf{n}_{\gamma}) + \tilde{a}_2 \boldsymbol{\sigma} \cdot [\mathbf{n}_n \times \mathbf{n}_{\gamma}] + a_3 [(\mathbf{n}_n \cdot \mathbf{n}_{\gamma})^2 - \frac{1}{3}] \\ + \tilde{a}_4(\mathbf{n}_n \cdot \mathbf{n}_{\gamma}) \boldsymbol{\sigma} \cdot [\mathbf{n}_n \times \mathbf{n}_{\gamma}] + a_5 \lambda (\boldsymbol{\sigma} \cdot \mathbf{n}_{\gamma}) + a_6 \lambda (\boldsymbol{\sigma} \cdot \mathbf{n}_n) + a_7 \lambda \\ \times [(\boldsymbol{\sigma} \cdot \mathbf{n}_{\gamma})(\mathbf{n}_{\gamma} \cdot \mathbf{n}_n) - \frac{1}{3}(\boldsymbol{\sigma} \cdot \mathbf{n}_n)] + a_8 \lambda [(\boldsymbol{\sigma} \cdot \mathbf{n}_n)(\mathbf{n}_n \cdot \mathbf{n}_{\gamma}) - \frac{1}{3}(\boldsymbol{\sigma} \cdot \mathbf{n}_{\gamma})] \\ + a_9(\boldsymbol{\sigma} \cdot \mathbf{n}_{\gamma}) + a_{10}(\boldsymbol{\sigma} \cdot \mathbf{n}_n) + a_{11}[(\boldsymbol{\sigma} \cdot \mathbf{n}_{\gamma})(\mathbf{n}_{\gamma} \cdot \mathbf{n}_n) - \frac{1}{3}(\boldsymbol{\sigma} \cdot \mathbf{n}_{\gamma})] \\ + a_{12}[(\boldsymbol{\sigma} \cdot \mathbf{n}_n)(\mathbf{n}_n \cdot \mathbf{n}_{\gamma}) - \frac{1}{3}(\boldsymbol{\sigma} \cdot \mathbf{n}_{\gamma})] + a_{13}\lambda + a_{14}\lambda(\mathbf{n}_n \cdot \mathbf{n}_{\gamma}) \\ + \tilde{a}_{15}\lambda\boldsymbol{\sigma} \cdot [\mathbf{n}_n \times \mathbf{n}_{\gamma}] + a_{16}\lambda [(\mathbf{n}_n \cdot \mathbf{n}_{\gamma})^2 - \frac{1}{3}] \\ + \tilde{a}_{17}\lambda(\mathbf{n}_n \cdot \mathbf{n}_{\gamma})\boldsymbol{\sigma} \cdot [\mathbf{n}_n \times \mathbf{n}_{\gamma}] \}.$$
 Flambaum, Nucl. Phys. A435 (1985) 352

ermination of ϕ

(n, γ) reaction (for unpolarized case)

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \frac{1}{2} \left(a_0 + a_1 \mathbf{k}_n \cdot \mathbf{k}_\gamma + a_3 \left((\mathbf{k}_n \cdot \mathbf{k}_p)^2 - \frac{1}{3} \right) \right) \\ a_0 &= \sum_{J_s} |V_1(J_s)|^2 + \sum_{J_{s,j}} |V_2(J_{\mathrm{p}j})|^2 \\ a_1 &= 2\operatorname{Re} \sum_{J_s, J_{\mathrm{p}}, j} V_1(J_s) V_2^*(J_{\mathrm{p}}j) P(J_s J_{\mathrm{p}} \frac{1}{2} j 1 I F) \\ a_3 &= \operatorname{Re} \sum_{J_{s,j}, J_{\mathrm{p}}', j'} V_2(J_{\mathrm{p}j}) V_2^*(J_{\mathrm{p}}'j') P(J_{\mathrm{p}} J_{\mathrm{p}}' j j' 2 I F) 3\sqrt{10} \begin{cases} 2 & 1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 2 & j & j' \end{cases} \\ V_1 &= \frac{1}{2k_s} \sqrt{\frac{E_s}{E}} \frac{\sqrt{g\Gamma_s^n \Gamma_\gamma}}{\sum E - E_s + i\Gamma_s/2} \\ V_2(j) &= \frac{1}{2k_p} \sqrt{\frac{E_p}{E}} \sqrt{\frac{\Gamma_p^n}{\Gamma_p^n}} \frac{\sqrt{g\Gamma_p^n \Gamma_\gamma}}{\sum E - E_p + i\Gamma_p/2} \end{cases} \\ V_2(j = 3/2) &= yV_2 = V_2 \operatorname{Sin}\phi \\ P(JJ'jj'kIF) &= (-1)^{J+J'+j'+I+F} \frac{3}{2} \sqrt{(2J+1)(2J'+1)(2j'+1)(2j'+1)} \begin{cases} j & j & j' \\ I & J' & j \end{cases} \begin{cases} k & 1 & 1 \\ F & J & J' \end{cases} \end{aligned}$$

