
Charmed Baryon spectroscopy at Belle 1

Y. Kato KMI topics

Mainly based on the paper recently accepted by PRD (<u>arXiv:1312.1026</u>)

Introduction

The mass of matter is almost made of nucleons. But they are still not understood.

1. Mass generation.

Mass of up, down quark is several MeV \Leftrightarrow Nucleon mass: ~1000 MeV. Nucleon mass is generated from dynamics of quarks and gluons.

2. Quark confinement.

Single quark has been never observed.

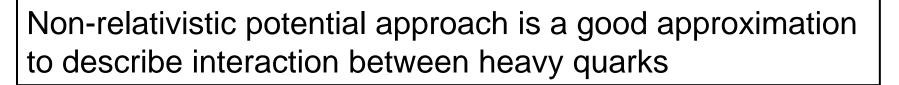
These happens simultaneously!


Bound state means it has negative potential like nuclei.

- But quarks obtain masses inside nucleon.
- To understand these two is (personal) goal of hadron physics.

QCD is non-perturbative in low energy. Hard to solve ... but

Success of the constituent quark model 3


Assume ~300 (~500) MeV/c² for u,d (s) quark mass (constituent quark).
 Harmonic oscillation and hyperfine interaction.
 very simple! -

- "Constituent quark" is a good apporoximation.
- •Why it works so well? What is adaptive limit?
- •What is the real degree of freedom to describe hadrons? Constituent quarks are enough?

Physics of charmed baryons (1) 4

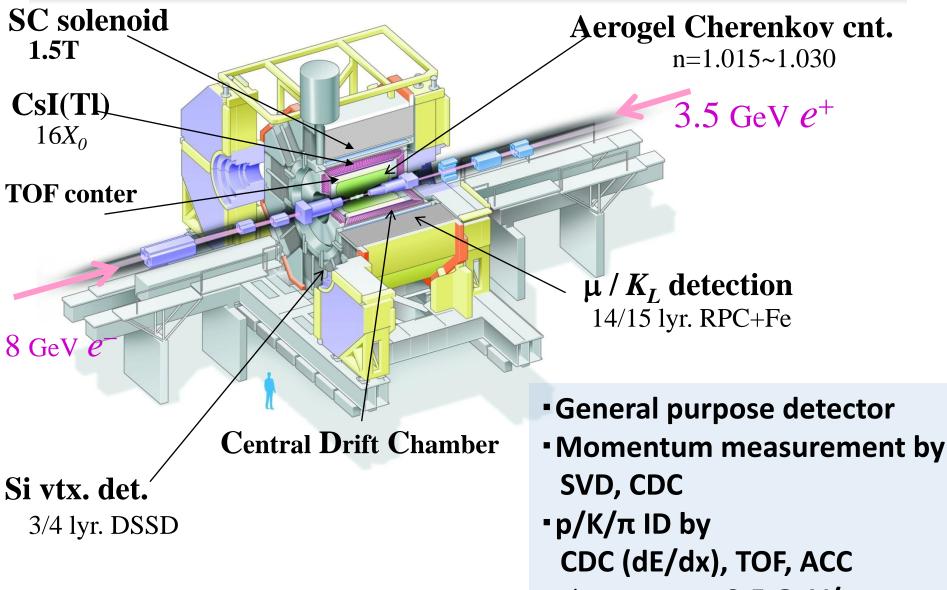
- Mass of the charm quark is ~1.5 GeV.
- This is much heavier than....
- 1.Momentum of quarks inside the baryon (~0.2 GeV/c)

<u>Charmonium spectroscopy</u>→understanding of QQ^{bar} potential Linear+Coulomb

doubly charmed baryon(Ξ_{cc}) spectroscopy \rightarrow understanding of QQ potential. Interaction of colored object

Physics of charmed baryons (2) 5

- Mass of the charm quark is $\sim 1.5 \text{ GeV/c}^2$.
- This is much heavier than....
- 2.Mass of u,d,s quarks (0.3-0.5 GeV/c²)

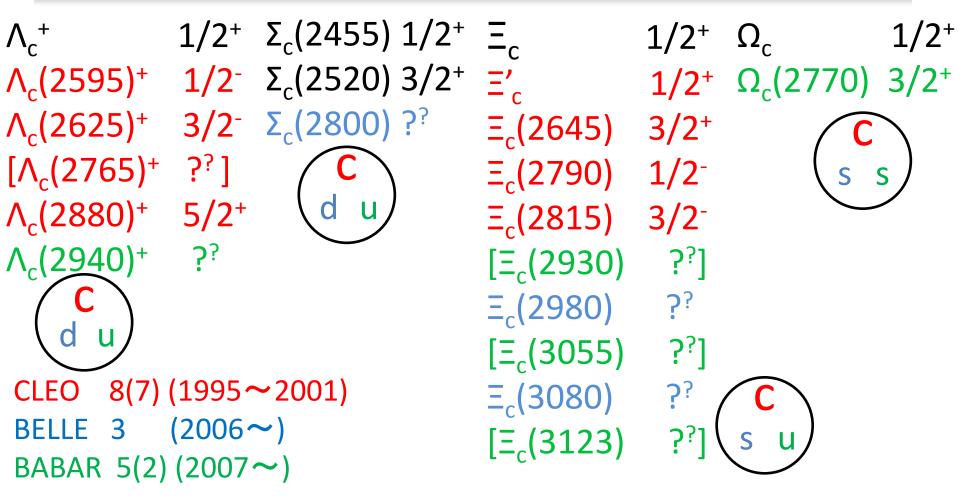

spin-spin interaction $\propto 1/m_1 m_{2.}$ In single charm baryon, strong spin-spin interaction among light quarks may form diquark

 $\frac{Two\ excitation\ modes\ in\ the\ baryon}{Interaction\ among\ diquark:\ \rho\ mode}$

Diquark is a appropriate freedom to describe hadrons? Study of ρ mode→diquark spectroscopy. Clear information for interaction of two light quarks.

