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Equlibrium Statistical Mechanics: Conventional

- Ensemble formulation (Boltzmann, Gibbs, von Neumann)
I. Principle of equal weight, giving an equilibirum state

All states in the energy shell (£ —AFE, E| are found with equal probability:
n 1 n
(A) = W;/<H‘A’n> (|n) : energy eigenstate, W : # of |n)’s in the shell )

= Tr (ﬁensfl) for every observable A.

p°™ - density operator of the (micro canonical) Gibbs state,
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II. Boltzmann formula (kg = 1), giving thermodynamic entropy
B y
S=InW
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P is a mixed state

Any quantum state can be represented by a density operator p, where

(A) = Tr[pA] for every observable A.

- (A rough) definition : pure/mixed N

e Every vector state |¢) = Z cnln)  (¢n € C) is a pure state, for which

n

N lassical
p= V)| TS pala,p) = 6lg — ¢, p—p)

e Other quantum states are mixed states, whose p can be decomposed as

| |
Zpgle Wil "5 pe(a.p) Zp] ¢—q,p—p)

using some {pj, |%4) }; (not unique) s.t. 0 < p]-<17 >ipj=1
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L pems Z W\m (n| is a mixed state. (p; = 1/W, |[¢;) = |n) in the shell)
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W is Exponentially Large

From thermodynamics,
S(E,V,N)= Ns(u,v) (u=FE/N,v=V/N),
entropy density s(u,v) = O(1).

Since S =InW,
W = e = Vs = OW),

Therefore,

1 /
An exponentially large # of pure states are mixed in p™° = WZ In)(n|.

n




Change of Independent Variables

Legendre tr.

ex. F— [ : S(E,V,N) o F(B,V,N) =—-BF(T,V,N)
(=1/T) entropy function Mathieu function Free energy
- Ensemble formulation (canonical)

I. An equilibirum state is given by the canonical Gibbs state
1 71 :
P = Ee_ﬁﬂ = Ezn: e PEn|n) (n (Z =Tr e_ﬁH),

in which an exponentially large # of pure states are mixed.

II. Mathieu function is given by
F=WZ= T [p" ™

=

Similarly for other ensembles (e.g., grand canonical).

Theorem: Equivalence of ensembles

All ensembles give the equivalent results in the thermodynamic limit,
EFExV xN—o0o0 <« abbreviated as V — oo or N — o0.




Summary of the Ensemble Formulation, and Questions

- Ensemble formulation
I. An equilibirum state is given by

. 1 . 1 _
P = Il or pN =2 e Enln) (n
n n

II. Thermodynamic function (S, F,---) is given by
S=—Tr[p"™p™ or F=—-Tr[p."Inp."

N

QI. Are the Gibbs states the only representations of an equilibirum state?

Al. No. Many other states are possible!
Even a single pure state |1) can represent the same equilibirum state.
— Thermal Pure Quantum (TPQ) state

QII. Tr [pInp| = 0 if p = |¢)(y|. How to obtain S, F,--- from |¢)?

AIl. An appropriate TPQ) state gives S.

— TPQ formulation of statistical mechanics



Almost all states in the energy shell are an equilibrium state
— a rough argument —

~CI1S

For M. =3_,. 5,(r) (total magnetization), s gives
(M.) = O(V) : extensive
VAAILR) = OWT)

Relative deviation

VUARLP) /() = O(VT) = 0 as V = o

Similarly for all extensive (additive) variables.
- )

1 /
For extensive variables, almost all states |n) in p** = T E In){n| have the
n

same expectation values, in the sense that relative deviations = O(V %) — 0.
N J

Well known among some physisists. (lecture by AS: books by T. Tasaki, Y. Oono,...)
But, the points in red are very unsatistactory.



Almost all states in the energy shell are an equilibrium state
— a rigorous argument —

A. Sugita, RIMS Kokyuroku (Kyoto) 1507, 147 (2006).
(more limited results by Popescu et al. (2006), Goldstein et al. (2006), P. Reimann (2007))

e Hilbert space: Hy (N : number of spins of particles)
e Energy shell: &, : subspace of Hy in (EF —AF,E]. (u= FE/N)
dm&,ny =W =¢e"* (s=5/N=0(1))

e Probability measure: a random vector in &, ,

Yrmd) = Z/Ci‘i>

[/

¢; : random complex numbers drawn uniformly from the sphere Z/\Ci\Q = 1.
|4) . aribitrary basis of &, .
This measure is invariant under choice of the basis. — natural measure!

e Physical quantities to define an equilibrium state: mechanical variables



— T'wo types of macroscopic variables in equilibirum statistical mechanics —
Mechanical Variables and Genuine Thermodynamic Variables

