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© The surprising success of relativistic hydrodynamics
® Modern ideas for the thermalization of quantum systems
© CGC description of heavy ion collisions

O Isotropization in Heavy lon Collisions



Relativistic
hydrodynamics



Stages of a nucleus-nucleus collision

freeze out
hadrons — kinetic theory
gluons & quarks in eq. — ideal hydro

gluons & quarks out of eq. — viscous hydro

strong fields — classical dynamics

Z
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Stages of a nucleus-nucleus collision

freeze out
hadrons — kinetic theory
gluons & quarks in eq. — ideal hydro

gluons & quarks out of eq. — viscous hydro

strong fields — classical dynamics

Z

o Well described as a fluid expanding into vacuum
according to relativistic hydrodynamics
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Evidence for hydrodynamical behavior
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Evidence for hydrodynamical behavior
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Evidence for hydrodynamical behavior
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Evidence for hydrodynamical behavior
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Evidence for hydrodynamical behavior

< Pb+Pb 276 A ToV: ALICE 0) 20002 ICE 620-5%,50-60% T . Po-Pb 276TeV 1020%
ARG onos o H T | B g 8"
a ¥ s . st N\ 3
g s Impressive agreement, but: What makes hydrodynamics work so well?
:7 ¢ Near isotropic pressure tensor (in the local rest frame)
¢ Not too far from equilibrium
e Low viscosity
01—
008 * Where does this come from in pQCD...?
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f doms RS
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What is hydrodynamics?

e Hydrodynamics is a macroscopic description based on
energy-momentum conservation :

9, T* =0

True in any quantum field theory

But does not provide a closed set of equations to fully describe
the evolution of the system (4 equations, while T*Y has 10
independent components)
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What is hydrodynamics?

e Hydrodynamics is a macroscopic description based on
energy-momentum conservation :

9, T* =0

True in any quantum field theory

But does not provide a closed set of equations to fully describe
the evolution of the system (4 equations, while T*Y has 10
independent components)

¢ Additional assumption : at macroscopic scales, T* is
expressible in terms of € (energy density), P (pressure) and u*
(fluid velocity field)

o For a frictionless fluid : T}, = (e +P)utu¥ — P g"¥

Frangois Gelis Isotropization in Heavy low Collisions 3/31 KM, Nagoya, March 2014



What is hydrodynamics?

e Hydrodynamics is a macroscopic description based on
energy-momentum conservation :

9, T* =0

True in any quantum field theory

But does not provide a closed set of equations to fully describe
the evolution of the system (4 equations, while T*Y has 10
independent components)

¢ Additional assumption : at macroscopic scales, T* is
expressible in terms of € (energy density), P (pressure) and u*
(fluid velocity field)

o For a frictionless fluid : T}, = (e +P)utu¥ — P g"¥

e Ingeneral : T*Y =THY @ VHWY @ (g*Y (V) @ - -

idea
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What is hydrodynamics?

e Hydrodynamics is a macroscopic description based on
energy-momentum conservation :

9, T* =0

True in any quantum field theory

But does not provide a closed set of equations to fully describe
the evolution of the system (4 equations, while T*Y has 10
independent components)

¢ Additional assumption : at macroscopic scales, T* is
expressible in terms of € (energy density), P (pressure) and u*
(fluid velocity field)

e For africtionless fluid : T\, = (e +P)utu¥ — P g*¥

e Ingeneral : T*Y =THY @ VHWY @ (g*Y (V) @ - -

e Microscopic inputs : € = f(P) (E0S), 1, ¢, - -+ (transport coeff.)
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Why is it hard to justify in QCD?

Just after the collision, T*" is far from ideal

€ €
Tmclico = © de I = 5
_ idea _ £
rest frame € rest frame 3
—@ £
3

= Very large viscous corrections
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Why is it hard to justify in QCD?