λ mode

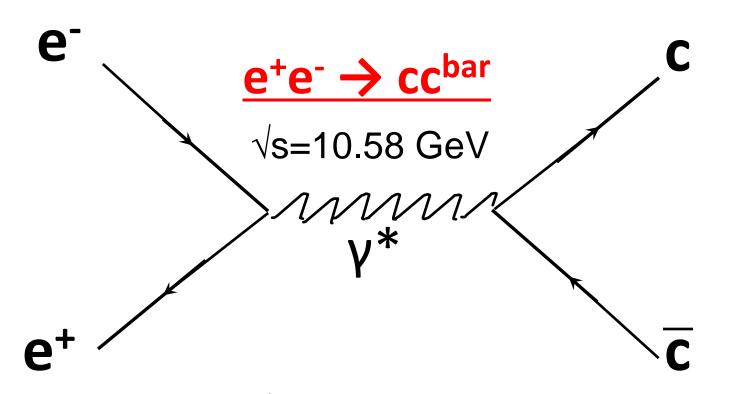
Experimental probe: Belle experiment 6



 \rightarrow cover p<~3.5 GeV/c

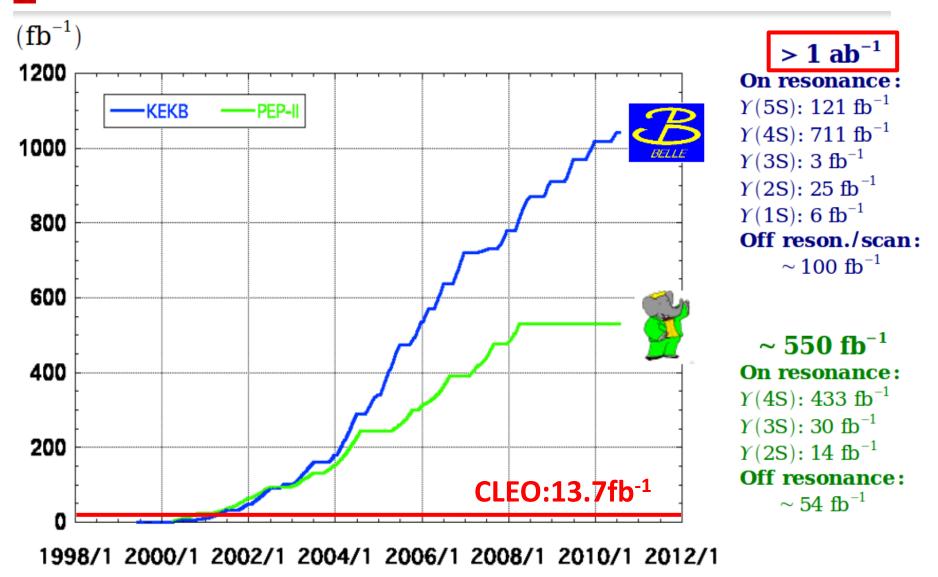
ŀ	Hadron physics at B-factories7				
	Mesons	Baryons			
2014					
	Z(3900)				
2012	Z _b (10610) Z _b (10650) h _b (2P)				
	η _b (2S)				
2010	h _b (1P)				
	Z(4430)				
2008	Z(4050) Z(4250) η _b (1S)	$\Xi_{\rm c}(3055)?$ $\Xi_{\rm c}(3123)?$			
	Y(3940) Y(4660)	Λ _c (2940)			
2006		$\Omega_{c}(2770) \equiv_{c}(2980) \equiv_{c}(3080)$			
	Y(4260)	Σ _c (2800)			
2004					
	Ds(2317) Ds(2460) X(3872)				
2002	η _c (2S)				

More than 20 "new hadrons" have been discovered by B-factories Among them, so called XYZ states are very famous.


Observed charmed baryons

16/21 (12/17) charmed baryons are observed in e⁺e⁻ collider experiment.

- •All the ground state of single charmed baryons are discovered.
- Except for $\Lambda_c(2595)^+$, $\Lambda_c(2880)^+$, $\Sigma_c(2455)$, spin/parity are not measured.

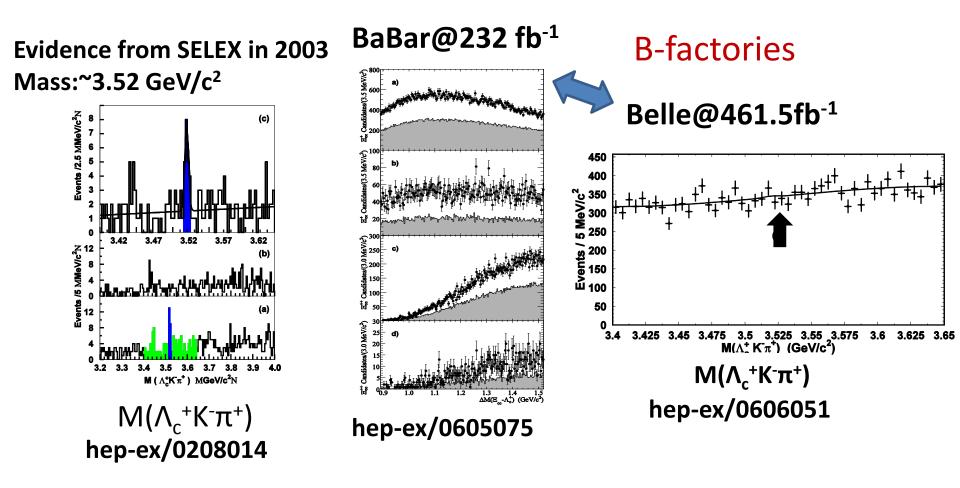

Charm production in e⁺e⁻ collider

• Cross section for $e^+e^- \rightarrow qq^{bar}$ does not depend on the flavor of quarks. Depends only on the charge^{2.} $\rightarrow \sigma(e^+e^- \rightarrow cc^{bar}) = \sigma(e^+e^- \rightarrow uu^{bar}) = 4\sigma(e^+e^- \rightarrow ss^{bar}) = 4\sigma(e^+e^- \rightarrow dd^{bar})$

• Detect decay particles only (inclusive reaction) $\Leftrightarrow \pi(p,D^*)Y_c@J-PARC.$

Integrated luminosity of B-factories 10

 $\sigma(e^+e^- \rightarrow cc^{bar}) \simeq 1nb \rightarrow 10^{6} cc^{bar}$ events are produced!