(n, γ) reaction (for unpolarized case)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2} \left(a_0 + a_1 \mathbf{k}_n \cdot \mathbf{k}_\gamma + a_3 \left((\mathbf{k}_n \cdot \mathbf{k}_\gamma)^2 - \frac{1}{3} \right) \right)$$

$$a_1 \equiv a_{1x} \cos \phi + a_{1y} \sin \phi$$

$$a_3 \equiv a_{3xy} \cos \phi \sin \phi + a_{3yy} \sin^2 \phi$$

$$x : j = 1/2 \ x = \cos \phi$$

$$y : j = 3/2 \ y = \sin \phi$$

$$a_{1x}$$
neutron energy [eV]

-2

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

page 28

NOP-T

(n, γ) reaction measurement at J-PARC BL04 ANNRI

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2} \left(a_0 + a_1 \mathbf{k}_n \cdot \mathbf{k}_\gamma + a_3 \left((\mathbf{k}_n \cdot \mathbf{k})^2 - \frac{1}{3} \right) \right) \quad \begin{aligned} a_1 &\equiv a_{1x} \cos \phi + a_{1y} \sin \phi \\ a_3 &\equiv a_{3xy} \cos \phi \sin \phi + a_{3yy} \sin^2 \phi \end{aligned}$$

Single unknown parameter $\mathcal{K}(J)$ can be estimated by observing the shape of p-wave resonanc¹

Sample Materials : ^{nat}La , $La^{nat}Br_3$, ^{nat}In Intensity : $\sim 3 \times 10^5 \text{ n/cm}^2/\text{s}$: 0.9 eV < En < 1.1 eV @ 300 kW

NOP-T : New approach to CP-viola KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

Cluster-Detecto

NOP-T

(n, y) reaction measurement at J-PARC BL04 ANNRI

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2} \left(a_0 + a_1 \mathbf{k}_n \cdot \mathbf{k}_\gamma + a_3 \left((\mathbf{k}_n \cdot \mathbf{k})^2 - \frac{1}{3} \right) \right) \quad \begin{aligned} a_1 &\equiv a_{1x} \cos \phi + a_{1y} \sin \phi \\ a_3 &\equiv a_{3xy} \cos \phi \sin \phi + a_{3yy} \sin^2 \phi \end{aligned}$$

p-wave resonance was observed clearly

T. Okudaira, et.al., https://arxiv.org/abs/1710.03065

5161 keV

OP-T : New approach to CF Oct. 2017. /lasaaki Kitaguchi, Nagoya

Shape of resonance peak changes according to the angle

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

page 34 🔒 🙀

Experimental plan

p-wave resonance $E_n = 3.2 \text{ eV}$

 $\Gamma_n = 0.1 \text{ eV}$

NOP-T

Neutron Polarization

NOP-T

³He neutron spin filter was installed to BL04

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

Target Polarization

NOP-T

La DNP

Yamagata Univ. Tohoku Univ. Hiroshima Univ. Nagoya Univ.

Nd³⁺LaAlO₃

cm

DNP in Yamagata

New crystal

by Tohoku univ.

 $\langle N_2 \rangle$

Rb

2.3T, 0.3K P~50% was reported (Kyoto Univ. PSI) **Retry with better crystals**

Xe SEOP UBC Spin Exchange Optical Pumping Rb polarized with laser 129Xe was reported. Try solid ¹³¹Xe.

Br Triplet-DNP RIKEN

Collaboration

NOP-T

NOPTREX

Nagoya University

H.M.Shimizu, M.Kitaguchi, K.Hirota, T.Okudaira, A.Okada, K.Nagamoto, M.Yokohashi, T.Yamamoto, I.Itoh, T.Morishima, G.Ichikawa, Y.Kiyanagi

Kyushu University

T.Yoshioka, S.Takada, J.Koga JAEA

K.Sakai, A.Kimura, H.Harada **Univ. British Columbia**

T.Momose **Hiroshima Univ.**

M.linuma

Yamagata Univ.

T.Iwata, Y.Miyachi

RIKEN

N.Yamanaka, Y.Yamagata

KEK

T.Ino, S.Ishimoto, K.Taketani, K.Mishima **Kyoto Univ.**

M.Hino

NOP-T : New approach to CP-violation search KMI Topics, 11 Oct. 2017, Masaaki Kitaguchi, Nagoya University

Indiana University W.M.Snow, J.Curole Univ. South Carolina V.Gudkov Oak Ridge National Lab. J.D.Bowman, S.Penttila, X.Tong Kentucky Univ. B.Plaster, D.Schaper **Paul Scherrer Institut** P.Hautle Southern Illinois University **B.M.Goodson** Univ. California Berkeley A.S.Tremsin

Summary of T-violation search

T violation is enhanced in compound nuclei reaction. (Sensitivity can be better than EDM experiment.)

T violation search in compound nuclei experiment requires complex system.

Intense neutron source

Epithermal neutron polarizer

Target polarization

Fast and efficient detector for epithermal neutrons

Neutron spin control

We start US-Japan collaboration NOPTREX.

ade