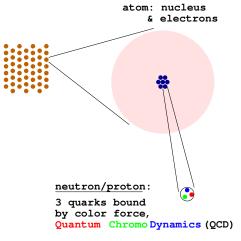
Quark matter in neutron stars

Mark Alford Washington University in St. Louis

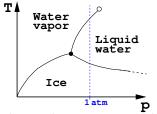
Outline


- I Quarks at high density
 Confined, quark-gluon plasma, color superconducting
- II Color superconductivity Color-flavor locking (CFL), and beyond
- III Compact stars

 Signatures of the presence of quark matter
- IV Looking to the future

M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arXiv:0709.4635 (RMP) A. Schmitt, arXiv:1001.3294 (Springer Lecture Notes)

I. Quarks at high density

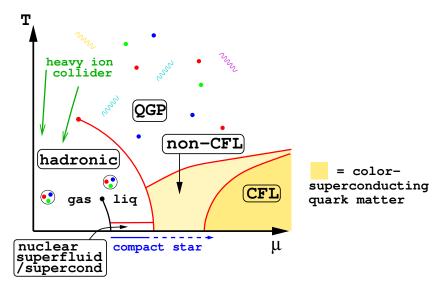

Quarks: Building blocks of matter

Quarks have color and flavor ("up" or "down") proton: uud, uud, uud neutron: udd. udd. udd

Phase Transitions

When you heat up or compress matter, the atoms *reconfigure* themselves: Phase transitions between solid, liquid, and gas.

At super-high temperatures or densities, when the nuclei are constantly bashed around or remorselessly crushed together, do *quarks* reconfigure themselves?


$$T\sim 150~{
m MeV} \sim 10^{12}~{
m K}$$
 $ho\sim 300~{
m MeV/fm^3} \sim 10^{17}~{
m kg/m^3}$

At such a density, a oil supertanker is 1mm³ in size.

Where might this occur?

- supernovas, neutron stars;
- Brookhaven (AGS, RHIC); CERN (SPS, LHC)

Conjectured QCD phase diagram

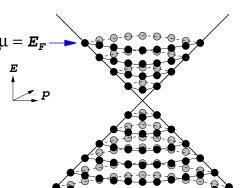
heavy ion collisions: chiral critical point and first-order line compact stars: color superconducting quark matter core

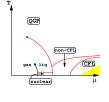
Signatures of quark matter in compact stars

Observable	$\leftarrow \frac{Microphysical\ properties}{(and\ neutron\ star\ structure)} \leftarrow Phases\ of\ dense\ matter$

mass, radius egn of state

spindown


bulk viscosity (spin freq, age) shear viscosity

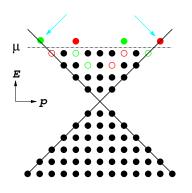

heat capacity cooling neutrino emissivity (temp, age) thermal cond.

shear modulus glitches (superfluid, vortex pinning crystal) energy

Color superconductivity

At sufficiently high density and low temperature, there is a Fermi sea of almost free quarks.

$$F = E - \mu N$$


$$\frac{dF}{dN} = 0$$

But quarks have attractive QCD interactions.

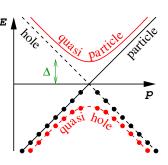
Any attractive quark-quark interaction causes pairing instability of the Fermi surface: BCS mechanism of superconductivity.

BCS in quark matter: Ivanenko and Kurdgelaidze, Lett. Nuovo Cim. IIS1 13 (1969).

What is a condensate of Cooper pairs?

$$\begin{split} |\phi_0\rangle &= \prod_{\mathbf{p}} \; \left(\cos(\theta_{A\mathbf{p}}) + \sin(\theta_{A\mathbf{p}}) \, a^\dagger(\mathbf{p}) a^\dagger(-\mathbf{p}) \right) \\ & \left(\cos(\theta_{B\mathbf{p}}) + \sin(\theta_{B\mathbf{p}}) \, b^\dagger(\mathbf{p}) b^\dagger(-\mathbf{p}) \right) \quad \times \quad |\text{Fermi sea}\rangle \end{split}$$

 $|\phi_0\rangle$, not $|\mathrm{Fermi\ sea}\rangle$, is the ground state.

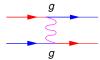

Physical consequences of Cooper pairing

Changes low energy excitations, affecting transport properties.

- ► Spontaneous breaking of global symmetries ⇒ Goldstone bosons, massless degrees of freedom that dominate low energy behavior. E.g.: Superfluidity
- Spontaneous breaking of local (gauged) symmetries: massive gauge bosons, exclusion of magnetic fields (Meissner effect).
 E.g.: Superconductivity
- ► Gap in fermion spectrum.

Adding a fermion near the Fermi surface now costs energy because it disrupts the condensate.

$$a_p^\dagger(\cos heta+\sin heta\,a_p^\dagger a_{-p}^\dagger)=\cos heta\,a_p^\dagger$$



Interactions between Quarks

Dominant interaction between quarks is the strong interaction, mediated by exchange of gluons that couple to "color" charge (QCD).

Properties of QCD

▶ Short distances, $r \ll 1$ fm, asymptotically free : gauge coupling $g \ll 1$, single gluon exchange dominates, the theory is analytically tractable.

Long distances r > 1 fm, QCD confines: color electric fields form flux tubes, only color-neutral states, baryons and mesons, exist.