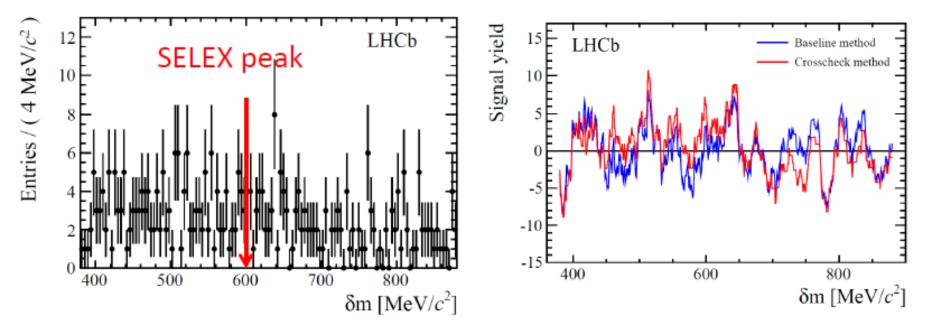

• Doubly charmed baryon(Ξ_{cc}) search.

• Excited charm-strange baryons (Ξ_c^*) .

• Work in progress.

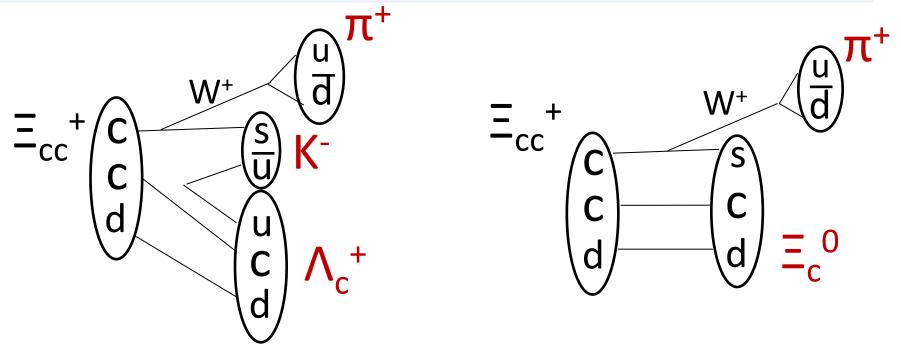
Past experimental search for Ξ_{cc}

- Prediction of the mass: ~3.5-3.75 GeV by quark model, 3.6 GeV by LQCD
- Evidence by SELEX was not supported by FOCUS, B-factories.
- No established state even for ground state.


Search for Ξ_{cc}^+ at LHCb

- Search for Ξ_{cc}^+ through $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$, $\Lambda_c^+ \to p K^- \pi^+$
 - Dataset: 0.65 ${\rm fb}^{-1}$ of 2011 data
- For signal yield construct δm quantity
 - $\delta m = m(\Lambda_c^+ K^- \pi^+) m(\Lambda_c^+) m(K^-) m(\pi^+)$

$$\bigwedge_{c}^{+} \text{ yield } \sim 8 \times 10^{5}$$
$$\Leftrightarrow \sim 3 \times 10^{6} \text{ for Belle}$$


arXiv:1310.2538

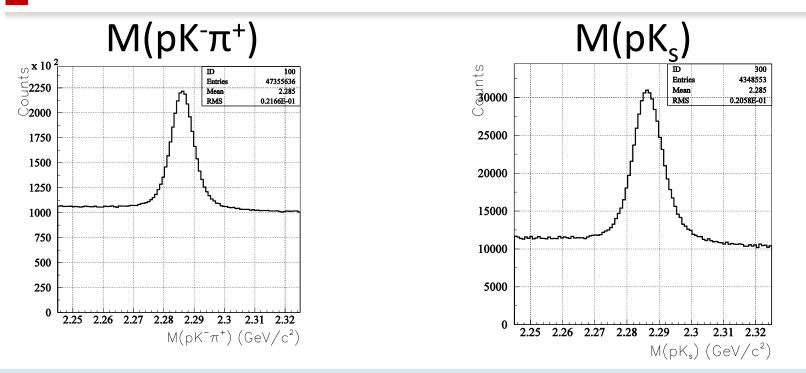
No significant signal observed

Ξ_{cc} decay modes

- •Ground state baryon decays via weak interaction($c \rightarrow s$).
- Ξ_{cc}^+ is expected to decay into $\Lambda_c K^-\pi^+$ and $\Xi_c^0\pi^+$

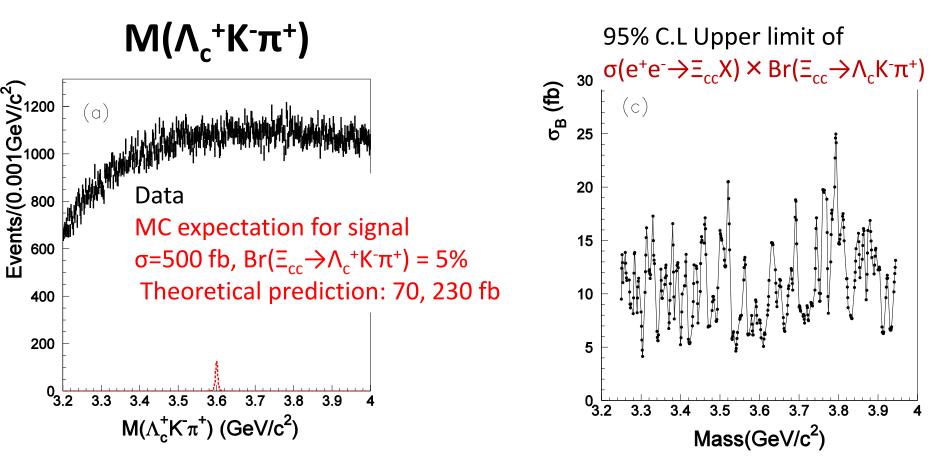
• Background: inclusive Λ_c^+ or Ξ_c^0 production. • $\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \times Br(\Lambda_c^+ \rightarrow pKpi) / \sigma(e^+e^- \rightarrow \Xi_c^0 X) \times Br(\Xi_c^0 \rightarrow \Xi^- \pi^+) \sim 10.$

