Toward an understanding of the exotic hadron: X(3872)

Y. Kato

- Introduction
- Belle experiment (focusing on hadron spectroscopy)
- X(3872)
 - Review on X(3872)
 - Measurement of Br(B⁺->K⁺ X(3872))

Phys. Rev. D 97, 012005

- Prospect at Belle II
- Summary

Origin of the mass

Our mass is primary made from

- Atoms $? \rightarrow$ Yes!
- Nucleus ? \rightarrow Yes!
- Nucleons? \rightarrow Yes!
- Quarks? \rightarrow ?

Quark and nucleon mass

*from PDG

p MASS (MeV)

The mass is known much more precisely in u (atomic mass units) than in MeV. The conversion from u to MeV, 1 u = 931.494028 \pm 0.000023 MeV/ c^2 (MOHR 08, the 2006 CODATA value), involves the relatively poorly known electronic charge.

VALUE (MeV)	DOCUMENT I	D	TECN	COMMENT		
938.272013 ±0.000023	MOHR	08	RVUE	2006 CODATA value		
 vve do not use the following 	data for avera	ges, fits,	limits, (etc. • • •		
938.272029±0.000080	MOHR	05	RVUE	2002 CODATA value		
938.271998±0.000038	MOHR	99	RVUE	1998 CODATA value		
938.27231 ±0.00028	COHEN	87	RVUE	1986 CODATA value		
938.2796 ±0.0027	COHEN	73	RVUE	1973 CODATA value		

п

n MASS (MeV)

The mass is known much more precisely in u (atomic mass units) than in MeV. The conversion from u to MeV, 1 u = 931.494028\pm0.000023 MeV/ c^2 (MOHR 08, the 2006 CODATA value), involves the relatively poorly known electronic charge.

VALUE (MeV)	DOCUMENT ID	TECN		COMMENT			
939.565346±0.000023	MOHR	08	RVUE	2006 CODATA value			
mo do not nos tao tallanlas e	lata far susranor	40 t m	Undte o	** • • •			

- Mass of up, down quarks are several MeV/c². (given by Higgs field).
- proton is made from uud.
- Mass of proton is ~ 1000 MeV/c²
 → quark mass is only ~1% of nucleon mass.
- What is the origin of the mass?

Proton is not a simple bound state of 3 quark, but more complicated object.

$$\mathcal{L} = -\frac{1}{2} \operatorname{tr} \left[G_{\mu\nu} G^{\mu\nu} \right] + \overline{q} \, i \, \gamma^{\mu} D_{\mu} q - \overline{q} \, \mathcal{M} q$$

Quantum Chromo dynamics(QCD) = dynamics of quarks and gluons Nucleon mass is dynamically generated from QCD

- Non-perturbative in the hadron scale
- •Two phenomena in the hadron physics.
- Mass generation.
- Quark confinement (isolated quark has never been observed).
- Surprising thing is these two happens simultaneously.
 Generally, bound states makes mass lighter (like nucleus) but quark inside hadron acquire mass.

Constituent quark model

QCD can not be solved \rightarrow effective theory

1. Give mass of ~300 MeV/c² to quarks by hand
 = Constituent quark mass

2. Hyper fine interaction.

That's (almost) all!

Too simple compared with complex QCD...

Success of quark model and further

Success of constituent quark model

- Why it works so well?
 - What is the adaptive limit?
 - How interaction/constituent quark mass changes in different environment?

B-factory is a powerful probe!

KMI Topics

Exotic hadron!

Belle experiment

- Asymmetric energy e⁺e⁻ collider to test KM theory in B-meson decays.
- 7.7 × 10⁸ BB^{bar} events are collected.
- Belle: General purpose detector.
- Enabled hadron spectroscopy.

