Statistical Mechanics without Ensembles — Thermal Pure Quantum Formulation

AKIRA SHIMIZU

Department of Basic Science, The University of Tokyo, Komaba@Tokyo (東京大学総合文化研究科)

> Collaborators: SHO SUGIURA (D2) MASAHIKO HYUGA (M2)

KAZUMITSU SAKAI (Assistant Prof. of CM Theory G@Komaba)

References:

S. Sugiura and AS, Phys. Rev. Lett. **108** (2012) 240401.

S. Sugiura and AS, Phys. Rev. Lett. **111** (2013) 010401.

S. Sugiura and AS, arXiv:1312.5145.

M. Hyuga, K. Sakai, S. Sugiura and AS, in preparation

Equibrium Statistical Mechanics: Conventional

Ensemble formulation (Boltzmann, Gibbs, von Neumann) – I. Principle of equal weight, giving an equilibirum state All states in the energy shell $(E - \Delta E, E]$ are found with equal probability: $\langle \hat{A} \rangle = \frac{1}{W} \sum' \langle n | \hat{A} | n \rangle$ ($| n \rangle$: energy eigenstate, W : # of $| n \rangle$'s in the shell) $= \operatorname{Tr}\left(\hat{\rho}^{\mathrm{ens}}\hat{A}\right) \quad \text{for every observable } \hat{A}.$ $\hat{\rho}^{\text{ens}}$: density operator of the (*micro canonical*) Gibbs state, $\hat{\rho}^{\text{ens}} = \frac{1}{W} \sum' |n\rangle \langle n| \xrightarrow{\text{classical}} \rho_{\text{cl}}^{\text{ens}}(q, p) = \frac{1}{\text{volume of the shell}}$ **II.** Boltzmann formula $(k_{\rm B} = 1)$, giving thermodynamic entropy $S = \ln W$ $= -\mathrm{Tr}\left[\hat{\rho}^{\mathrm{ens}}\ln\hat{\rho}^{\mathrm{ens}}\right] \xrightarrow{\mathrm{classical}} - \int dq dp [\hat{\rho}^{\mathrm{ens}}_{\mathrm{cl}}(q,p)\ln\hat{\rho}^{\mathrm{ens}}_{\mathrm{cl}}(q,p)]$

Any quantum state can be represented by a density operator $\hat{\rho}$, where $\langle \hat{A} \rangle = \operatorname{Tr} [\hat{\rho} \hat{A}]$ for every observable \hat{A} . - (A rough) definition : pure/mixed -• Every vector state $|\psi\rangle = \sum c_n |n\rangle$ $(c_n \in \mathbb{C})$ is a pure state, for which $\hat{\rho} = |\psi\rangle\langle\psi| \xrightarrow{\text{classical}} \rho_{\text{cl}}(q,p) = \delta(q-q^0,p-p^0)$ • Other quantum states are mixed states, whose $\hat{\rho}$ can be decomposed as $\hat{\rho} = \sum_{j} p_{j} |\psi_{j}\rangle \langle \psi_{j}| \stackrel{\text{classical}}{\longrightarrow} \rho_{\text{cl}}(q, p) = \sum_{j} p_{j} \delta(q - q^{j}, p - p^{j})$ using some $\{p_j, |\psi_j\rangle\}_j$ (not unique) s.t. $0 \le p_j \lt 1, \sum_j p_j = 1$.

 $\therefore \hat{\rho}^{\text{ens}} = \sum_{n} \frac{1}{W} |n\rangle \langle n| \text{ is a mixed state. } (p_j = 1/W, |\psi_j\rangle = |n\rangle \text{ in the shell})$

From thermodynamics,

$$\begin{split} S(E,V,N) &= Ns(u,v) \qquad (u=E/N, v=V/N), \\ \text{entropy density } s(u,v) &= O(1). \end{split}$$

Since $S = \ln W$,

$$W = e^S = e^{Ns} = e^{O(N)}.$$

Therefore,

An exponentially large # of pure states are mixed in $\hat{\rho}^{\text{ens}} = \frac{1}{W} \sum_{n}^{\prime} |n\rangle \langle n|.$

