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Equlibrium Statistical Mechanics: Conventional

Ensemble formulation (Boltzmann, Gibbs, von Neumann)� �
I. Principle of equal weight, giving an equilibirum state

All states in the energy shell (E−∆E,E] are found with equal probability:

⟨Â⟩ = 1

W

∑
n

′
⟨n|Â|n⟩ (|n⟩ : energy eigenstate, W : # of |n⟩’s in the shell )

= Tr
(
ρ̂ensÂ

)
for every observable Â.

ρ̂ens : density operator of the (micro canonical ) Gibbs state,

ρ̂ens =
1

W

∑
n

′
|n⟩⟨n| classical−→ ρenscl (q, p) =

1

volume of the shell

II. Boltzmann formula (kB = 1), giving thermodynamic entropy

S = lnW

= −Tr [ρ̂ens ln ρ̂ens] classical−→ −
∫
dqdp[ρ̂enscl (q, p) ln ρ̂enscl (q, p)]

� �



ρ̂ens is a mixed state

Any quantum state can be represented by a density operator ρ̂, where

⟨Â⟩ = Tr [ρ̂Â] for every observable Â.

(A rough) definition : pure/mixed� �

• Every vector state |ψ⟩ =
∑
n

cn|n⟩ (cn ∈ C) is a pure state, for which

ρ̂ = |ψ⟩⟨ψ| classical−→ ρcl(q, p) = δ(q − q0, p− p0)

• Other quantum states are mixed states, whose ρ̂ can be decomposed as

ρ̂ =
∑
j

pj|ψj⟩⟨ψj|
classical−→ ρcl(q, p) =

∑
j

pjδ(q − qj, p− pj)

using some {pj, |ψj⟩}j (not unique) s.t. 0 ≤ pj<1,
∑
j pj = 1.

� �
∴ ρ̂ens =

∑
n

′ 1
W
|n⟩⟨n| is a mixed state.

(
pj = 1/W, |ψj⟩ = |n⟩ in the shell

)



W is Exponentially Large

From thermodynamics,

S(E, V,N) = Ns(u, v) (u = E/N, v = V/N),

entropy density s(u, v) = O(1).

Since S = lnW ,

W = eS = eNs = eO(N).

Therefore,� �
An exponentially large # of pure states are mixed in ρ̂ens =

1

W

∑
n

′
|n⟩⟨n|.

� �



Change of Independent Variables

ex. E → β
(=1/T )

: S(E, V,N)
entropy function

Legendre tr.−→ F(β, V,N)
Mathieu function

= −βF (T, V,N)
Free energy

Ensemble formulation (canonical)� �
I. An equilibirum state is given by the canonical Gibbs state

ρ̂ensc =
1

Z
e−βĤ =

1

Z

∑
n

e−βEn|n⟩⟨n|
(
Z ≡ Tr e−βĤ

)
,

in which an exponentially large # of pure states are mixed.

II.Mathieu function is given by

F = lnZ = −Tr [ρ̂ensc ln ρ̂ensc ]� �
Similarly for other ensembles (e.g., grand canonical).

Theorem: Equivalence of ensembles� �
All ensembles give the equivalent results in the thermodynamic limit,

E ∝ V ∝ N →∞. ⇐ abbreviated as V →∞ or N →∞.� �



Summary of the Ensemble Formulation, and Questions

Ensemble formulation� �
I. An equilibirum state is given by

ρ̂ens =
1

W

∑
n

′
|n⟩⟨n| or ρ̂ensc =

1

Z

∑
n

e−βEn|n⟩⟨n|

II. Thermodynamic function (S,F , · · · ) is given by

S = −Tr [ρ̂ens ln ρ̂ens] or F = −Tr [ρ̂ensc ln ρ̂ensc ]� �
QI. Are the Gibbs states the only representations of an equilibirum state?

AI. No. Many other states are possible!

Even a single pure state |ψ⟩ can represent the same equilibirum state.