Improved search of Ξ_{cc}^+ by Belle

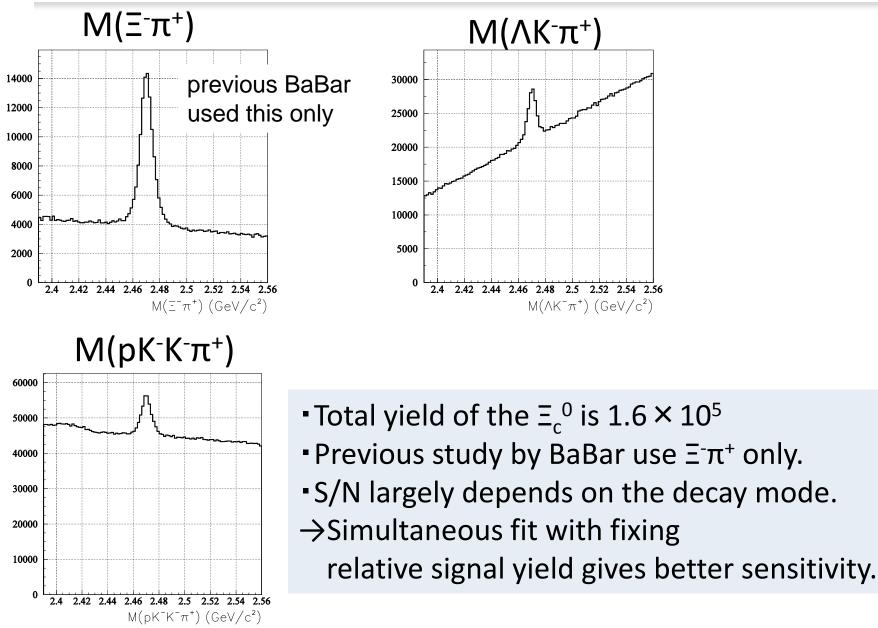

	BaBar	Previous Belle	This study
Luminosity (fb ⁻¹)	232	462	980
Ξ_{cc}^+ decay	Λ _c +Κ⁻π+ Ξ _c ⁰ π ⁺	$Λ_c^+ K^- π^+$	Λ _c ⁺ Κ ⁻ π ⁺ Ξ _c ⁰ π ⁺
Λ_{c}^{+} decay	рК⁻π⁺	рК-π+	pΚ⁻π⁺, <mark>pK_S0</mark>
Ξ_{c}^{0} decay	Ξ ⁻ π ⁺		Ξ ⁻ π ⁺ , ΛΚ ⁻ π ⁺ , pΚ ⁻ Κ ⁻ π ⁺

15

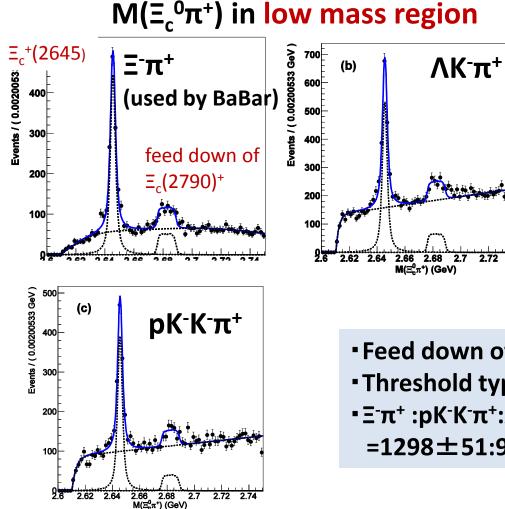
Full statistics


- Two Ξ_{cc} decay modes.
- Several sub decay modes

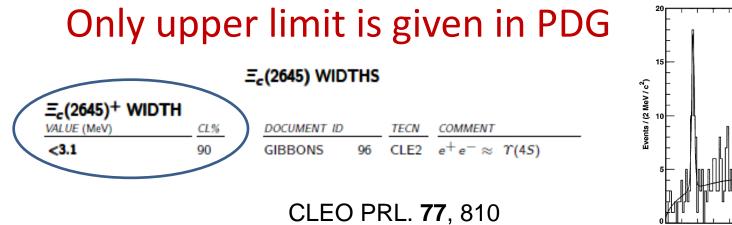
Reconstruction of Λ_c^+

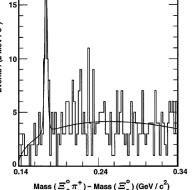

- Previous studies used $pK^-\pi^+$ only.
- Inclusion of pK_s mode increases statistics by ~20 %.
- S/N ratio is comparable.→Combine two decay modes.
- Total Λ_c^+ yield is around $\sim 3 \times 10^6 \Leftrightarrow \sim 1600 \Lambda_c^+$ by SELEX.
- •Apply mass constraint on $\Lambda_c^+ \rightarrow$ Mass resolution for Ξ_{cc} is 2.5-3.5 MeV/c²

Result for $\Lambda_c^+K^-\pi^+$ decay mode


 Significance from -2ln(L/L(0)) 	Belle	4.1-25.0 fb
 Significance is less than 3σ in all mass region 	Theory	3.5-11.5 fb (assuming Br=5%)

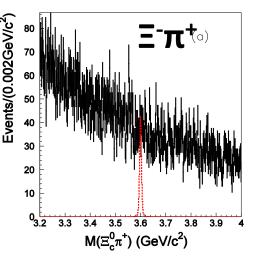
Reconstruction of Ξ_c^{0}

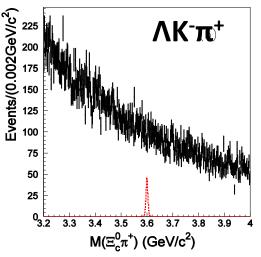

Calibration mode for $\Xi_{cc}^+ \rightarrow \Xi_c^0 \pi^+$: $\Xi_c^+ (2645)^{19}$


Signal yield ratio for each decay mode of Ξ_c^0 is determined from yield of $\Xi_c(2645)^+$, which decays strongly to $\Xi_c^0\pi^+$.