Mechanical variables
e Low-degree polynomials (i.e., their degree = o(N)) of local operators:
f{a MZ — Z §Z(r>7 (ﬁ)Qa §Zlﬁ<r>‘§y(r,>a U
r
e To exclude foolish operators (such as N™VH), we assume

(A < KN™  ((-) : equilibrium value),
where K = O(1) and m = o(N) are constants independent of A.
Genuine thermodynamic variables
e Thermodynamic variables that cannot be represented as such operators:
T p,-+,S F -
¢ quantum-mechanical observables in the standard sense.

e All genuine thermodynamic variables can be derived from one of thermody-
namic functions, S(E, N, V), F(T,V,N),---. (< second law!)



Almost all states in the energy shell are an equilibrium state
— a rigorous argument —

" Theorem (Sugita, 2006) : For a random vector in the energy shell, |1,,q) -
Zilci|i>7
A P A R A
(Vrnal Altma) = (A (= Tr [5™*4])

for every mechanical variable A uniformly, and exponentially fast, as N — oo.

N /
That is . for Ve > 0
A\ ens|2 2m

P(| Gl Al — (A7 2 ) < 5 CUATE) 1 OOF)
for every mechanical variable 121, as N — o0.

e rough: only extensive variables — all mechanical variables.

e rough: only expectation values — also fluctuations and correlations.

e rough: relative deviation — deviation itself, even if value = O(N™).

e rough: slow convergence O(V ~%) — exponentially fast convergence e~ OWN).



It’s not purification
An example of purification:
p=(2/3)[1){1] +(1/3)]2)(2] : a mixed state on H .
By attaching an auxiliary system, enlarge H to Hy ® Haux, and consider

W) = /2/311) @ [1) +/1/312) @ |2/) : a pure state in Hy ® Haux.

Then,

(U|(a @ 1)WY =Tr[pa] for all observables & on H .

Purification ~
[t is always possible to represent a mixed state p on H v as a pure state | V)

in an enlarged space Hy ® Haux. They are the same state on H . )

ex. Thermo Field Dynamics (TFD) utilizes purification.

By contrast, in Sugita’s theory
e [¢).,q) is a pure state in H .

o |Und) (Urngl # P on H v (manifest by entanglement <— discuss later)

e But, |1,,,4) and p°™ are statistical-mechanically identical!



Answer to Question I, and further questions

QI. Are the Gibbs states p™* the only representations of an equilibirum state?
Al No. A pure state |1,,q) represents the same equilibirum state.

Problems and further questions:

1. For p = |9nq) (¥mgl, the conventional formula gives a wrong result, S =
Tr{plnp] = 0.

— Impossible to obtain genuine thermodynamic variables from |1, 1) .
— QII. How to obtain S, F,--- from (another) |¢)?

2. Generally, the canonical Gibbs state (specified by T, V, N) is much more
convenient than the microcanonical Gibbs state (specified by E,V, N).
[Yq) (specified by £, V, N) corresponds to the microcanonical one.

— QIII. Another |¢)) specified by T, V, N7

~CI1S
P

3. Practically, |1,y,q) is harder to obtain than
— QIV. Another [1)) easier to obtain?



Our Solutions — TPQ formulation of statistical mechanics

S. Sugiura and AS, Phys. Rev. Lett. 108 (2012) 240401. 2
S. Sugiura and AS, Phys. Rev. Lett. 111 (2013) 010401. 2%
S. Sugiura and AS, arXiv:1312.5145.

M. Hyuga, K. Sakai, S. Sugiura and AS, in preparation

1. Generally define Thermal Pure Quantum (TPQ) state as a pure state that
represents an equilibirum state. ex. |1,,,) is one of TPQ) states.

2. New types of TPQ states |3, V, N), |5, V, u), ...
— Yes to QII. Another |¢) specified by T, V, N7

3. Formulas for getting thermodynamic functions from |8,V N), |5, V, u),

— Solutions to QII. How to obtain .S, F, - from (another) |¢)?

4.16,V,N),|B,V, i), .... are much easier to obtain than o and |¢,,q)-
— Yes to QIV. Another |¢) easier to obtain?