→ Thermal Pure Quantum (TPQ) state

QII. Tr [ρ̂ ln ρ̂] = 0 if ρ̂ = |ψ⟩⟨ψ|. How to obtain S,F , · · · from |ψ⟩?
AII. An appropriate TPQ state gives S.

→ TPQ formulation of statistical mechanics



Almost all states in the energy shell are an equilibrium state

— a rough argument —

For M̂z =
∑

r ŝz(r) (total magnetization), ρ̂ens gives

⟨M̂z⟩ = O(V ) : extensive√
⟨(∆M̂z)2⟩ = O(

√
V )

Relative deviation√
⟨(∆M̂z)2⟩

/
⟨M̂z⟩ = O(1/

√
V )→ 0 as V →∞

Similarly for all extensive (additive) variables.� �
For extensive variables, almost all states |n⟩ in ρ̂ens = 1

W

∑
n

′
|n⟩⟨n| have the

same expectation values, in the sense that relative deviations = O(V −α)→ 0.� �
Well known among some physisists. (lecture by AS; books by T. Tasaki, Y. Oono,...)

But, the points in red are very unsatisfactory.



Almost all states in the energy shell are an equilibrium state

— a rigorous argument —

A. Sugita, RIMS Kokyuroku (Kyoto) 1507, 147 (2006).

(more limited results by Popescu et al. (2006), Goldstein et al. (2006), P. Reimann (2007))

• Hilbert space: HN (N : number of spins of particles)

• Energy shell: EuN : subspace of HN in (E −∆E,E]. (u ≡ E/N)

dim EuN = W = eNs (s ≡ S/N = O(1))

• Probability measure: a random vector in EuN ,

|ψrnd⟩ =
∑
i

′
ci|i⟩

ci : random complex numbers drawn uniformly from the sphere
∑
i
′|ci|2 = 1.

|i⟩ : aribitrary basis of EuN .

This measure is invariant under choice of the basis. → natural measure!

• Physical quantities to define an equilibrium state: mechanical variables



— Two types of macroscopic variables in equilibirum statistical mechanics —

Mechanical Variables and Genuine Thermodynamic Variables

Mechanical variables

• Low-degree polynomials (i.e., their degree = o(N)) of local operators:

Ĥ, M̂z =
∑
r

ŝz(r), (Ĥ)2, ŝx(r)ŝy(r
′), · · ·

• To exclude foolish operators (such as NNĤ), we assume

|⟨Â⟩| ≤ KNm (⟨ · ⟩ : equilibrium value) ,

where K = O(1) and m = o(N) are constants independent of Â.

Genuine thermodynamic variables

• Thermodynamic variables that cannot be represented as such operators:

T, µ, · · · , S, F, · · ·
/∈ quantum-mechanical observables in the standard sense.

• All genuine thermodynamic variables can be derived from one of thermody-

namic functions, S(E,N, V ), F (T, V,N), · · · . (⇔ second law!)



Almost all states in the energy shell are an equilibrium state

— a rigorous argument —
� �
Theorem (Sugita, 2006) : For a random vector in the energy shell, |ψrnd⟩ =∑
i
′ci|i⟩,

⟨ψrnd|Â|ψrnd⟩
P→ ⟨Â⟩ens

(
= Tr [ρ̂ensÂ]

)
for every mechanical variable Â uniformly, and exponentially fast, asN →∞.� �
That is (slightly improving Sugita’s one), for ∀ϵ > 0

P
(∣∣∣⟨ψrnd|Â|ψrnd⟩ − ⟨Â⟩ens∣∣∣ ≥ ϵ

)
≤ 1

ϵ2
· O(|⟨Â⟩

ens|2)
dim EuN

≤ 1

ϵ2
· O(N

2m)

eNs
→ 0

for every mechanical variable Â, as N →∞.

• rough: only extensive variables → all mechanical variables.

• rough: only expectation values → also fluctuations and correlations.

• rough: relative deviation → deviation itself, even if value = O(Nm).

• rough: slow convergenceO(V −α) → exponentially fast convergence e−O(N).