- Feed down of $\Xi_c(2790)^+ \rightarrow \Xi_c^0 \pi^+ \gamma$ from MC
- Threshold type function for B.G
- Ξ⁻π⁺ :pK⁻K⁻π⁺:ΛK⁻π⁺:
 - $=1298\pm51:974\pm47:1444\pm58$

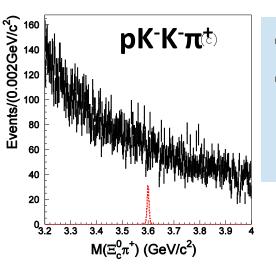
Width of the Ξ_c^+ (2645)





Mode	Width(MeV/c²)	Peak(MeV/c²)
рК⁻К⁻π⁺	2.5±0.3	2645.5 ± 0.1
ΛΚ ⁻ π ⁺	2.6±0.3	2645.3 ± 0.1
Ξ-π+	2.9 ± 0.3	2645.4±0.1
Simultaneous	$2.6 \pm 0.2 \pm 0.4$	2645.4±0.1 (statistics only)

First significant measurement of the width of Ξ_c^+ (2645)


Result of Ξ_{cc}^{+} search: $\Xi_{c}^{0}\pi^{+}$

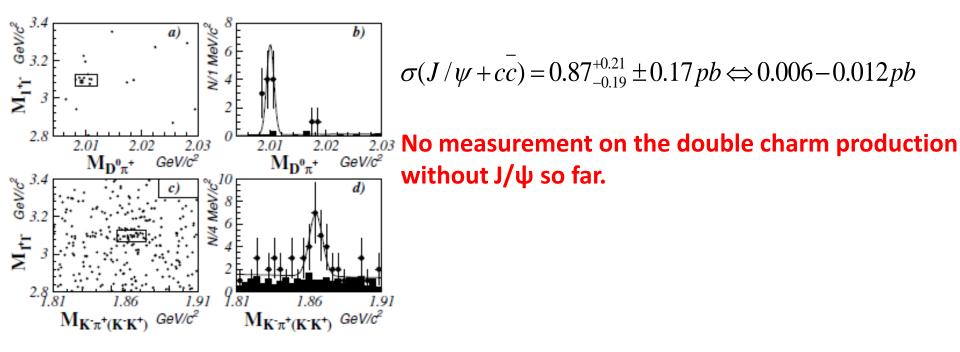
Data

Signal MC (assuming 500 fb and 5% for branching farctions.)

Simultaneous fit with fixing signal yield ratio.
3.2σ for 3.553 GeV/c² but probability to observe a peak with significance>3.2 in this the mass range of 3.2-4.0 GeV is 26%.

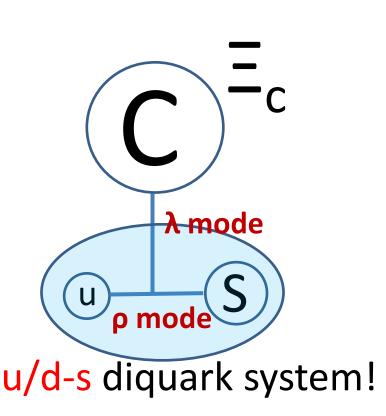
95% UL of $\sigma(e^+e^- \rightarrow \Xi_{cc}X) \times Br(\Xi_{cc}^+ \rightarrow \Xi_c^0 \pi^+) \times Br(\Xi_c^+ \rightarrow \Xi^- \pi^+)$

Belle	0.076-0.35 fb
Theory	0.18-0.5 fb (assuming Br=5%)

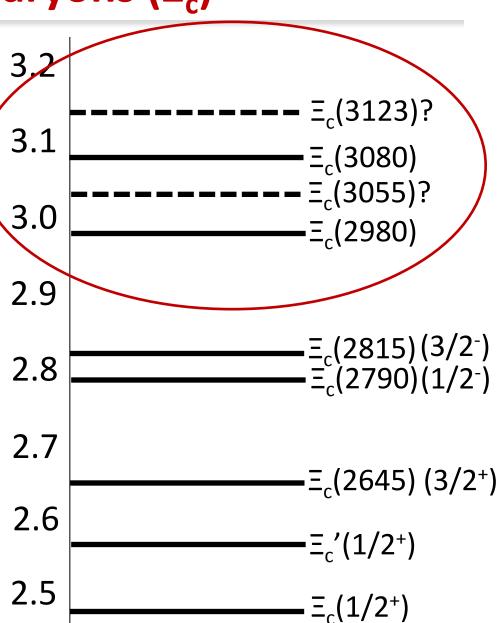

Study of double charm production

Production mechanism of double charm production is poorly known.

 →predicted cross section is not reliable.


22

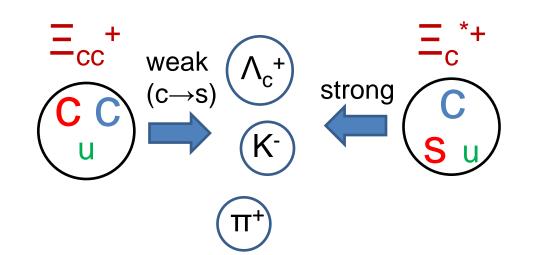
• $e^+e^- \rightarrow J/\psi + cc^{bar}$ by Belle