Change of Independent Variables

ex. $E \rightarrow \beta$: $S(E, V, N) \xrightarrow{\text{Legendre tr.}} \mathcal{F}(\beta, V, N) = -\beta F(T, V, N)$ (=1/T) entropy function Mathieu function Free energy Ensemble formulation (canonical) – **I.** An equilibirum state is given by the *canonical Gibbs state* $\hat{\rho}_{\rm c}^{\rm ens} = \frac{1}{Z} e^{-\beta \hat{H}} = \frac{1}{Z} \sum e^{-\beta E_n} |n\rangle \langle n| \qquad \left(Z \equiv \operatorname{Tr} e^{-\beta \hat{H}}\right),$ in which an exponentially large # of pure states are mixed. **II.** Mathieu function is given by $\mathcal{F} = \ln Z = -\text{Tr} \left[\hat{\rho}_{c}^{\text{ens}} \ln \hat{\rho}_{c}^{\text{ens}} \right]$

Similarly for other ensembles (e.g., grand canonical).

 $\begin{array}{c} \hline \\ \hline \\ \text{All ensembles give the equivalent results in the thermodynamic limit,} \\ E \propto V \propto N \rightarrow \infty. \quad \Leftarrow \text{ abbreviated as } V \rightarrow \infty \text{ or } N \rightarrow \infty. \end{array}$

Ensemble formulation I. An equilibirum state is given by $\hat{\rho}^{\text{ens}} = \frac{1}{W} \sum_{n}^{\prime} |n\rangle \langle n| \quad \text{or} \quad \hat{\rho}_{\text{c}}^{\text{ens}} = \frac{1}{Z} \sum_{n} e^{-\beta E_{n}} |n\rangle \langle n|$ **II.** Thermodynamic function (S, \mathcal{F}, \cdots) is given by $S = -\text{Tr} [\hat{\rho}^{\text{ens}} \ln \hat{\rho}^{\text{ens}}] \quad \text{or} \quad \mathcal{F} = -\text{Tr} [\hat{\rho}^{\text{ens}}_{\text{c}} \ln \hat{\rho}^{\text{ens}}_{\text{c}}]$

QI. Are the Gibbs states the only representations of an equilibirum state?

AI. No. Many other states are possible! Even a single pure state |ψ⟩ can represent the same equilibirum state. → Thermal Pure Quantum (TPQ) state QII. Tr [ρ̂ ln ρ̂] = 0 if ρ̂ = |ψ⟩⟨ψ|. How to obtain S, F, ··· from |ψ⟩? AII. An appropriate TPQ state gives S. → TPQ formulation of statistical mechanics

Almost all states in the energy shell are an equilibrium state - a rough argument -

For
$$\hat{M}_z = \sum_{\boldsymbol{r}} \hat{s}_z(\boldsymbol{r})$$
 (total magnetization), $\hat{\rho}^{\text{ens}}$ gives
 $\langle \hat{M}_z \rangle = O(V)$: extensive
 $\sqrt{\langle (\Delta \hat{M}_z)^2 \rangle} = O(\sqrt{V})$

Relative deviation

$$\sqrt{\langle (\Delta \hat{M}_z)^2 \rangle} / \langle \hat{M}_z \rangle = O(1/\sqrt{V}) \to 0 \text{ as } V \to \infty$$

Similarly for all extensive (additive) variables.

For extensive variables, almost all states $|n\rangle$ in $\hat{\rho}^{\text{ens}} = \frac{1}{W} \sum_{n}^{\prime} |n\rangle \langle n|$ have the same expectation values, in the sense that relative deviations $= O(V^{-\alpha}) \to 0$.

Well known among some physisists. (lecture by AS; books by T. Tasaki, Y. Oono,...) But, the points in red are very unsatisfactory.