It’s not purification

An example of purification:

ρ̂ = (2/3) |1⟩⟨1| + (1/3) |2⟩⟨2| : a mixed state on HN .
By attaching an auxiliary system, enlarge HN to HN ⊗Haux, and consider

|Ψ⟩ =
√

2/3 |1⟩ ⊗ |1′⟩ +
√

1/3 |2⟩ ⊗ |2′⟩ : a pure state in HN ⊗Haux.

Then,
⟨Ψ|(â⊗ 1̂)|Ψ⟩ = Tr [ρ̂â] for all observables â on HN .

Purification� �
It is always possible to represent a mixed state ρ̂ on HN as a pure state |Ψ⟩
in an enlarged space HN ⊗Haux. They are the same state on HN .� �
ex. Thermo Field Dynamics (TFD) utilizes purification.

By contrast, in Sugita’s theory

• |ψrnd⟩ is a pure state in HN .

• |ψrnd⟩⟨ψrnd| ̸= ρ̂ens on HN (manifest by entanglement ← discuss later)

• But, |ψrnd⟩ and ρ̂ens are statistical-mechanically identical!



Answer to Question I, and further questions

QI. Are the Gibbs states ρ̂ens the only representations of an equilibirum state?

AI. No. A pure state |ψrnd⟩ represents the same equilibirum state.

Problems and further questions:

1. For ρ̂ = |ψrnd⟩⟨ψrnd|, the conventional formula gives a wrong result, S =

Tr [ρ̂ ln ρ̂] = 0.

→ Impossible to obtain genuine thermodynamic variables from |ψrnd⟩ .
→ QII. How to obtain S,F , · · · from (another) |ψ⟩?

2. Generally, the canonical Gibbs state (specified by T , V,N) is much more

convenient than the microcanonical Gibbs state (specified by E, V,N).

|ψrnd⟩ (specified by E, V,N) corresponds to the microcanonical one.

→ QIII. Another |ψ⟩ specified by T , V,N?

3. Practically, |ψrnd⟩ is harder to obtain than ρ̂ens.

→ QIV. Another |ψ⟩ easier to obtain?



Our Solutions — TPQ formulation of statistical mechanics

S. Sugiura and AS, Phys. Rev. Lett. 108 (2012) 240401.

S. Sugiura and AS, Phys. Rev. Lett. 111 (2013) 010401.

S. Sugiura and AS, arXiv:1312.5145.

M. Hyuga, K. Sakai, S. Sugiura and AS, in preparation

1. Generally define Thermal Pure Quantum (TPQ) state as a pure state that

represents an equilibirum state. ex. |ψrnd⟩ is one of TPQ states.

2. New types of TPQ states |β, V,N⟩, |β, V, µ⟩, ....
→ Yes to QIII. Another |ψ⟩ specified by T , V,N?

3. Formulas for getting thermodynamic functions from |β, V,N⟩, |β, V, µ⟩,
....

→ Solutions to QII. How to obtain S,F , · · · from (another) |ψ⟩?

4. |β, V,N⟩, |β, V, µ⟩, .... are much easier to obtain than ρ̂ens and |ψrnd⟩.
→ Yes to QIV. Another |ψ⟩ easier to obtain?

5. Practical formulas.



Setup

Quantum system

• composed of N sites or particles, confined in a box of volume V .

• (irreducible) Hilbert space is HN . dimHN can be ∞.

• each equilibrium state is specified by E, V,N, ... → abbreviated as E, V,N .

Assumptions : Ensemble formulation gives correct results, which are consis-

tent with thermodynamics in the t.d.l (E ∝ V ∝ N →∞).

• S(E, V,N)/N → s(u, v): entropy density, u ≡ E/N, v ≡ V/N .

• s(u, v) is a concave function, continuously differentiable even at phase tran-

sitions. see, e.g., 清水「熱力学の基礎」(東大出版会, 2007)

• For every mechanical variable Â,

|⟨Â⟩ens| ≤ KNm

where K = O(1) and m = o(N) are constants independent of Â.