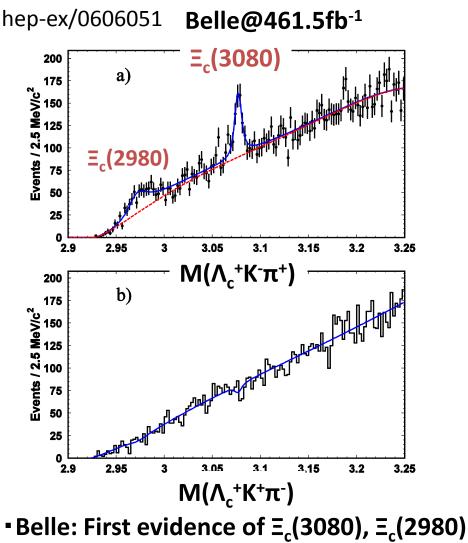


 O. Seon in Nagoya University is studying the elementary DD production using Belle data.

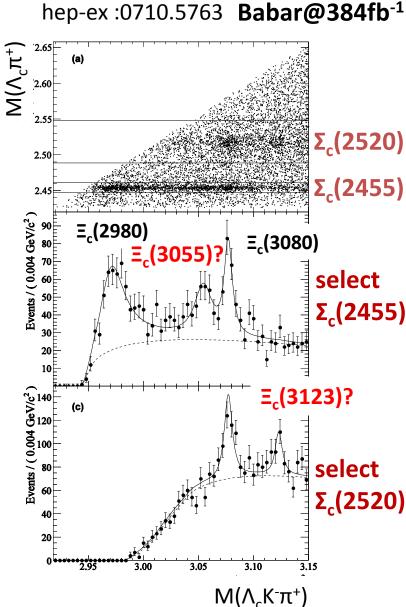
Charmed strange baryons (Ξ_c **)**

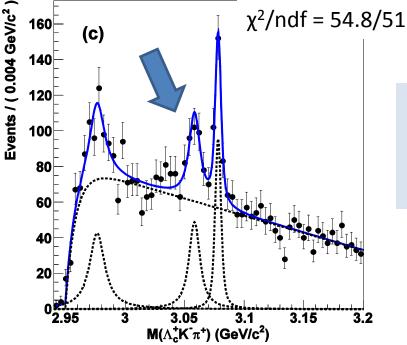
Identification of ρ mode excitation is essential for di-quark spectroscopy. (only λ mode excitation is observed)




Ground hadrons decays via the weak interaction. This is also a strong decay of hadrons in light quark configuration.

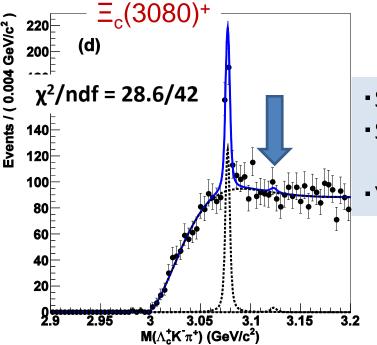
ex. $p\pi$ is a weak decay mode of Λ and strong decay mode of Δ K π is a weak decay mode of D and strong decay mode of K^{*}


 Ξ_{cc} weak decay modes are Ξ_{c}^{*} strong decay modes


Excited Ξ_c^+ in $\Lambda_c^+K^-\pi^+$ by Belle and BaBar 25

 BaBar: Confirmed them and reported two more states. Ξ_c(3055)→2star, Ξ_c(3123)→1star.

M(Σ_c(2455)⁺⁺K⁻) by Belle


Structure near 3055 MeV/c² is seen.
Significance from -2log(L_{max}/L(0).
Significance of 6.6 σ.

Mass/width of $\Xi_c^+(3055)$

	Belle	Babar
Mass	$3058.1 \pm 1.0 \pm 2.1$	$3054.2 \pm 1.2 \pm 0.5$
Width	$9.7 \pm 3.4 \pm 3.3$	$17 \pm 6 \pm 1.1$

Result of the Babar is confirmed with 6.8 σ.

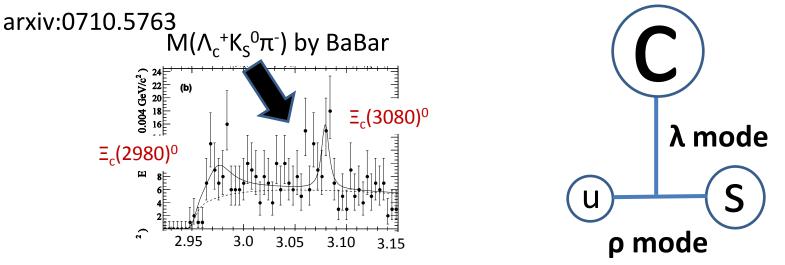
M(Σ_c*(2520)⁺⁺K⁻) by Belle

 Structure near 3123 MeV/c² is not seen
 Signal PDF:Gaussian convoluted Breit Wigner. Mean, width was fixed from measurement by BABAR.
 Yield = 8.2±22.0 → Measurement of upper limit

 σ × Br(Λ_c^+ →pK⁻ π^+) of Ξ_c^+ (3123) < 0.34 fb @95%C.L ⇔ 1.6±0.6±0.2 fb by BaBar

Result of the Babar was not reproduced...

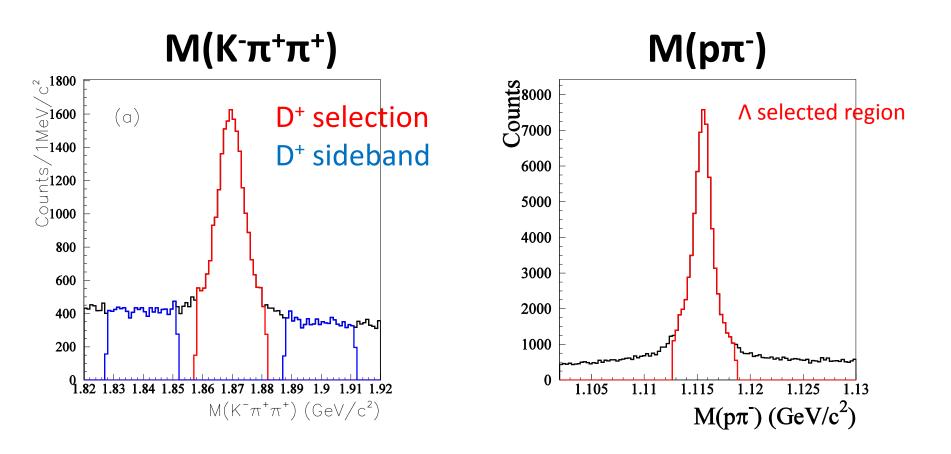
Comparison of \Lambda_c^+ and \Xi_c \text{ or } \Sigma_c \text{ and } \Xi_c' 28


Јр	Λ _c ⁺ (udc)	Ξ _c (usc)	ΔM(Mev/c²)	
1/2+	Λ _c (2286) ⁺	Ξ _c (2470)	181	
1/2-	Λ _c (2595) ⁺	Ξ _c (2790)	194	spin0
3/2-	Λ _c (2625) ⁺	Ξ _c (2815)	188	spin0 di-quark
??	Λ _c (2765) ^{+?}	Ξ _c (2980)?	205	ur quurk
5/2+	Λ _c (2880) ⁺	Ξ _c (3080)?	200	
Јр	Σ _c (udc)	Ξ _c ΄ (usc)	ΔM(Mev/c²)	
1/2+	Σ _c (2455)	Ξ _c (2575)	120	spin1
3/2+	Σ _c (2520)	Ξ _c (2645)	125	di-quark
??	Σ _c (2800)	??		