Almost all states in the energy shell are an equilibrium state — a rigorous argument —

A. Sugita, RIMS Kokyuroku (Kyoto) **1507**, 147 (2006).

(more limited results by Popescu et al. (2006), Goldstein et al. (2006), P. Reimann (2007))

- Hilbert space: \mathcal{H}_N (N : number of spins of particles)
- Energy shell: \mathcal{E}_{uN} : subspace of \mathcal{H}_N in $(E \Delta E, E]$. $(u \equiv E/N)$ $\dim \mathcal{E}_{uN} = W = e^{Ns}$ $(s \equiv S/N = O(1))$
- Probability measure: a random vector in \mathcal{E}_{uN} ,

$$|\psi_{\rm rnd}\rangle = \sum_{i}' c_i |i\rangle$$

 c_i : random complex numbers drawn uniformly from the sphere $\sum_i' |c_i|^2 = 1$. $|i\rangle$: aribitrary basis of \mathcal{E}_{uN} .

This measure is invariant under choice of the basis. \rightarrow natural measure!

• Physical quantities to define an equilibrium state: mechanical variables

— Two types of macroscopic variables in equilibirum statistical mechanics — Mechanical Variables and Genuine Thermodynamic Variables

Mechanical variables

• Low-degree polynomials (i.e., their degree = o(N)) of local operators:

$$\hat{H}, \ \hat{M}_z = \sum_{\boldsymbol{r}} \hat{s}_z(\boldsymbol{r}), \ (\hat{H})^2, \ \hat{s}_x(\boldsymbol{r})\hat{s}_y(\boldsymbol{r'}), \cdots$$

• To exclude foolish operators (such as $N^N \hat{H}$), we assume $|\langle \hat{A} \rangle| \leq K N^m \quad (\langle \cdot \rangle : \text{ equilibrium value}),$

where K = O(1) and m = o(N) are constants independent of \hat{A} .

Genuine thermodynamic variables

• Thermodynamic variables that **cannot** be represented as such operators:

$$T, \mu, \cdots, S, F, \cdots$$

 \notin quantum-mechanical observables in the standard sense.

• All genuine thermodynamic variables can be derived from one of thermodynamic functions, $S(E, N, V), F(T, V, N), \dots$ (\Leftrightarrow second law!)

Almost all states in the energy shell are an equilibrium state — a rigorous argument —

Theorem (Sugita, 2006) : For a random vector in the energy shell, $|\psi_{\rm rnd}\rangle = \sum_i c_i |i\rangle$,

$$\langle \psi_{\rm rnd} | \hat{A} | \psi_{\rm rnd} \rangle \xrightarrow{P} \langle \hat{A} \rangle^{\rm ens} \left(= \operatorname{Tr} \left[\hat{\rho}^{\rm ens} \hat{A} \right] \right)$$

for every mechanical variable \hat{A} uniformly, and exponentially fast, as $N \to \infty$.

That is (slightly improving Sugita's one), for $\forall \epsilon > 0$

$$P\Big(\Big|\langle\psi_{\rm rnd}|\hat{A}|\psi_{\rm rnd}\rangle - \langle\hat{A}\rangle^{\rm ens}\Big| \ge \epsilon\Big) \le \frac{1}{\epsilon^2} \cdot \frac{O(|\langle\hat{A}\rangle^{\rm ens}|^2)}{\dim \mathcal{E}_{uN}} \le \frac{1}{\epsilon^2} \cdot \frac{O(N^{2m})}{e^{Ns}} \to 0$$
 for every mechanical variable \hat{A} , as $N \to \infty$.

- rough: only extensive variables \rightarrow all mechanical variables.
- rough: only expectation values \rightarrow also fluctuations and correlations.
- rough: relative deviation \rightarrow deviation itself, even if value = $O(N^m)$.
- rough: slow convergence $O(V^{-\alpha}) \to \text{exponentially fast convergence } e^{-O(N)}$.

An example of purification:

 $\hat{\rho} = (2/3) |1\rangle \langle 1| + (1/3) |2\rangle \langle 2|$: a mixed state on \mathcal{H}_N .