Shear viscosity at weak coupling in QCD
n 5.12

s 4 2.42
gln(g)

n's

~—— perturbation theory

AdS/CFT duality

1/4n
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QM, Quantum chaos
Berry’s conjecture



Formulation of QM in the classical phase-space

e Quantum Mechanics introduces a natural smearing due to the
uncertainty principle. To make the connection with classical
mechanics, it is useful to use Moyal’s formulation of QM in terms
of classical variables

e Dual formulation of QM :

p wWI(Q,P)

N Weyl-Wigner
0p+iH,pl =0 =  aW+{W,H}}=0

trans.

coherent state Gaussianin Q,P

e Moyal bracket : {{-, 1= {,} + O(R?)
~—
Poisson bracket
The Moyal equation becomes the Liouville equation in the

classical limith — 0
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Microcanonical equilibration of an anharmonic oscillator

e The oscillation frequency depends on the initial condition
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Microcanonical equilibration of an anharmonic oscillator

e The oscillation frequency depends on the initial condition
e Because of QM, the initial ensemble is a set of width ~h
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Microcanonical equilibration of an anharmonic oscillator

P

N\

\\ \“
/) Q

e The oscillation frequency depends on the initial condition
e Because of QM, the initial ensemble is a set of width ~h

e This ensemble of initial configurations spreads in time
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Microcanonical equilibration of an anharmonic oscillator

e The oscillation frequency depends on the initial condition
e Because of QM, the initial ensemble is a set of width ~h

e This ensemble of initial configurations spreads in time
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Microcanonical equilibration of an anharmonic oscillator

The oscillation frequency depends on the initial condition

Because of QM, the initial ensemble is a set of width ~h

This ensembile of initial configurations spreads in time

At large times, the ensemble fills densely all the region allowed
by energy conservation = microcanonical equilibrium
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Quantum chaos

e Central issue : consider a Hamiltonian that leads to chaotic
classical behavior; What happens when this system is
quantized?

e Schrodinger’s equation is linear :
.Y =HwY
e Once we know the spectrum of the Hamiltonian {E,,, ¥, }, any

wavefunction evolves as :

Y(t) = Z cn etEnty
n

E. € R = nothing is unstable. Where is the chaos?
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Berry’s conjecture (1977)

e The complexity of the classical dynamics translates in the
complexity of the high lying eigenfunctions

o : for most practical purposes, high lying
eigenfunctions of classically chaotic systems behave as
Gaussian random functions with 2-point correlations given by

(v x = wx+3)) = JdP e/ S[E—H(X, P)]

2 2

e Then, the Wigner distribution associated with the eigenfunction
Y is

E
S

S
S (X+3)

W(X,P) = st e Py (X — 5

~ 8[E—H(X,P)]

= micro-canonical equilibrium for a single eigenstate
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Eigenstate thermalization hypothesis (Srednicki, 1994)

¢ If an energy eigenstate obeys Berry’s conjecture, then a
measurement performed on that state will lead to the
Bose-Einstein (or Fermi-Dirac) distribution for the single particle
distribution

e Generic states approach equilibrium via decoherence of their
individual energy eigenstate components
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CGC Description
of Heavy lon Collisions



What do we need to know about nuclei?

Nucleus at rest

e Atlow energy : valence quarks
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What do we need to know about nuclei?

Slightly boosted nucleus

e At low energy : valence quarks
e At higher energy :

e Lorenz contraction of longitudinal sizes
¢ Time dilation > slowing down of the internal dynamics
¢ Gluons start becoming important
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What do we need to know about nuclei?

High energy nucleus

e At low energy : valence quarks
e At higher energy :

e Lorenz contraction of longitudinal sizes
¢ Time dilation > slowing down of the internal dynamics
¢ Gluons start becoming important

e At very high energy : gluons dominate
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Multiple scatterings and gluon recombination

o Main difficulty: How to treat collisions involving a large number of
partons?
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Multiple scatterings and gluon recombination

o : one parton in each projectile interact
> single parton distributions, standard perturbation theory
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Multiple scatterings and gluon recombination

o : multiparton processes become crucial
> gluon recombinations are important (saturation)
> multi-parton distributions

> alternative approach : treat the gluons in the projectiles as external
currents

L:—JTFZqLA-(]] +J2)

(gluons only, field A for k™ < A, classical source ] for k™ > A)
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Color Glass Condensate

CGC = effective theory of small x gluons

e The fast partons (k™ > A™) are frozen by time dilation
> described as on the light-cone :