"New hadrons" from B-factories

Hadron Type

	Charmonium (like) = cc ^{bar}	D _(s) = cu ^{bar} , cs ^{bar}	Charmed baryon = cud, cus, css,	Bottomonium = bb ^{bar}
B-decay	η _c (2S) <u>X(3872)</u> X(3915) Z _c (4050) Z _c (4250) Z _c (4430) Z _c (4200)	D* ₀ (2400) D ₁ (2430) D* _{s1} (2700)	Ξ _c (2930)	Belle BaBar
Initial State Radiation	<mark>Y(4260)</mark> Z(3900) Y(4008) Y(4360) Y(4660)			
Double charmonium	X(3940) X(4160)			
Two photon	χ _{c2} (2P)			
e⁺e⁻→cc ^{bar}		D ₀ (2550) D _J *(2600) D _J *(2640) D _J (2750) D _{s0} (2317) D _{sJ} (2860) D _{sJ} (3040)	$Σ_c(2800) \land_c(2940)$ $Ξ_c(2980) Ξ_c(3080)$ $Ω_c(2770) Ξ_c(3055)$	
Y(5S) decay	hadrons!			$Z_{b}(10610)$ $Z_{b}(10650)$ $h_{b}(1P),h_{b}(2P)$
(Some stat	tes may be missed			η _b (1S),η _b (2S)

Reaction

X(3872)

10

First observation in 2003

²⁰¹⁸/ Most cited among ~500 papers in Belle (>1400@INSPIRE)

Confirmed by many experiments 12

Understanding of the property.

A strange hadron:X(3872)

13

• No quark model prediction in such mass region

DD^{*} Molecular state?(1) 14

The most natural interpretation is DD* molecular state

$$J^{P}=0^{-1} D\left(\begin{matrix} \widehat{C} \\ \overline{u} \end{matrix}\right) = \pi \left(\begin{matrix} \widehat{C} \\ u \end{matrix}\right) \overline{D}_{J^{P}=1^{-1}}^{*}$$

• Narrow width \rightarrow DD^{*} has J^P=1⁺, whereas DD has J^P=0⁺

 π exchange is forbidden for DD but allowed for DD*

Spin-parity can be conserved with orbital angular momentum.

KMI Topics

Molecular state? (2)

Isospin is broken in the decay

I=0 Eigen state is $(|D^0 D^{*0} > + |D^+ D^{*-} >) / \sqrt{2}$

• The mass difference of D⁰D^{*0} and D⁺D^{*-} is around 8 MeV (M_u<M_d)

This mass difference is large compared with binding energy.
 (<1 MeV)

→The contribution of D⁰D^{*0} becomes large and Isospin 0 and 1 are mixed. Phys.Lett. B590 (2004) 209-215

J^{PC} of DD* molecule should be 1⁺⁺

KMI Topics

Determination of J^{PC}

Pure molecular state?

Phys.Rev.Lett.93:072001,2004

80% comes from "prompt production" (not from B decay).
If X(3872) is pure molecular state, binding energy is small.
→Size is large: Radius is ~8 fm

 \rightarrow Prompt production cross section should be small.

Measurement :3.1 \pm 0.7 nb > \Leftrightarrow Prediction : 0.071-0.11 nb

KMI Topics

Measurement by LHC/ATLAS

Cross section × Br(X(3872) \rightarrow J/ ψ π π)

JHEP01(2017)117

 The p_t dependence of prompt production is consistent with theoretical calculation for the production of χ_{c1}(2P). (Phys. Rev. D 96, 074014)

 \rightarrow Suggesting X(3872) has $\chi_{c1}(2P)$ component.

- In the calculation, the product of..
 - Fraction of $\chi_{c1}(2P)$ in X(3872)
 - Br(X(3872) -> J/ψπ⁺π⁻)

is set to be 0.014 for the normalization.

- If Br(X(3872)->J/ψπ⁺π⁻) is determined, the fraction of χ_{c1}(2P) can be determined.
- This leads to the cc^{bar}-DD* coupling.

Why Br(X(3872) \rightarrow J/ $\psi \pi \pi$) not measured? 19

- Usually X(3872) is reconstructed by invariant-mass.
 In other words, detect all the decay object of X
- In this way, only the product of two branching fractions can be measured.
- Both are important (production, decay), but product is less useful.
 → We first need to measure the Br(B⁺→X(3872) K⁺) By measuring it, we can extract Br(X(3872)→J/ψπ⁺π⁻), too.