By attaching an auxiliary system, enlarge \mathcal{H}_N to $\mathcal{H}_N \otimes \mathcal{H}_{aux}$, and consider $|\Psi\rangle = \sqrt{2/3} |1\rangle \otimes |1'\rangle + \sqrt{1/3} |2\rangle \otimes |2'\rangle$: a pure state in $\mathcal{H}_N \otimes \mathcal{H}_{aux}$.

Then,

 $\langle \Psi | (\hat{a} \otimes \hat{1}) | \Psi \rangle = \operatorname{Tr} [\hat{\rho} \hat{a}] \text{ for all observables } \hat{a} \text{ on } \mathcal{H}_N.$

Purification

It is *always* possible to represent a mixed state $\hat{\rho}$ on \mathcal{H}_N as a pure state $|\Psi\rangle$ in an enlarged space $\mathcal{H}_N \otimes \mathcal{H}_{aux}$. They are the same state on \mathcal{H}_N .

ex. Thermo Field Dynamics (TFD) utilizes purification.

By contrast, in Sugita's theory

- $|\psi_{\rm rnd}\rangle$ is a pure state in \mathcal{H}_N .
- $|\psi_{\rm rnd}\rangle\langle\psi_{\rm rnd}|\neq\hat{\rho}^{\rm ens}$ on \mathcal{H}_N (manifest by entanglement \leftarrow discuss later)
- But, $|\psi_{\rm rnd}\rangle$ and $\hat{\rho}^{\rm ens}$ are statistical-mechanically identical!

Answer to Question I, and further questions

QI. Are the Gibbs states $\hat{\rho}^{\text{ens}}$ the only representations of an equilibirum state? **AI. No.** A pure state $|\psi_{\text{rnd}}\rangle$ represents the same equilibirum state.

Problems and further questions:

- 1. For $\hat{\rho} = |\psi_{\text{rnd}}\rangle\langle\psi_{\text{rnd}}|$, the conventional formula gives a wrong result, $S = \text{Tr} [\hat{\rho} \ln \hat{\rho}] = 0.$
 - $\rightarrow\,$ Impossible to obtain genuine thermodynamic variables from $|\psi_{\rm rnd}\rangle$.
 - \rightarrow **QII.** How to obtain S, \mathcal{F}, \cdots from (another) $|\psi\rangle$?
- 2. Generally, the canonical Gibbs state (specified by T, V, N) is much more convenient than the microcanonical Gibbs state (specified by E, V, N).
 |ψ_{rnd}⟩ (specified by E, V, N) corresponds to the microcanonical one.
 → QIII. Another |ψ⟩ specified by T, V, N?
- 3. Practically, $|\psi_{\rm rnd}\rangle$ is harder to obtain than $\hat{\rho}^{\rm ens}$.
 - \rightarrow **QIV.** Another $|\psi\rangle$ easier to obtain?

Our Solutions — TPQ formulation of statistical mechanics

S. Sugiura and AS, Phys. Rev. Lett. 108 (2012) 240401.
S. Sugiura and AS, Phys. Rev. Lett. 111 (2013) 010401.
S. Sugiura and AS, arXiv:1312.5145.
M. Hyuga, K. Sakai, S. Sugiura and AS, in preparation

- 1. Generally define Thermal Pure Quantum (TPQ) state as a pure state that represents an equilibirum state. ex. $|\psi_{\rm rnd}\rangle$ is one of TPQ states.
- 2. New types of TPQ states $|\beta, V, N\rangle$, $|\beta, V, \mu\rangle$,

 \rightarrow **Yes** to **QIII.** Another $|\psi\rangle$ specified by T, V, N?

3. Formulas for getting thermodynamic functions from $|\beta, V, N\rangle, |\beta, V, \mu\rangle,$

 \rightarrow Solutions to QII. How to obtain S, \mathcal{F}, \cdots from (another) $|\psi\rangle$?

- 4. $|\beta, V, N\rangle, |\beta, V, \mu\rangle, \dots$ are *much easier* to obtain than $\hat{\rho}^{\text{ens}}$ and $|\psi_{\text{rnd}}\rangle$. \rightarrow **Yes** to **QIV.** Another $|\psi\rangle$ easier to obtain?
- 5. Practical formulas.