J*=38"Tp(x,%1) 0 <x™ <T1/AT)

e The color sources p are random, and described by a probability
distribution W5+ [p]

e Slow partons (k™ < A*) cannot be considered static over the
time-scales of the collision process

> must be treated as standard gauge fields
> eikonal coupling to the current J* : A J*
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Terminology
o Weakly coupled: g <1

e Weakly interacting : gA < 1 g’ f(p) < 1
222)>2—3),3—2),---

e Strongly interacting : gA ~ 1 g*f(p) ~ 1
2—-22)~223)~B3—=22)~---

No well defined quasi-particles

CGC = weakly coupled, but strongly interacting effective theory J
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Power counting

e CGC effective theory with

1 L L
Sz—ZJFMF”V—i—J gy +7%) A
——— N—_——

Sym fast partons

 Expansion in g2 in the saturated regime:

1 )
T}WNE [00-1-01 92-1-6294-1—"']
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Power counting

In the saturated regime: J" ~ g*1

—2 _# of external legs

g g 2 x (# of loops)

g

¢ No dependence on the number of sources J*
o> infinite number of graphs at each order

Frangois Gelis Isotropization in Heavy low Collisions 16/37

KMI, Nagoya, March 2014



Leading Order in g° : tree diagrams

e The Leading Order is the sum of all the tree diagrams
Observables can be expressed in terms of classical solutions of
Yang-Mills equations :

DI =] +13

e Boundary conditions for inclusive observables :

lim A¥(x) =0

x0——00

Example : 00 component of the energy-momentum tensor

T2 =5 45]

class. fields
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Next to Leading Order in g° : 1-loop diagrams

Getting the NLO from tree graphs...

2

u,v u

Oo = [1 J Mo (,v) Tu Ty + j a(u) Tu] O

o T is the generator of the shifts of the initial value of the field :

0
aAinil

Tu

class. field at t
/—/\_\
O Ac( Ainic )] = O[Ac( Ainit + & )]
~~ ~—

init. value shifted init. value

exp J oy Ty
u
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Shift operator T — Definition

Equations of motion for a field A and a small perturbation o

OA+V/(A) = ]
O+ V"(A)] « =

e Getting the perturbation by shifting the initial
A(x) condition of A at one point :

o(x) :J oy Ty A(X)
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Shift operator T — Definition

Equations of motion for a field A and a small perturbation o

OA+V/(A) = ]
O+ V"(A)] « =

e Getting the perturbation by shifting the initial
a(x) condition of A at one point :

o(x) :J oy Ty A(X)

Frangois Gelis Isotropization in Heavy low Collisions 14/37 KM, Nagoya, March 2014



Shift operator T — Definition

Equations of motion for a field A and a small perturbation o

OA+V/(A) = ]
O+ V'(A)] « =

e Getting the perturbation by shifting the initial
condition of A at one point :

o(x) :J oy Ty A(x)

e Aloop is obtained by shifting the initial
condition of A at two points
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Initial state logarithms

e In the CGC, upper cutoff on the loop momentum : k* < A,
to avoid double counting with the sources J7 ,
> logarithms of the cutoff

Central result for factorization at Leading Log

% Jrz(u,v) T, T, + J a(u) Ty, =

u,v u

= log (A") H; +log (A7) 3, + terms w/o logs

¥y > = JIMWLK Hamiltonians of the two nuclei

¢ No mixing between the logs of the two nuclei

e Since the LO « NLO relationship is the same for all inclusive
observables, these logs have a universal structure
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Factorization of the logarithms

Inclusive observables at Leading Log accuracy

<O>Leading Log :J [Dpl Dpl} Wi [pl} W; [pz] OLo [p1 ) pZ]

fixed p1,2
¢ Logs absorbed into the scale evolution of W;
/\%\\/ =HW (JIMWLK equation)

e Universality : the same W's for all inclusive observables
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Isotropization in
Heavy lon Collisions



Energy momentum tensor of the initial classical field
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Energy momentum tensor of the initial classical field

1

T+ for longitudinal E and B
THY (1t =0") = diag (e, €, €, —¢)