Thermal Pure Quantum (TPQ) state

� �
A state |ψ⟩ (∈ HN ), which has a random variable, is called a TPQ state if

⟨Â⟩ψN ≡
⟨ψ|Â|ψ⟩
⟨ψ|ψ⟩

P→ ⟨Â⟩ensN ≡ Tr [ρ̂ensÂ]

for every mechanical variable Â uniformly, as N →∞.� �
That is, ∀ϵ > 0 there exists a function ηϵ(N) that vanishes as N →∞ and

P
(∣∣∣⟨Â⟩ψN − ⟨Â⟩ensN ∣∣∣ ≥ ϵ

)
≤ ηϵ(N)

for every mechanical variable Â.

Remark: cannot be obtained by purifying ρ̂ens because |ψ⟩ ∈ HN .

Independent variables

• β, V,N : canonical TPQ state |β, V,N⟩.

• β, V, µ : grand-canonical TPQ state |β, V, µ⟩.



Canonical TPQ state : |β, V,N⟩ abbreviated as |β,N⟩
⋆ PRL version (2013) assumed dimHN < +∞.

Here, slightly generalized s.t. applicable to dimHN =∞.

Let

• {|ν⟩}ν : an aribitrary basis of HN (c.f. Sugita’s {|i⟩}i : a basis of EuN )

• xν, yν : real random variables, obeying the standard normal distribution

• cν ≡ (xν + iyν)/
√
2. (c.f. PRL version imposed

∑
ν |cν|2 = 1)

Then,

|β,N⟩ ≡
∑
ν

cν exp[−βĤ/2]|ν⟩ (well-defined even when dimHN =∞)

is the canonical TPQ (cTPQ) state, specified by β,N ;

⟨Â⟩TPQβ,N ≡
⟨β,N |Â|β,N⟩
⟨β,N |β,N⟩

P→ ⟨Â⟩ensβ,N ≡
1

Z
Tr [e−βĤÂ]

for every mechanical variable Â uniformly, in the t.d.l.



Outline of Proof

We use a Markov-type inequality:

For ∀ϵ > 0, P (|x− y| ≥ ϵ) ≤ (x− y)2/ϵ2.

Taking x = ⟨Â⟩TPQβ,N , y = ⟨Â⟩ensβ,N , (x− y)2 = (⟨Â⟩TPQβ,N − ⟨Â⟩
ens
β,N )2 ≡ DN (A)2,

P
(∣∣∣⟨Â⟩TPQβ,N − ⟨Â⟩

ens
β,N

∣∣∣ ≥ ϵ
)
≤ DN (A)2/ϵ2.

Using c∗νcξ = δν,ξ, c
∗
νcξc

∗
ηcζ = δν,ξδη,ζ + δν,ζδη,ξ, etc, and dropping smaller-

order terms, we find

DN (A)2 ≤
⟨(∆Â)2⟩ens2β,N + (⟨A⟩ens2β,N − ⟨A⟩

ens
β,N )2

exp[2Nβ{f (1/2β;N)− f (1/β;N)}]
≤ N2m

eO(N)

where

⟨(∆Â)2⟩ensβ,N≡⟨(Â− ⟨A⟩
ens
β,N )2⟩ensβ,N ,

f (T ;N) ≡ F/N (free energy density)→ f (T ) as N →∞,
f (1/2β;N)− f (1/β;N) = O(1) > 0 because s = −∂f/∂T = O(1) > 0.



Probability of Error

Therefore, for ∀ϵ > 0,

P
(∣∣∣⟨Â⟩TPQβ,N − ⟨Â⟩

ens
β,N

∣∣∣ ≥ ϵ
)

≤ 1

ϵ2
·
⟨(∆Â)2⟩ens2β,N + (⟨A⟩ens2β,N − ⟨A⟩

ens
β,N )2

exp[2Nβ{f (1/2β;N)− f (1/β;N)}]
≤ 1

ϵ2
· N

2m

eO(N)
→ 0.