Strategy to understand X(3872) 20

Increase the dynamical information drastically!

KMI Topics

Principle of the measurement

- Extract Br $(B^+ \rightarrow X(3872)K^+) \rightarrow Do not see X(3872)decays$
- \rightarrow Use unique feature of B-factory
- Reconstruct B mesons hadronically decays (called tag side)
- Reconstruct K⁺ mesons from the other B meson.
- Reconstruct X from Missing mass: $M_x^2 = (P_{beam} P_{BTag} P_{K+})^2$
- This measurement is impossible at LHCb
 - Final state is not B meson pair.
 - Initial energy not known as it is a collision of partons.

71

K⁺ Missing Mass distribution

2(

X _{cc}	σ	Br (B ⁺ →X _{cc} K ⁺) (10 ⁻⁴)	BaBar's (10 ⁻⁴)	PDG (10 ⁻⁴)
η _c	14.2	$12.0 \pm 0.8 \pm 0.7$	$8.4 \pm 1.3 \pm 0.8$	9.6 ± 1.1
J/ψ	13.7	$8.9 \pm 0.7 \pm 0.5$	$8.1 \pm 1.3 \pm 0.7$	10.26 ± 0.031
χ_{c0}	2.2	$2.0 \pm 0.9 \pm 0.1$ (<3.3)	<1.8	1.50 ^{+0.15} -0.14
χ_{c1}	6.8	$5.8 \pm 0.9 \pm 0.5$	<2.0	4.79±0.23
η _c (2S)	4.1	$4.8 \pm 1.1 \pm 0.3$	$3.4 \pm 1.8 \pm 0.3$	3.4 ± 1.8
ψ(2S)	6.6	$6.4 \pm 1.0 \pm 0.4$	$4.9 \pm 1.6 \pm 0.4$	6.26 ± 0.24
ψ(3770)	-	$-0.2\pm1.4\pm0.0$ (<2.3)	$3.5 \pm 2.5 \pm 0.3$	4.9 ± 1.3
X(3872)	1.1	$1.2 \pm 1.1 \pm 1.1$ (<2.6)	<3.2	(<3.2)
X(3915)	0.3	$0.4 \pm 1.6 \pm 0.0$ (<2.8)	-	-

• The best precision for η_c , $\eta_c(2S)$. First significant measurement for $\eta_c(2S)$

• The most stringent upper limit for X(3872). The first limit for X(3915)

• For other states, the result is basically consistent with world average.

- The product of "fraction of $\chi_{c1}(2P)$ " and "Br(X(3872) $\rightarrow J/\psi \pi^+\pi^-$)" is 0.014±0.06 from LHC result (Phys. Rev. D 96, 074014).
- Br(B⁺ \rightarrow X(3872) K⁺) × Br(X(3872) × J/ $\psi\pi^{+}\pi^{-}$) = (8.6±0.8) × 10⁻⁶ (from exclusive measurements).
- ⁻ Br(B⁺→X(3872) K⁺) < 2.6 × 10⁻⁴ (This measurement) → Br (X(3872) → J/ $\psi\pi^+\pi^-$) > 3.2 × 10⁻²
 - → The fraction of $\chi_{c1}(2P) < ~40\%$ (my personal calculations)
- [•] The dominant contribution of X(3872) is coming from DD*

Belle → Belle II

Aim to find physics beyond the Standard Model

First collision happened!

26

Prospect of X(3872) study at Belle II 27

- We can determine the Br(B⁺→X(3872) K⁺) with ~7σ with 50 ab⁻¹ (naïve extrapolation from luminosity)
- The other important variable for X(3872) is total width.
 Only the upper limit of 1.2 MeV is determined.
- From the total width and branching fractions, partial width of each X(3872) decay mode can be determined.
 - → Compare these with "molecule and $\chi_{c1}(2P)$ " picture or any other model for X(3872) multidirectionally

Strategy for Belle II

- Belle opened new era in the hadron spectroscopy.
- X(3872) is a candidate of exotic hadron, and studied a lot in this decade.
- Br($B^+ \rightarrow X(3872)$) is one of the key measurements to understand its nature.
- The most stringent upper limit is set by using missing mass technique.
- Belle II just started!
- Stay tuned for the exciting results from Belle II !!