• The mass difference of Λ_c and Ξ_c is ~200 MeV/c², Σ_c and Ξ_c' is ~120 MeV

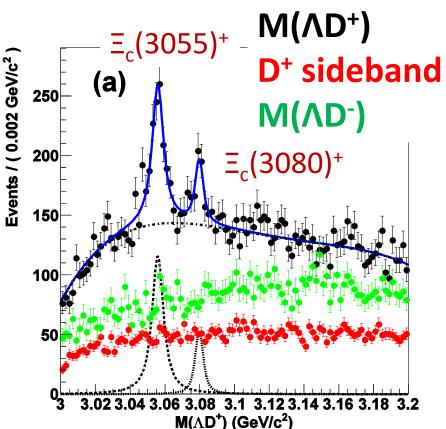
Λ_c^+ with 3055-200 = 2855? Σ_c^- with 3055-120 = 2935?

Further study for Ξ_c^*


- We confirmed $\Xi_c(3055)^+$ but its isospin partner $\Xi_c(3055)^0$ is not found.
- •Spin-parity and excitation mode is not known for excited states.
- Relative branching fraction is sensitive to the excitation mode.
- More excited states?

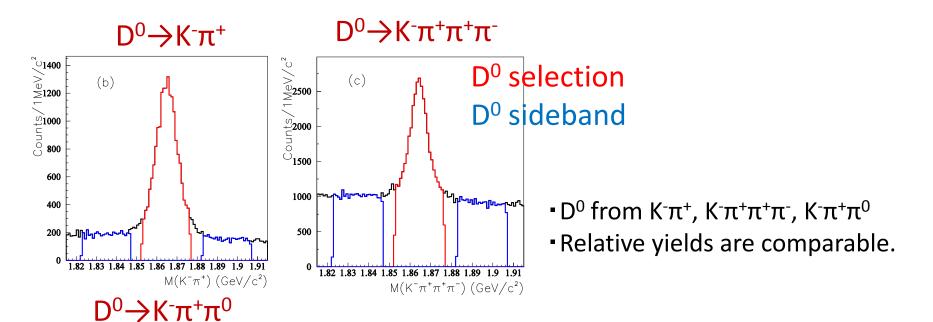
• All the Ξ_c^* are observed in (heavy baryon) + (light meson) final states. $\Lambda_c^+, \Sigma_c, \Xi_c, \Xi_c'.. \qquad \pi, K$

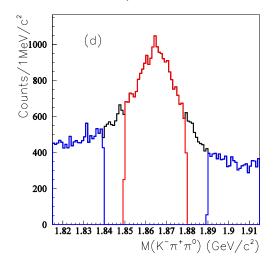
•How about the (light baryon) + (heavy meson) ? \rightarrow Study ΛD !


Analysis of ΛD^+

• D⁺ from K⁻ $\pi^+\pi^+$, Λ from p π^- . Vertex information on Λ .

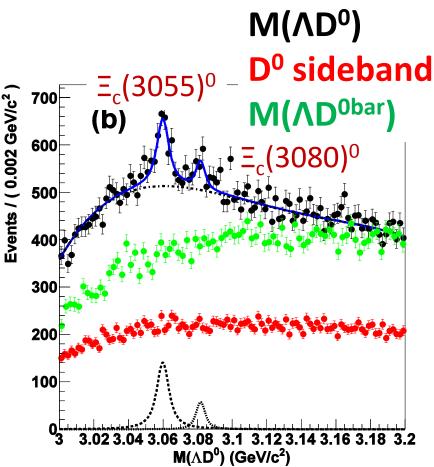
M(ΛD⁺) distribution


• Peaks corresponds to $\Xi_c(3055)^+$, $\Xi_c(3080)^+$.


D⁺ sideband • No peak structure in D⁺ sideband region and wrong-sign ΛD^- combination.

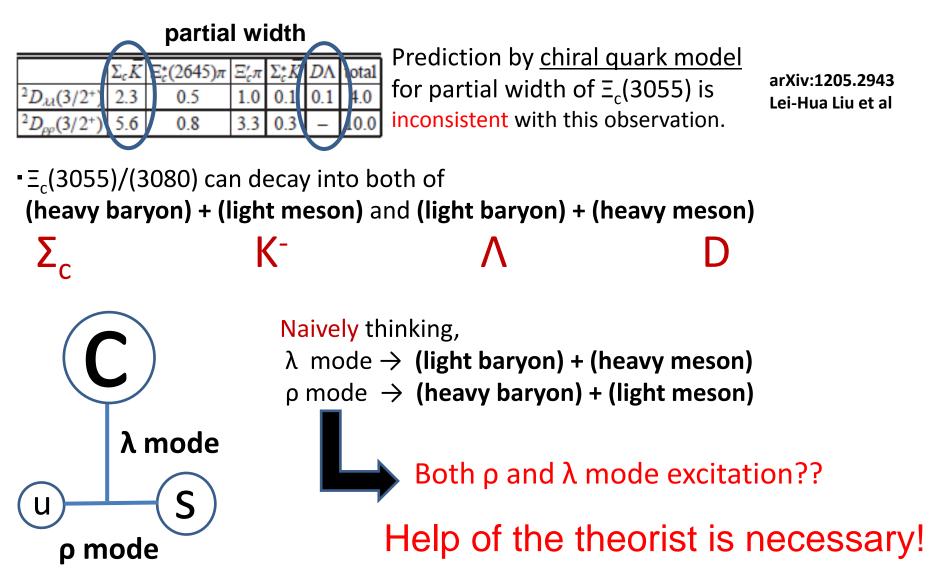
- Significance of the peaks are: 11.7σ for Ξ_c(3055)⁺ and 4.7σ for Ξ_c(3080)⁺.
- Further confirmation for $\Xi_c(3055)^+$
- Most precise mass/width for Ξ_c(3055)⁺ and consistent with previous measurements.