5. Practical formulas.



Setup

Quantum system

e composed of N sites or particles, confined in a box of volume V.

e (irreducible) Hilbert space is H . dim H py can be oo.

e cach equilibrium state is specified by E, V, N, ... — abbreviated as £, V, V.
Assumptions : Ensemble formulation gives correct results, which are consis-
tent with thermodynamics in the t.d]l (F o« V o« N — 00).

e S(E,V,N)/N — s(u,v): entropy density, u = F/N, v=V/N.

e s(u,v) is a concave function, continuously differentiable even at phase tran-
sitions. see, e.g., {H/AK [EJ 17 OIAE ] (AR IRE, 2007)

e For every mechanical variable 121,
(A)"S] < KN™
where K = O(1) and m = o(N) are constants independent of A.



Thermal Pure Quantum (TPQ) state

A state [4)) (€ Hpy), which has a random variable, is called a TPQ state if \

A= B g = A

for every mechanical variable A uniformly, as N — oo.
-

That is, Ve > 0 there exists a function ne(/N) that vanishes as N — oo and
P([(A)y = (3 =€) <)

for every mechanical variable A.

Remark: cannot be obtained by purifying p™ because [¢) € Hy.

Independent variables
e 3.V, N : canonical TPQ state |5, V, N).
e 3.V, i : grand-canonical TPQ state |5, V, u).



Canonical TPQ state : |5,V, N) abbreviated as |3, N)
% PRL version (2013) assumed dim Hy < +o0.

Here, slightly generalized s.t. applicable to dim My = co.
Let
e {|v)}, : an aribitrary basis of Hy (c.f. Sugita’s {|7)}; : a basis of £, )
e r,,1, : real random variables, obeying the standard normal distribution
o c, = (2, +iyy)/V2. (c.f. PRL version imposed S |ey|> = 1)
Then,
B, N) = Z ¢y exp|—BH/2)|v)  (well-defined even when dim H y = 00)

v

is the canonical TPQ (¢TPQ) state, specified by £, N;

' N|A|B, N . 1 o
A= Ny Wit =g A

for every mechanical variable A uniformly, in the t.d.1.



Outline of Proof

We use a Markov-type inequality:
For Ve > 0, P(|lz —y| > ¢) < (z — y)2/e°.

AN

: ~\ TP f TP n
Taking z = (A)P2 y = ()95, o — )2 = (A) 10 — (AT = Dy (A)2

P

Using cjce = 0y ¢, CjCeChice = 0y, ¢0p ¢ + 0y 0p ¢, etc, and dropping smaller-

N TP N
(A) gt = (DT

> e) < Dy(A?2/e2,

order terms, we find

(DAY + (A5 = (AFR)° N2

exp2NB{f(1/28; N) — f(1/B; N)}| — OW)

Dy(A)* <
where

(AAAFV=(A = (DTN TN
f(T; N)= F/N (free energy density) — f(T) as N — oo,
f(1/28;N)— f(1/8;N) = 0O(1) > 0 because s = =9 f /T = O(1) > 0.



Therefore, for Ve > 0,

Probability of Error
A TP A
P (|2 - s = o

1 {BARE Y+ (A — (g1 e
=2 opRNB{(1/2B:N) - JJBEN)Y] = & O)
This shows that

> ().

<A>ES\(;)‘ £ (%Al}%r’l?\; for every mechanical variable A unifromly.

Therefore,

e |3, N) is the canonical TPQ (¢TPQ) state.

e Its single realization gives the equilibrium values of mechanical variables,

with exponentially small probability of error, as <A>EP])\9




Formula for Thermodynamic Function

Let Z(B,N)="Tr o~ BH (partition function). We can show

(8, N|B, N
P<' ZB.N) ZE)
1 1 1 1

= 2 epRNB{(L25N) — f(L/F N =& 0

This shows .
</B7N’/87N> %Z</B7N>'

A single realization of |5, N) gives f = F//N, with exponentially small prob—\
ability of error, by

~61(1/8;N) = - In{3, N|8, N).

\_ /

All genuine thermodynamic variables can be calculated from f.

Only a single realization of the TPQ) state gives all variables of statistical-
mechanical interest.




Self-Validation

Using f obtained from this formula, one can estimate the upper bounds of errors

of f itself and <A>EP]\9

e Our formulas are almost selt-validating.

e This is particularly useful in practical applications!




Application to the spin-1/2 kagome Heisenberg antiferromagnet

A frustrated two-dimensional quantum spin system
— Sign problem is fatal to quantum Monte Carlo method.
Numerical diagonalization : N < 18 — double peaks in the specific heat?

cTPQ : N =27—-30 — disapperance of the lower peak!

0.20 . *
0.15 :: \“t ”’x ﬁ( A@ 7
c [
0101 - N=18a *
: N=18b
o N=27
005* )1 N=30 7




Thermodynamic functions f and s of KHA

: —  f(BN) :
-05¢ S(B;N) 11
f(B;N) I ] S(5;N)
1L 30.5
N S ———
0.0 0.5 1.0 15 2.0
T

45% of the total entropy (= N In 2) remains at T' = 0.2J.