This shows that

⟨Â⟩TPQβ,N
P→ ⟨Â⟩ensβ,N for every mechanical variable Â unifromly.

Therefore,� �
• |β,N⟩ is the canonical TPQ (cTPQ) state.

• Its single realization gives the equilibrium values of mechanical variables,

with exponentially small probability of error, as ⟨Â⟩TPQβ,N .
� �

■



Formula for Thermodynamic Function

Let Z(β,N) ≡ Tr e−βĤ (partition function). We can show

P

(∣∣∣∣⟨β,N |β,N⟩Z(β,N)
− 1

∣∣∣∣ ≥ ϵ

)
≤ 1

ϵ2
· 1

exp[2Nβ{f (1/2β;N)− f (1/β;N)}]
≤ 1

ϵ2
· 1

eO(N)
.

This shows

⟨β,N |β,N⟩ P→ Z(β,N).
� �
A single realization of |β,N⟩ gives f = F/N , with exponentially small prob-

ability of error, by

−βf (1/β;N) =
1

N
ln⟨β,N |β,N⟩.

� �
All genuine thermodynamic variables can be calculated from f .� �
Only a single realization of the TPQ state gives all variables of statistical-

mechanical interest.� �



Self-Validation

Using f obtained from this formula, one can estimate the upper bounds of errors

of f itself and ⟨Â⟩TPQβ,N .
� �
• Our formulas are almost self-validating.

• This is particularly useful in practical applications!� �



Application to the spin-1/2 kagome Heisenberg antiferromagnet

A frustrated two-dimensional quantum spin system

→ Sign problem is fatal to quantum Monte Carlo method.

Numerical diagonalization : N ≲ 18 → double peaks in the specific heat?

cTPQ : N = 27− 30 → disapperance of the lower peak!

N=30
N=27
N=18b
N=18a

0.0 0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

T

c



Thermodynamic functions f and s of KHA

sHΒ;NL
f HΒ;NL

0.0 0.5 1.0 1.5 2.0
-1.5

-1

-0.5

0

0

0.5

1

1.5

T

f HΒ;NL sHΒ;NL

45% of the total entropy (= N ln 2) remains at T = 0.2J .

→ typical to frustration systems.

→ hard with most other methods.

→ But, favorable to TPQ formulation because error ∼ 1/eNs.

From our formulas for errors, errors ≤ 1% for T ≥ 0.1J .



Practical Formulas using microcanonical TPQ (mTPQ) states

In practical computations, one introduces a cutoff to make dimHN finite.

Since dimHN < +∞,

• Using an arbitrary basis {|ν⟩}, such as a trivial one, one can easily generate

a random vector ∈ HN as

|0⟩ ≡
∑
ν

cν|ν⟩ ( ̸= Sugita’s |ψrnd⟩ ∈ EuN )

• ĥ ≡ Ĥ/N has the maximum eigenvalue emax.

⇒ One can take an aribitray number l such that l ≥ emax.

Using these, compute

|k⟩ ≡ (l − ĥ)k|0⟩
iteratively for k = 0, 1, 2, . . ..

We can show: u ≡ E/N has a sharp peak around u ≃ ⟨k|ĥ|k⟩/⟨k|k⟩
⇒ a mTPQ state ( ̸= Sugita’s |ψrnd⟩)



In terms of normalized mTPQ states,

|ψk⟩ ≡ (1/
√
Qk)|k⟩ (Qk ≡ ⟨k|k⟩),

the cTPQ state |β,N⟩ can be expanded as

eNβl/2|β,N⟩ =
∞∑
k=0

(Nβ/2)k

k!
|k⟩ =

∞∑
k=0

Rk|ψk⟩

(
Rk ≡

(Nβ/2)k

k!

√
Qk

)
.

• this sum is uniformly convergent on any finite interval of β.

• Rk takes significant values only for k s.t. ⟨ψk|ĥ|ψk⟩ = ⟨ĥ⟩
TPQ
β,N +O(1/V ).