Belle detector

K⁺ Missing Mass distribution (all region)

Discussion: X(3872) (2)

- $Br(B^+ \rightarrow K^+ X(3872) \ge \Sigma Br(B^+ \rightarrow K^+X(3872) \times (X(3872) \rightarrow f))$ $\rightarrow Br(B^+ \rightarrow X(3872) K^+) \ge 1.0 \times 10^{-4}$
- The fraction of $\chi_{c1}(2P)$ is roughly 15% 40% (not small fraction)
- We need more experimental information to check this interpretation can comprehensively explain data (I do not 100% believe χ_{c1}(2P)-DD* molecular scenario).

Discussion on $\eta_c(2S)$

- Firstly observed in the $B^+ \rightarrow K^+$ $\eta_c(2S)$, $\eta_c(2S) \rightarrow (K^-K^0\pi^+)$ decay (Belle: Phys. Rev. Lett. 89, 102001)
- Thought to be the radial excitation of $\eta_c(1S)$.
 - Determination of branching fraction

This mea

$$\frac{Br(B^{+} \to \eta_{c}(2S)K^{+}) \times Br(\eta_{c}(2S) \to K\overline{K}\pi)}{Br(B^{+} \to \eta_{c}K^{+}) \times Br(\eta_{c} \to K\overline{K}\pi)} = (9.6^{+2.0}_{-1.9} + 2.5) \times 10^{-2} \dots (1)_{\text{PHYSIGAL REVIEW D 78, 012006 (2008)}}$$

$$Br(B^{+} \to \eta_{c}K^{+}) \times Br(\eta_{c} \to K\overline{K}\pi) = (6.88 \pm 0.77^{+0.55}_{-0.66}) \times 10^{-5} \dots (2)$$
surement
$$Br(B^{+} \to \eta_{c}(2S)K^{+}) = (4.9 \pm 1.1 \pm 0.3) \times 10^{-4} \dots (3)$$

$$\to Br(\eta_{c}(2S) \to K\overline{K}\pi) = (1.3 \pm 0.4 \pm 0.4) \times 10^{-2}$$
(neglecting correlation for sustamatic upcontain

(neglecting correlation for systematic uncertainty)

Determination of two photon width

$$Br(\eta_{c}(2S) \rightarrow K\overline{K}\pi) \times \Gamma(\eta_{c}(2S) \rightarrow \gamma\gamma) = (0.041 \pm 0.004 \pm 0.006) \quad keV \quad \text{PRD 74, 034001 (2006)}$$

$$\rightarrow \Gamma(\eta_{c}(2S) \rightarrow \gamma\gamma) = (3.2 \pm 1.0 \pm 1.0) \quad keV \Leftrightarrow \Gamma(\eta_{c} \rightarrow \gamma\gamma) = (5.0 \pm 0.4) \quad keV$$

$$\frac{\Gamma(\eta_{c}(2S) \rightarrow \gamma\gamma)}{\Gamma(\eta_{c} \rightarrow \gamma\gamma)} = 0.64 \pm 0.28$$

$\Gamma_{\gamma\gamma}$	Experiments	This paper	Ackleh [4]	Kim [5]	Ahmady [6]	Münz [11]	Chao [10]	Ebert [12]
η_c	7.4 ± 0.9 ± 2.1 (PDG [7])	7.5-10	4.8	7.14 ± 0.95	$11.8 \pm 0.8 \pm 0.6$	3.5 ± 0.4	5.5	5.5
η_c'	$1.3 \pm 0.6 \text{ (CLEO [3])}$	3.5-4.5	3.7	4.44 ± 0.48	$5.7\pm0.5\pm0.6$	1.38 ± 0.3	2.1	1.8
ղ _c '/ղ		0.45	0.77	^к 0.62	0.48	0.39	0.38	0.33

34

Charmed hadron production at B-factory35

B-decays into charmonium

Clean "charmonium laboratory".
X(3872), Z(4430)....