— typical to frustration systems.

— hard with most other methods.

— But, favorable to TPQ formulation because error ~ 1/ elVs,
From our formulas for errors, errors < 1% for T > 0.1.J.



Practical Formulas using microcanonical TPQ (mTPQ) states

In practical computations, one introduces a cutoft to make dim H pr finite.
Since dim H y < 400,

e Using an arbitrary basis {|v)}, such as a trivial one, one can easily generate
a random vector € H  as

0) = Z cylv)  (# Sugita’s [1yq) € Eyn)

vV

oh=1H /N has the maximum eigenvalue epax.

= One can take an aribitray number [ such that [ > epax.

Using these, compute

k) = (1 — h)¥|0)

iteratively for K =0,1,2,....
We can show: © = E/N has a sharp peak around u >~ (k|h|k)/(k|k)
= a mTPQ state (# Sugita’s [{.,1))



In terms of normalized mTPQ) states,

V) = (1/VQp)IE)  (Qr = (k[E)),
the ¢TPQ state | 5 N) can be expanded as

<Nﬁ/2 (NB/2)*

eNOU2|8, Ny = Z ' ZRHW Ry =——"VQ |
k=0

e this sum is uniformly convergent on any finite interval of 3.

o R;. takes significant values only for k s.t. (|hlir) = (h >gl?\9 + O(1/V).

e As k moves away from such values, R;. vanishes exponentially fast.

(| B, N) is superpositon of |¢;.)’s which represent the same equilibirum state. ]

e One can terminate the sum at a finite number kteryy, which depends on the
largest [ of interest, Bax.

e For any Bpnax = O(1), we can show that kier = O(N).

o |1),]2), -, |kterm) can be obtained iteratively by simply multiplying (I — h)
with a random vector Kiery times.



AN

One can obtain |3, N) by multiplying (I — h) with a random vector |0) € H p,
repeatedly O(N) times.

e Larger [ = better results but larger £t



Advantages when Applied to Numericl Computations

e [ree from the sign problem

= frustrated systems, fermion systems
e Applicable to any spatial dimensions
e Effective over a wide range of 1T’
e Self-validating
e Only matrix multiplications of O(NV) times.

e Only two vectors (i.e., computer memory)



Entanglement

TPQ state vs. Gibbs state

e [dentical concerning mechanical variables.

e But, maximally different with respect to entanglement.

Example: T > J

/S ~ 1 = no entanglement.

k), |8, N), ... have almost maximum (exponentially large) entanglement.

An equilibrium state can be represented either by a TP(Q) state with exponen-
tially large entanglement or by a mixed state with much less entanglement.

Their difference can be detected only by high-order correlations of local opera-
tors, which are not of statistical-mechanical interest.

- A. Sugita and AS, J. Phys. Soc. Jpn. 74 (2005) 1883.
- A. Sugita, RIMS Kokyuroku (Kyoto) 1507, 147 (2006).
- S. Sugiura and AS, ¥ ¥4 2013 F



energy high S — —

e Minimum value

. Average value of

* random vector in whole Hilbert space .
| ( A.Sugita & A.Shimizu (2005) )
- — TPQ states -

TPQ states are almost maximally entangled




More Practical Formulas # 1

Let
. .
(Y =3 A D3 N klAlk 1),
{A}5 3 = (A n/ {1
We can show that
{15 5 Z(B,N),
(A} 5 (AT,

exponentially fast and uniformly:.

Useful because one needs only to calculate (k|A|k) and (k|A|k + 1) for all
k < ktorm to obtain the results for all 5 < Bax.



More Practical Formulas # 2

When computer resources are not sufficient to treat large enough N
= lVs
= One can reduce errors by averaging over many realizations of the ¢TPQ)

is not large enough.

states because

|

1 -

B.NIABN) Ay
o 2 o <A>67N7
(B, NIB,N) {1V

Averaging over M realiztions reduces the error, as measured by the standard

deviation, by the factor of 1/+/ M.




Summary — TP(Q formulation of statistical mechanics

1. Generally define Thermal Pure Quantum (TPQ) state as a pure state that
represents an equilibirum state.

2. New types of TPQ states |3, V, N), |5, V, u), ...
3. Formulas for getting thermodynamic functions from |8,V N), |5, V, u),

4.16,V,N),|B,V,u), .... are much easier to obtain than p°™ and |¢.,q).
5. Practical formulas.

6. Many advantages when applied to numerical computations.