Setup

Quantum system

- composed of N sites or particles, confined in a box of volume V.
- (irreducible) Hilbert space is \mathcal{H}_N . dim \mathcal{H}_N can be ∞ .
- each equilibrium state is specified by $E, V, N, \dots \rightarrow \text{abbreviated as } E, V, N$.

Assumptions : Ensemble formulation gives correct results, which are *consis*tent with thermodynamics in the t.d.l $(E \propto V \propto N \rightarrow \infty)$.

- $S(E, V, N)/N \to s(u, v)$: entropy density, $u \equiv E/N$, $v \equiv V/N$.
- s(u, v) is a concave function, continuously differentiable even at phase transitions. see, e.g., 清水「熱力学の基礎」(東大出版会, 2007)
- For every mechanical variable \hat{A} ,

 $|\langle \hat{A} \rangle^{\text{ens}}| \le K N^m$

where K = O(1) and m = o(N) are constants independent of \hat{A} .

A state $|\psi\rangle \ (\in \mathcal{H}_N)$, which has a random variable, is called a **TPQ state** if $\langle \hat{A} \rangle_N^{\psi} \equiv \frac{\langle \psi | \hat{A} | \psi \rangle}{\langle \psi | \psi \rangle} \xrightarrow{P} \langle \hat{A} \rangle_N^{\text{ens}} \equiv \text{Tr} [\hat{\rho}^{\text{ens}} \hat{A}]$

for every mechanical variable \hat{A} uniformly, as $N \to \infty$.

That is, $\forall \epsilon > 0$ there exists a function $\eta_{\epsilon}(N)$ that vanishes as $N \to \infty$ and $P\left(\left|\langle \hat{A} \rangle_{N}^{\psi} - \langle \hat{A} \rangle_{N}^{\text{ens}}\right| \ge \epsilon\right) \le \eta_{\epsilon}(N)$

for every mechanical variable \hat{A} .

Remark: cannot be obtained by purifying $\hat{\rho}^{\text{ens}}$ because $|\psi\rangle \in \mathcal{H}_N$. **Independent variables**

- β, V, N : canonical TPQ state $|\beta, V, N\rangle$.
- β, V, μ : grand-canonical TPQ state $|\beta, V, \mu\rangle$.

Canonical TPQ state : $|\beta, V, N\rangle$ abbreviated as $|\beta, N\rangle$ \bigstar PRL version (2013) assumed dim $\mathcal{H}_N < +\infty$.

Here, slightly generalized s.t. applicable to dim $\mathcal{H}_N = \infty$.

Let

- $\{|\nu\rangle\}_{\nu}$: an aribitrary basis of \mathcal{H}_N (c.f. Sugita's $\{|i\rangle\}_i$: a basis of \mathcal{E}_{uN})
- x_{ν}, y_{ν} : real random variables, obeying the standard normal distribution

•
$$c_{\nu} \equiv (x_{\nu} + iy_{\nu})/\sqrt{2}$$
. (c.f. PRL version imposed $\sum_{\nu} |c_{\nu}|^2 = 1$)

Then,

$$|\beta, N\rangle \equiv \sum_{\nu} c_{\nu} \exp[-\beta \hat{H}/2]|\nu\rangle \quad (\text{well-defined even when } \dim \mathcal{H}_N = \infty)$$

is the canonical TPQ (cTPQ) state, specified by β , N;

$$\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}} \equiv \frac{\langle \beta, N | \hat{A} | \beta, N \rangle}{\langle \beta, N | \beta, N \rangle} \xrightarrow{P} \langle \hat{A} \rangle_{\beta,N}^{\text{ens}} \equiv \frac{1}{Z} \operatorname{Tr} \left[e^{-\beta \hat{H}} \hat{A} \right]$$

for every mechanical variable \hat{A} uniformly, in the t.d.l.