• As k moves away from such values, Rk vanishes exponentially fast.
� �
|β,N⟩ is superpositon of |ψk⟩’s which represent the same equilibirum state.� �
• One can terminate the sum at a finite number kterm, which depends on the

largest β of interest, βmax.

• For any βmax = O(1), we can show that kterm = O(N).

• |1⟩, |2⟩, · · · , |kterm⟩ can be obtained iteratively by simply multiplying (l− ĥ)
with a random vector kterm times.



� �
One can obtain |β,N⟩ by multiplying (l−ĥ) with a random vector |0⟩ ∈ HN ,

repeatedly O(N) times.� �
• Larger l ⇒ better results but larger kterm.



Advantages when Applied to Numericl Computations

• Free from the sign problem

⇒ frustrated systems, fermion systems

• Applicable to any spatial dimensions

• Effective over a wide range of T

• Self-validating

• Only matrix multiplications of O(N) times.

• Only two vectors (i.e., computer memory)



Entanglement

TPQ state vs. Gibbs state

• Identical concerning mechanical variables.

• But, maximally different with respect to entanglement.

Example: T ≫ J

ρ̂ens ≃ 1̂ ⇒ no entanglement.

|k⟩, |β,N⟩, ... have almost maximum (exponentially large) entanglement.
� �
An equilibrium state can be represented either by a TPQ state with exponen-

tially large entanglement or by a mixed state with much less entanglement.� �
Their difference can be detected only by high-order correlations of local opera-

tors, which are not of statistical-mechanical interest.

- A. Sugita and AS, J. Phys. Soc. Jpn. 74 (2005) 1883.

- A. Sugita, RIMS Kokyuroku (Kyoto) 1507, 147 (2006).

- S. Sugiura and AS, 物理学会2013春



N site

q site Trace out

Entanglement  -Purity

N=16

Minimum value

Average value of 

random vector in whole Hilbert space

TPQ states

energy high

low

( A.Sugita & A.Shimizu (2005) )

q

TPQ states are almost maximally entangled



More Practical Formulas # 1

Let

{Â}′β,N ≡
∞∑
k=0

(Nβ)2k

(2k)!
⟨k|Â|k⟩ +

∞∑
k=0

(Nβ)2k+1

(2k + 1)!
⟨k|Â|k + 1⟩,

{Â}TPQβ,N ≡ {Â}
′
β,N/{1̂}

′
β,N .

We can show that

{1̂}′β,N
P→ Z(β,N),

{Â}TPQβ,N
P→ ⟨Â⟩ensβ,N ,

exponentially fast and uniformly.

Useful because one needs only to calculate ⟨k|Â|k⟩ and ⟨k|Â|k + 1⟩ for all

k ≤ kterm to obtain the results for all β ≤ βmax.



More Practical Formulas # 2

When computer resources are not sufficient to treat large enough N

⇒ eNs is not large enough.

⇒ One can reduce errors by averaging over many realizations of the cTPQ

states because
1

V
ln ⟨β,N |β,N⟩ = 1

V
ln {1̂}′β,N = −βf (1/β;N).

⟨β,N |Â|β,N⟩
⟨β,N |β,N⟩

=
{Â}′β,N
{1̂}′β,N

= ⟨Â⟩ensβ,N ,

Averaging over M realiztions reduces the error, as measured by the standard

deviation, by the factor of 1/
√
M .



Summary — TPQ formulation of statistical mechanics

1. Generally define Thermal Pure Quantum (TPQ) state as a pure state that

represents an equilibirum state.

2. New types of TPQ states |β, V,N⟩, |β, V, µ⟩, ....

3. Formulas for getting thermodynamic functions from |β, V,N⟩, |β, V, µ⟩,
....

4. |β, V,N⟩, |β, V, µ⟩, .... are much easier to obtain than ρ̂ens and |ψrnd⟩.

5. Practical formulas.

6. Many advantages when applied to numerical computations.