> very anisotropic + negative longitudinal pressure
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Competition between Expansion and Isotropization
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Weibel instabilities for small perturbations

0.0001 T I T I T I T I T T T

le-05H — ¢ ¢, Exp(0.427 Sqrt(g” 1 7))
1e-06H ¢ +c, Exp(0.00544 ¢” 1 1) -
le-07fF

le-08F

le-09F

le-10F

max 172 ™/ g4 u3 L

le-11F

le-12 [Romatschke, Venugopalan (2005)]

16'13 1 I 1 I 1 I 1 I 1 I 1 I 1 ]
0 500 1000 1500 2000 2500 3000 3500

2
gut
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Weibel instabilities for small perturbations

00001 T I T I T I T I T T I T
16-05h — i Fn(0 497 Sart(o? n o LJ
e The perturbations that alter the classical field in loop corrections

diverge with time, like exp ./t (1L~ Qs)

e Some components of THY have secular divergences when
evaluated beyond tree level

% le-10
le-11
le-12 [Romatschke, Venugopalan (2005)]
le_l3 1 I 1 I 1 I 1 I 1 I 1 I 1
0 500 1000 1500 2000 2500 3000 3500

2
gut
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Example of pathologies in fixed order calculations (scalar theory)

LO

i
<

time

flo
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Example of pathologies in fixed order calculations (scalar theory)

LO + NLO

v
“\\

time

Plomno —€Lo.ni0

e Small correction to the energy density
(protected by energy conservation)

e Secular divergence in the pressure
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Improved power counting and resummation

Loop~g> , T~eV*T

™)

e 1loop:
(geVFT)?

I(u,v) v

Frangois Gelis Isotropization in Heavy low Collisions 26/31 KM, Nagoya, March 2014



Improved power counting and resummation

Loop~g> , T~eV*T
()
e 1loop:
(gev¥™)?

e 2 disconnected loops :
(gevVFo)*
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Improved power counting and resummation

Loop~g> , T~eV*T J

()
e 1loop:
(geVFT)?

e 2 disconnected loops :
(gevVFo)*

3(u,v,w) e 2 entangled loops :
g(geV*™)* > subleading

Leading terms
¢ All disconnected loops to all orders
> exponentiation of the 1-loop result
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Resummation of the leading secular terms

1
T™ = exp|s J T (1, V)T Ty | T A

resummed 2 LO

u,v

NLO NNLO

= TLF:)"_|_THV+THV koo
— e —, —

in full partially

e The exponentiation of the 1-loop result collects all the terms with
the worst time behavior
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Resummation of the leading secular terms

nv

resummed

2 THY [Anid]

u,v

1
exp [ J s (u,v)T, T,

J[Da] exp [— %Ju(u)r? (uﬂ’)a(\))] T [Ainie +

u,v

e The exponentiation of the 1-loop result collects all the terms with
the worst time behavior

e Equivalent to Gaussian fluctuations of the initial field
+ classical time evolution

O ‘Ainit"Qs/g ) GNQS
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Note : Classical field + Fluctuations = Coherent state

e This Gaussian distribution of initial fields is the Wigner
distribution of a coherent state \A)

Coherent states are the “most classical quantum states”

Their Wigner distribution has the minimal support permitted by
the uncertainty principle (O(R) for each mode)

° \A) is not an eigenstate of the full Hamiltonian
> decoherence via interactions
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What needs to be done?

Main steps

1. Determine the 2-point function I'; (1, v) that defines the
Gaussian fluctuations, for the initial time Q7o of interest

Note : this is an initial value problem, whose outcome is uniquely
determined by the state of the system at x° = —oc0, and depends
on the history of the system from x° = —oo to T = 1o

Problem solvable only if the fluctuations are weak, a* < Qs/g
QsTo < 1 necessary for the fluctuations to be Gaussian

2. Solve the classical Yang-Mills equations from Ty to t¢

Note : the problem as a whole is boost invariant, but individual field
configurations are not —> 3+1 dimensions necessary

3. Do a Monte-Carlo sampling of the fluctuating initial conditions
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Discretization of the expanding volume