Outline of Proof

We use a Markov-type inequality:

For
$$\forall \epsilon > 0$$
, $\mathbb{P}(|x - y| \ge \epsilon) \le \overline{(x - y)^2}/\epsilon^2$.
Taking $x = \langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}}, y = \langle \hat{A} \rangle_{\beta,N}^{\text{ens}}, \overline{(x - y)^2} = \overline{(\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\text{ens}})^2} \equiv D_N(A)^2$,
 $\mathbb{P}\left(\left|\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\text{ens}}\right| \ge \epsilon\right) \le D_N(A)^2/\epsilon^2$.

Using $\overline{c_{\nu}^* c_{\xi}} = \delta_{\nu,\xi}$, $\overline{c_{\nu}^* c_{\xi} c_{\eta}^* c_{\zeta}} = \delta_{\nu,\xi} \delta_{\eta,\zeta} + \delta_{\nu,\zeta} \delta_{\eta,\xi}$, etc, and dropping smaller-order terms, we find

$$D_N(A)^2 \le \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,N}^{\text{ens}} + (\langle A \rangle_{2\beta,N}^{\text{ens}} - \langle A \rangle_{\beta,N}^{\text{ens}})^2}{\exp[2N\beta\{f(1/2\beta;N) - f(1/\beta;N)\}]} \le \frac{N^{2m}}{e^{O(N)}}$$

where

$$\begin{split} \langle (\Delta \hat{A})^2 \rangle_{\beta,N}^{\text{ens}} &\equiv \langle (\hat{A} - \langle A \rangle_{\beta,N}^{\text{ens}})^2 \rangle_{\beta,N}^{\text{ens}}, \\ f(T;N) &\equiv F/N \text{ (free energy density)} \to f(T) \text{ as } N \to \infty, \\ f(1/2\beta;N) - f(1/\beta;N) &= O(1) > 0 \text{ because } s = -\partial f/\partial T = O(1) > 0. \end{split}$$

Therefore, for
$$\forall \epsilon > 0$$
,

$$P\left(\left|\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}} - \langle \hat{A} \rangle_{\beta,N}^{\text{ens}}\right| \ge \epsilon\right)$$

$$\leq \frac{1}{\epsilon^2} \cdot \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,N}^{\text{ens}} + (\langle A \rangle_{2\beta,N}^{\text{ens}} - \langle A \rangle_{\beta,N}^{\text{ens}})^2}{\exp[2N\beta\{f(1/2\beta;N) - f(1/\beta;N)\}]} \le \frac{1}{\epsilon^2} \cdot \frac{N^{2m}}{e^{O(N)}} \to 0.$$

This shows that

 $\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}} \xrightarrow{P} \langle \hat{A} \rangle_{\beta,N}^{\text{ens}}$ for every mechanical variable \hat{A} uniformly.

Therefore,

- $|\beta, N\rangle$ is the canonical TPQ (cTPQ) state.
- Its single realization gives the equilibrium values of mechanical variables, with exponentially small probability of error, as $\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}}$.

Formula for Thermodynamic Function

Let
$$Z(\beta, N) \equiv \operatorname{Tr} e^{-\beta \hat{H}}$$
 (partition function). We can show

$$\begin{split} & \operatorname{P} \left(\left| \frac{\langle \beta, N | \beta, N \rangle}{Z(\beta, N)} - 1 \right| \geq \epsilon \right) \\ & \leq \frac{1}{\epsilon^2} \cdot \frac{1}{\exp[2N\beta\{f(1/2\beta; N) - f(1/\beta; N)\}]} \leq \frac{1}{\epsilon^2} \cdot \frac{1}{e^{O(N)}}. \end{split}$$

This shows

$$\langle \beta, N | \beta, N \rangle \xrightarrow{P} Z(\beta, N).$$

A single realization of $|\beta, N\rangle$ gives f = F/N, with exponentially small probability of error, by

$$-\beta f(1/\beta; N) = \frac{1}{N} \ln \langle \beta, N | \beta, N \rangle.$$

All genuine thermodynamic variables can be calculated from f.

Only a single realization of the TPQ state gives all variables of statisticalmechanical interest.