Initial state radiation

- Produce charmonium with J^{PC}=1⁻⁻
- •Y(4260)

Charmed baryons observed.

Two photon collision

Produce charmonium with J^{PC}=0⁺⁺ or 2⁺⁺
 Two photon width can be measured

2018/5/9

Data accumulated at Belle

Integrated luminosity of B factories

- •10 years operation. Taken at various energies.
- ~70 % of data is taken at Y(4S).
 ~7.7 × 10⁸ BB pairs.
- Total inregrated luminosity ~=1000 fb⁻¹. ~ $1 \times 10^9 e^+e^- \rightarrow c\overline{c}$.
- General purpose feature of Belle detector and large data enable us to study the hadron spectroscopy

X(3915) from two photon collision₇

- The angular analysis favors the J^{PC} of 0⁺⁺
- The unknown charmonium with 0⁺⁺ is χ_{c0}(2P).
 However ...

Difficulties to interpret X(3915) as $\chi_{c0}(2P)_{38}$

- The mass splitting with $\chi_{c2}(2P)$ is too small (~8 MeV/c²) cf: More than 100 MeV/c² for $\chi_{c2}(1P) \chi_{c0}(1P)$
- The width is too narrow for the state above DD^{bar} (more than 100 MeV is expected)
- It is above DD^{bar}, and 0⁺ can decay into DD^{bar}, but
 OZI suppressed decay J/ψω is favored.

 The width of 20 MeV may be too large as OZI suppressed decay (ex: The partial width of ψ(2S) → J/ψπ⁺π⁻ is ~ 100 keV) Partial decay width of J/ψω is given as Γ_{total} × Br(X(3915)→J/ψω) But the Br(X(3915) → J/ψω) is now known..

Events/40 MeV/c²

KMI Topics

4350

DD

Y(4260)

 $\alpha_{-} = 0.5536$

F

0.1488 [GeV²

1.4672 [GeV]

σ = 1.1480 [GeV]

ψ(3770)

D

• Observed at Belle in $B^+ \rightarrow K^+ (K_s K^- \pi^+)$ - Confirmed by BaBar, BES III, CLEO, and LHCb, in various decays and productions.

 $\eta_c(2S)$

• Generally accepted as radial excitation of $\eta_c(1S)$ = ground state of charmonium.

M [GeV]

3.8

3.6

3.4

3.2

3.0

2.8

Int. J. Mod. Phys. A, 21, 5583 (2006)

 $\chi_2(3556)$ $\chi_2(3511)$ h_(3526)

Р

J/ψ(3097)

1 (2980

S

39

Two photon production of $\eta_c(2S)$ 40

- The two photon collision provides Γ(2γ), which is theoretically clean as it is an electro-magnetic process.
- However, as the Br $(\eta_c(2S) \rightarrow KK^{bar}\pi)$ is not known, only product $\Gamma(2\gamma) \times Br(\eta_c(2S) \rightarrow KK^{bar}\pi)$ can be measured.

Comparison with theoretical calculation 41

PHYSICAL REVIEW D 74, 034001 (2006)

$\Gamma_{\gamma\gamma}$	Experiments	This paper	Ackleh [4]	Kim [5]	Ahmady [6]	Münz [11]	Chao [10]	Ebert [12]
$\eta_c \ \eta_c'$	7.4 ± 0.9 ± 2.1 (PDG [7]) 1.3 ± 0.6 (CLEO [3])	7.5–10 3.5–4.5	4.8 3.7	7.14 ± 0.95 4.44 ± 0.48	$\begin{array}{c} 11.8 \pm 0.8 \pm 0.6 \\ 5.7 \pm 0.5 \pm 0.6 \end{array}$	3.5 ± 0.4 1.38 ± 0.3	5.5 2.1	5.5 1.8
 η _c ΄,	/η _c 0.18±0.1	0.45	0.77	0.62	0.48	0.39	0.38	0.33