P

T = const
e Comoving coordinates : t,1n,x, F

e Only a sub-volume is simulated
+ periodic boundary conditions

e L2 x N lattice
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Gaussian spectrum of fluctuations

Expression of the variance (from 1-loop considerations)

Nwv) = J Qe (w)ag (v)
modes k
[DpDPsY — DD +igF,Y|af = 0, lim () ~ e

0. A" =0, trivial
1,2. A" = pure gauge, analytical solution

3. A" non-perturbative
= expansion in Qst

e We need the fluctuations in
Fock-Schwinger gauge
xta  +xat =0

e Delicate light-cone crossings, since
F*Y = oo there
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Mode functions for given quantum numbers : v,k A, c

) +i —i
- jJL(zfiw B zﬁ—w)

el — _W(BH . B—i) el — Pt (B+i . B—i)

a'L _ [3+i + [5—'1

D—/

_ 2NV, iy
M(—iv)e™™ Ul (x J ePL L Uy (p, + K (—pﬂ) 5 2PLPLY )
(—iv)e™ ] (x.) sk (B5) (572B2 )

. 2NV, i
B = e T (iv)e™ ™ Ul (x.) J ePL L Uy(p, + k1) <p7”> (zsL’—lefl)ej\
L P1

e Linearized EOM and Gauss’ law satisfied up to terms of order (QST)Z
e Fock-Schwinger gauge condition (a* = e* = 0)
e Evolved from plane waves in the remote past
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Computational cost

Initial Conditions

e Naive :
Nlog(N) x L*1log(L) x Neonts

o Better algorithm :

Nlog(N) x L* x (log(L) + Neonfs)

Time evolution

2
N X L X Neonfs X Ntime steps

Useful statistics (at fixed volume)
2

\/Nconfs ~ (9—

apay)?

v
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Ultraviolet subtractions

T [fm/c]
0.01 0.1 1 2 3 a

e Fixed spacing inn
= A~

2 +10°

Bare e and P, diverge as T~
when T — 07

0.1 1.0 10 20 30 a0
Qs
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Ultraviolet subtractions

T [fm/c]
0.01 0.1 1 2 3 4

e Fixed spacing inn ‘ T
<:> Az - "[7] & +102
3: +10° |
Bare e and P, divergeas T2 .. Lo
when t — 0 4
-10? ’/ M’_MW
e Zero point energy ~ A% A2 : - / .
Subtracted by redoing the — -
calculation with the sources 0 20 % w0
turned off o
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Ultraviolet subtractions

e Fixed spacing inn
= A~T]

Bare e and P, diverge as T~

when T — 07
e Zero point energy ~ A3 AZ :

Subtracted by redoing the
calculation with the sources
turned off

2

T [fm/c]
0.1 1 2 3 4

AN

e Subleading divergences ~ A2 in e and P, :
Exist only at finite L lattice spacing (not in the continuum)
Same counterterm in e and P, to preserve T+, =0
Must be of the form A x T2 to preserve Bjorken’s law
At the moment, not calculated from first principles = A fitted

Frangois Gelis

Isotropization in Heavy low Collisions
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Time evolution of P, /e and P, /e (64 x 64 x 128 lattice)

g =0.1 (Nconts = 200)

T [fm/c]
0.01 0.1 1

12

13

pr/e [
/e N

LO

0.1 . 10.0
Qs T

20.0 30.0 40.0
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Time evolution of P, /e and P, /e (64 x 64 x 128 lattice)

9="0.5 (Nconts = 2000)

T [fm/c]
0.01 0.1 1 2 3 4

+1

12
13

0.1

QT
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Summary



Summary

e CGC calculation of the energy momentum tensor
in a nucleus-nucleus collision, up to QT < 20

e Method :
o Classical statistical method
e Initial Gaussian fluctuations : analytical, from a 1-loop calculation
e Time evolution : numerical, 3+1d Yang-Mills equations on a lattice

e Accuracy :
(0| T (1,%)|0in) at LO + NLO + leading secular terms

e Results :
e Sizable longitudinal pressure (P, /P, ~ 60% for g = 0.5)
e Typical timescale : Qst~2—3
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