Self-Validation

Using f obtained from this formula, one can estimate the upper bounds of errors of f itself and $\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}}$.

- Our formulas are almost self-validating.
- This is particularly useful in practical applications!

Application to the spin-1/2 kagome Heisenberg antiferromagnet

A frustrated two-dimensional quantum spin system

 \rightarrow Sign problem is fatal to quantum Monte Carlo method.

Numerical diagonalization : $N \lesssim 18 \rightarrow$ double peaks in the specific heat? cTPQ : $N = 27 - 30 \rightarrow$ disapperance of the lower peak!

Thermodynamic functions f and s of KHA

45% of the total entropy (= $N \ln 2$) remains at T = 0.2J.

- $\rightarrow\,$ typical to frustration systems.
- \rightarrow hard with most other methods.

→ But, favorable to TPQ formulation because error ~ $1/e^{Ns}$. From our formulas for errors, errors $\leq 1\%$ for $T \geq 0.1J$.

Practical Formulas using microcanonical TPQ (mTPQ) states

In practical computations, one introduces a cutoff to make dim \mathcal{H}_N finite. Since dim $\mathcal{H}_N < +\infty$,

• Using an arbitrary basis $\{|\nu\rangle\}$, such as a trivial one, one can easily generate a random vector $\in \mathcal{H}_N$ as

$$0\rangle \equiv \sum_{\nu} c_{\nu} |\nu\rangle \quad (\neq \text{Sugita's } |\psi_{\text{rnd}}\rangle \in \mathcal{E}_{uN})$$

• $\hat{h} \equiv \hat{H}/N$ has the maximum eigenvalue e_{max} .

 \Rightarrow One can take an aribitray number l such that $l \ge e_{\max}$. Using these, compute

$$|k\rangle \equiv (l - \hat{h})^k |0\rangle$$

iteratively for k = 0, 1, 2, ...We can show: $u \equiv E/N$ has a sharp peak around $u \simeq \langle k | \hat{h} | k \rangle / \langle k | k \rangle$ \Rightarrow a mTPQ state (\neq Sugita's $| \psi_{\text{rnd}} \rangle$) In terms of *normalized* mTPQ states,

$$|\psi_k\rangle \equiv (1/\sqrt{Q_k})|k\rangle \quad (Q_k \equiv \langle k|k\rangle),$$

the cTPQ state $|\beta,N\rangle$ can be expanded as

$$e^{N\beta l/2}|\beta,N\rangle = \sum_{k=0}^{\infty} \frac{(N\beta/2)^k}{k!}|k\rangle = \sum_{k=0}^{\infty} R_k|\psi_k\rangle \quad \left(R_k \equiv \frac{(N\beta/2)^k}{k!}\sqrt{Q_k}\right).$$

• this sum is uniformly convergent on any finite interval of β .

- R_k takes significant values only for k s.t. $\langle \psi_k | \hat{h} | \psi_k \rangle = \langle \hat{h} \rangle_{\beta,N}^{\text{TPQ}} + O(1/V).$
- As k moves away from such values, R_k vanishes exponentially fast.

 $|\beta, N\rangle$ is superpositon of $|\psi_k\rangle$'s which represent the same equilibrium state.

- One can terminate the sum at a finite number k_{term} , which depends on the largest β of interest, β_{max} .
- For any $\beta_{\max} = O(1)$, we can show that $k_{\text{term}} = O(N)$.
- $|1\rangle, |2\rangle, \cdots, |k_{\text{term}}\rangle$ can be obtained iteratively by simply multiplying $(l \hat{h})$ with a random vector k_{term} times.

One can obtain $|\beta, N\rangle$ by multiplying $(l - \hat{h})$ with a random vector $|0\rangle \in \mathcal{H}_N$, repeatedly O(N) times.

• Larger $l \Rightarrow$ better results but larger k_{term} .