	Ξ _c (3055)⁺	Ξ _c (3080) ⁺
Mass(MeV/c ²)	$3055.7 \pm 0.4 \pm 0.4$	$3079.6 \pm 0.6 \pm 0.7$
Width(MeV)	$7.1 \pm 1.2 \pm 1.8$	$4.0 \pm 1.5 \pm 1.0$

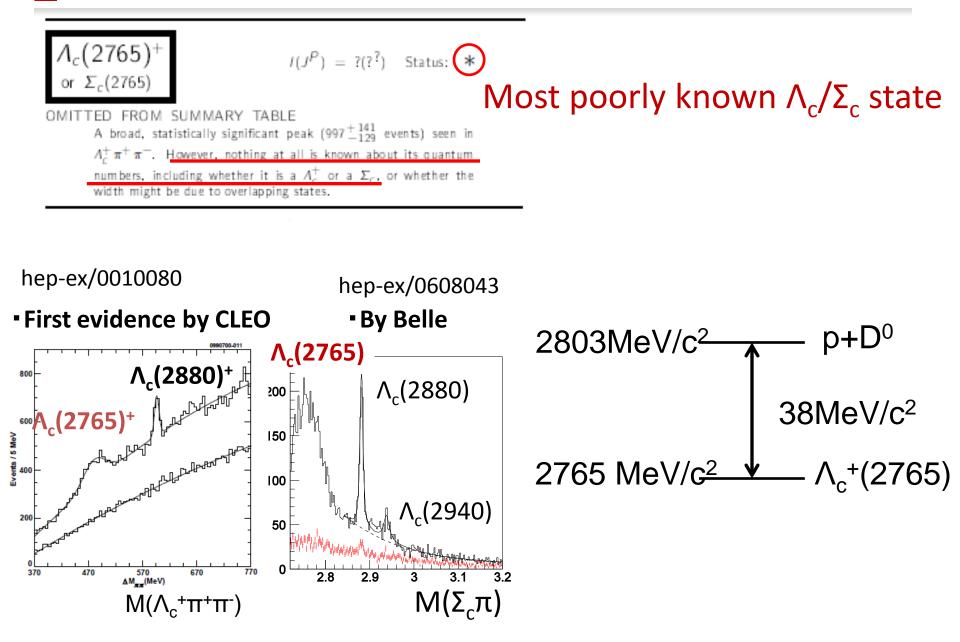

Analysis of ΛD^0

	Branch(%)	Efficiency(%)	Product(%)
$D^+ \rightarrow K^- \pi^+ \pi^+$	9.13	18.9	1.72
$D^0 \rightarrow K^- \pi^+$	3.88	23.5	0.912
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	8.07	14.8	1.20
$D^0 \rightarrow K^- \pi^+ \pi^0$	13.9	6.28	0.873

M(ΛD⁰) distribution

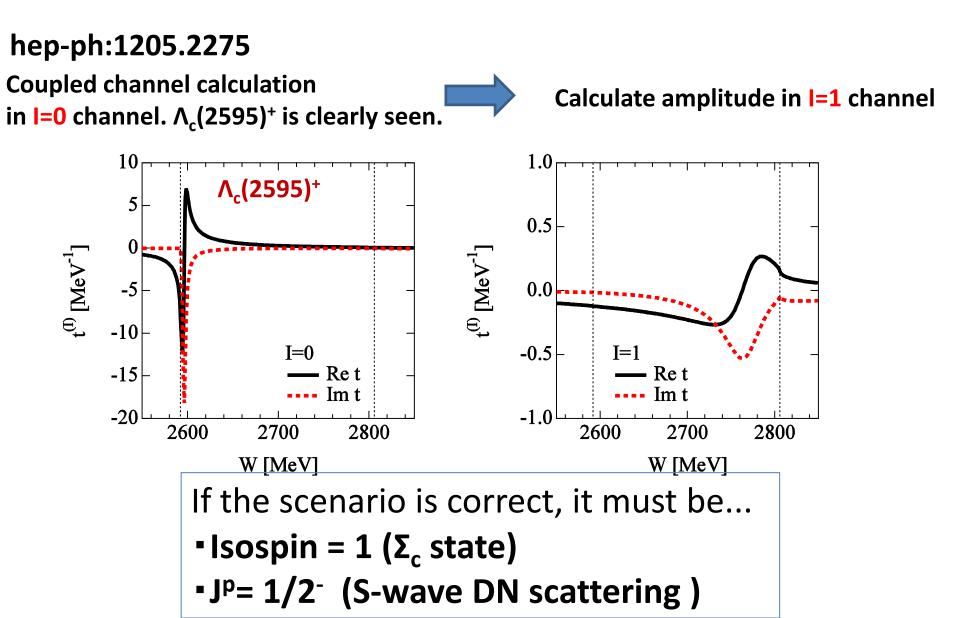

- Peaks corresponds to $\Xi_c(3055)^0$, $\Xi_c(3080)^0$.
- No peak structure in D^0 sideband region and wrong-sign $D^{0bar}\Lambda$ combination.
- Significance of the peaks are:
 7.6σ for Ξ_c(3055)⁰ and 2.6σ for Ξ_c(3080)⁰.

• First observation of E_c(3055)⁰!


	Ξ _c (3055) ⁰	Ξ _c (3080) ⁰
Mass(MeV/c ²)	$3059.7 \pm 0.6 \pm 0.5$	$3079.6 \pm 0.6 \pm 0.7$
Width(MeV)	$7.4 \pm 1.9 \pm 3.4$	$4.4 \pm 1.8 \pm 1.9$

Discussion from decay modes

• The Ξ_c^* with mass around 3.0 GeV/c² is likely to be in N=2 shell.



Another interest: $\Lambda_c / \Sigma_c (2765)^+$

35

Prediction from coupled channel appro36h

Summary

- Charmed baryon spectroscopy at Belle experiment.
- B-factory is a good laboratory for hadron physics.
- Ξ_{cc} is not discovered with full data of Belle.
 U.L is comparable with some of the predictions.
 Further study of double charm production is on going.
- First significant measurement on the width of $\Xi_c(2645)^+$
- Existence of $\Xi_c(3055)$ is confirmed but not for $\Xi_c(3123)$.
- First observation of $\Xi_c(3055)$ in ΛD final state. Both experiment/theory approach is necessary to clarify the structure.