- Partial width of ηc(2S) is a bit smaller than theoretical predictions
- Assumed $Br(\eta_c \rightarrow KK^{bar}\pi) = Br(\eta_c(2S) \rightarrow KK^{bar}\pi)$
- The ratio $\eta_c(2S)/\eta_c(1S)$ is smaller than theoretical calculations.
 - Some problems in understanding of $\eta c(2S)$?
 - Just the assumption is wrong?
- Need to determine $Br(\eta_c(2S) \rightarrow KK^{bar}\pi)$

B⁺→π⁺D^(*)を用いた妥当性検証

- ・コントロールサンプルとして最適
 -B⁺→K⁺Xとの違いはK⁺とπ⁺を交換するだけ。
 -高統計,低バックグラウンド。
 -Exclusiveな測定による世界平均も高精度 (3-5%)
 →MCで求めた信号の形と 解析全体の妥当性の検証に用いる。
- ・D,D*信号の形はMCの分布を3 Gaussianで フィットすることで決定。

•"
$$\sigma_{Data}/\sigma_{MC}$$
" " μ_{Data} - μ_{MC} "をパラメータとしてフィット。

47

信号の形のデータとMCの違い			Pr	eliminary	分岐比測定 (10 ⁻³)	
	$\sigma_{Data}/\sigma_{MC}$	μ _{Data} -μ _M (MeV/c²)			本測定	PDG
D ⁰	0.994±0.025	-0.5±0.8		$Br(B^+ \rightarrow \pi^+ D^0)$	$4.58 \pm 0.12 \pm 0.34$	4.80 ± 0.15
D*	1.035 ± 0.029	-0.8±0.8		$Br(B^+ \rightarrow \pi^+ D^{*0})$	$5.07 \pm 0.10 \pm 0.26$	5.18 ± 0.26
言号0 2	D形はデータとシミ 2018/5/9	ュレーションで無矛盾	KM	崩壊分岐 _{Il Topics} 精度も世 物理結果	は世界平均と無矛盾。 界平均に近いものが得 として論文にも入れる	られた。

K⁺ Missing Mass分布 (全領域)

43

- ・B⁺→ K⁺ (K⁻K⁰π⁺) 崩壊で初めて発見 (Belle: Phys. Rev. Lett. 89, 102001)
- ・η_c(1S) (spin=0, L=0)のradial excitation状態と考えられている。
- ・2-photonへの崩壊幅は、理論的に精度良く計算できる量。

$\Gamma_{\gamma\gamma}$	Experiments	This paper	Ackleh [4]	Kim [5]	Ahmady [6]	Münz [11]	Chao [10]	Ebert [12]
η_c	$7.4 \pm 0.9 \pm 2.1 \text{ (PDG [7])}$	7.5-10	4.8	7.14 ± 0.95	$11.8 \pm 0.8 \pm 0.6$	3.5 ± 0.4	5.5	5.5
η_c'	$1.3 \pm 0.6 \text{ (CLEO [3])}$	3.5-4.5	3.7	4.44 ± 0.48	$5.7\pm0.5\pm0.6$	1.38 ± 0.3	2.1	1.8

・Belle/BaBarによる2-photon生成から、 $Br(\eta_c(2S) \rightarrow KK\pi) \times \Gamma(\eta_c(2S) \rightarrow \gamma\gamma) = (0.041 \pm 0.004 \pm 0.006) keV$ と分かっているので、Br($\eta_c(2S) \rightarrow KK\pi$)が分かれば、理論との比較が出来る。

3545 MeV/c²付近のバンプ構造

(χ_{c2}(1P) から4.3σ離れている)

- ・ The Δ(-2logL) は 16.5 → ローカルな有意度は ~4.1σ
- Pseudo experimentを実施

BG分布を生成しシグナルを入れたフィットを行い、全領域の中で最大のΔ(-2logL)を抽出。 Δ(-2logL)が16.5を超える確率は0.43%: 2.8σに対応。有意ではないという結論 ^{2018/5/9} 45