Advantages when Applied to Numericl Computations

- \bullet Free from the sign problem
 - \Rightarrow frustrated systems, fermion systems
- Applicable to any spatial dimensions
- \bullet Effective over a wide range of T
- Self-validating
- Only matrix multiplications of O(N) times.
- Only two vectors (i.e., computer memory)

Entanglement

TPQ state vs. Gibbs state

- Identical concerning mechanical variables.
- But, maximally different with respect to entanglement.

Example: $T \gg J$

 $\hat{\rho}^{\text{ens}} \simeq \hat{1} \Rightarrow \text{no entanglement.}$

 $|k\rangle, |\beta, N\rangle, \dots$ have almost maximum (exponentially large) entanglement.

An equilibrium state can be represented either by a TPQ state with exponentially large entanglement or by a mixed state with much less entanglement.

Their difference can be detected only by high-order correlations of local operators, which are not of statistical-mechanical interest.

- A. Sugita and AS, J. Phys. Soc. Jpn. **74** (2005) 1883.
- A. Sugita, RIMS Kokyuroku (Kyoto) $\mathbf{1507},\,147$ (2006).
- S. Sugiura and AS, 物理学会2013春

Entanglement -Purity

TPQ states are almost maximally entangled

Let

$$\{\hat{A}\}_{\beta,N}' \equiv \sum_{k=0}^{\infty} \frac{(N\beta)^{2k}}{(2k)!} \langle k | \hat{A} | k \rangle + \sum_{k=0}^{\infty} \frac{(N\beta)^{2k+1}}{(2k+1)!} \langle k | \hat{A} | k+1 \rangle,$$

$$\{\hat{A}\}_{\beta,N}^{\text{TPQ}} \equiv \{\hat{A}\}_{\beta,N}' \{\hat{1}\}_{\beta,N}'.$$

We can show that

$$\{\hat{1}\}_{\beta,N}' \xrightarrow{P} Z(\beta,N), \\ \{\hat{A}\}_{\beta,N}^{\text{TPQ}} \xrightarrow{P} \langle \hat{A} \rangle_{\beta,N}^{\text{ens}},$$

exponentially fast and uniformly.

Useful because one needs only to calculate $\langle k | \hat{A} | k \rangle$ and $\langle k | \hat{A} | k + 1 \rangle$ for all $k \leq k_{\text{term}}$ to obtain the results for all $\beta \leq \beta_{\text{max}}$.

When computer resources are not sufficient to treat large enough $N \Rightarrow e^{Ns}$ is not large enough.

 $\Rightarrow\,$ One can reduce errors by averaging over many realizations of the cTPQ states because

$$\frac{\frac{1}{V}\ln\overline{\langle\beta,N|\beta,N\rangle}}{\frac{\langle\beta,N|\hat{\beta},N\rangle}{\langle\beta,N|\beta,N\rangle}} = \frac{\frac{1}{V}\ln\overline{\{\hat{1}\}'_{\beta,N}}}{\frac{\langle\hat{A}\}'_{\beta,N}}{\langle\hat{\beta},N|\beta,N\rangle}} = \frac{\langle\hat{A}\rangle_{\beta,N}^{\text{ens}}}{\frac{\langle\hat{1}\}'_{\beta,N}}{\langle\hat{1}\}'_{\beta,N}}} = \langle\hat{A}\rangle_{\beta,N}^{\text{ens}},$$

Averaging over M realizations reduces the error, as measured by the standard deviation, by the factor of $1/\sqrt{M}$.

Summary — TPQ formulation of statistical mechanics

- 1. *Generally* define Thermal Pure Quantum (TPQ) state as a pure state that represents an equilibirum state.
- 2. New types of TPQ states $|\beta, V, N\rangle$, $|\beta, V, \mu\rangle$,
- 3. Formulas for getting thermodynamic functions from $|\beta, V, N\rangle, |\beta, V, \mu\rangle, \dots$
- 4. $|\beta, V, N\rangle, |\beta, V, \mu\rangle, \dots$ are *much easier* to obtain than $\hat{\rho}^{\text{ens}}$ and $|\psi_{\text{rnd}}\rangle$. 5. Practical formulas.
- 6. Many advantages when applied to numerical computations.