Interactions between Quarks

Dominant interaction between quarks is the strong interaction, mediated by exchange of gluons that couple to "color" charge (QCD).

Properties of QCD

▶ Short distances, $r \ll 1$ fm, asymptotically free : gauge coupling $g \ll 1$, single gluon exchange dominates, the theory is analytically tractable.

Long distances r > 1 fm, QCD confines: color electric fields form flux tubes, only color-neutral states, baryons and mesons, exist.

At low temperature ($T \lesssim 170$ MeV), Chiral (left-right) symmetry is broken: color force can't turn a LH quark to RH, but our vacuum is full of $\bar{q}_L q_R$ pairs

Handling QCD at high density

Lattice: "Sign problem"—negative probabilities

SUSY: Statistics crucial to quark Fermi surface

large N: Quarkyonic phase?

pert: Applicable far beyond nuclear density. Neglects confinement and instantons.

NJL: Model, applicable at low density.

Follows from instanton liquid model.

EFT: Effective field theory for lightest degrees of freedom.

"Parameterization of our ignorance": assume a phase, guess coefficients of interaction terms (or match to pert theory), obtain phenomenology.

Color superconducting phases

Attractive QCD interaction \Rightarrow Cooper pairing of quarks.

We expect pairing between *different flavors*.

Quark Cooper pair:
$$\langle q^{\alpha}_{ia}q^{\beta}_{jb}\rangle$$
 color $\alpha,\beta=r,g,b$ flavor $i,j=u,d,s$ spin $a,b=\uparrow,\downarrow$

Each possible BCS pairing pattern P is an 18×18 color-flavor-spin matrix

$$\langle q^{lpha}_{i\mathsf{a}}q^{eta}_{j\mathsf{b}}
angle_{1PI}=oldsymbol{\Delta}_{P}\,P^{lphaeta}_{ij\,\mathsf{a}\mathsf{b}}$$

space symmetric [s-wave pairing] color antisymmetric [most attractive] The attractive channel is: spin antisymmetric [isotropic]

⇒ flavor antisymmetric Initially we will assume the most symmetric case, where all three flavors

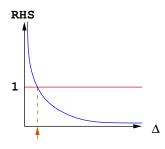
are massless.

High-density QCD calculations

- Guess a color-flavor-spin pairing pattern *P*
- to obtain gap Δ_P , minimize free energy Ω with respect to Δ_P (imposing color and electric neutrality)

$$\frac{\partial \Omega}{\partial \Delta_P} = 0$$
 $\frac{\partial \Omega}{\partial \mu_i} = 0$

The pattern with the lowest $\Omega(\Delta_P)$ wins!


- 1. Weak-coupling methods. First-principles calculations direct from QCD Lagrangian, valid in the asymptotic regime, currently $\mu \gtrsim 10^6$ MeV.
- 2. Nambu–Jona-Lasinio models, ie quarks with four-fermion coupling based on instanton vertex, single gluon exchange, etc. This is a semi-quantitative guide to physics in the compact star regime $\mu \sim$ 400 MeV, not a systematic approximation to QCD.

NJL gives $\Delta \sim 10-100$ MeV at $\mu \sim$ 400 MeV.

Gap equation in a simple NJL model

Minimize free energy wrt Δ :

$$1 = \frac{8K}{\pi^2} \int_0^{\Lambda} p^2 dp \left\{ \frac{1}{\sqrt{\Delta^2 + (p-\mu)^2}} \right\}$$

Note BCS divergence as $\Delta \to 0$: there is always a solution, for any interaction strength K and chemical potential μ . Roughly,

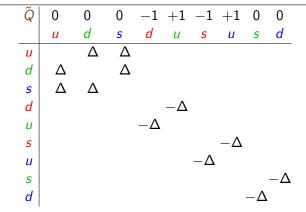
$$\begin{array}{l} 1 \, \sim \, {\it K} \mu^2 \ln \left({\it \Lambda} / \Delta \right) \\ \Rightarrow \Delta \, \sim \, {\it \Lambda} \exp \left(- \frac{1}{{\it K} \mu^2} \right) \end{array}$$

Superconducting gap is non-perturbative.

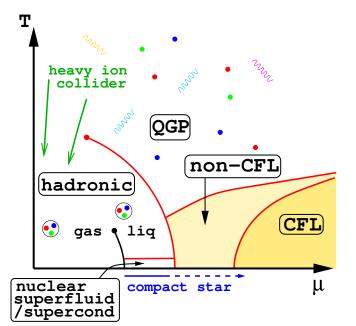
Color supercond. in 3 flavor quark matter Color-flavor locking (CFL)

Equal number of colors and flavors gives a special pairing pattern

(Alford, Rajagopal, Wilczek, hep-ph/9804403)


$$\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \delta_i^{\alpha} \delta_j^{\beta} - \delta_j^{\alpha} \delta_i^{\beta} = \epsilon^{\alpha \beta n} \epsilon_{ijn}$$

This is invariant under equal and opposite color α, β flavor i, j rotations of color and (vector) flavor


$$\underbrace{SU(3)_{\text{color}} \times \underbrace{SU(3)_L \times SU(3)_R}_{\text{Color}} \times U(1)_B \rightarrow \underbrace{SU(3)_{C+L+R}}_{\text{Color}} \times \mathbb{Z}_2}_{\text{Color}} \times U(1)_{\tilde{Q}}$$

- ▶ Breaks chiral symmetry, but *not* by a $\langle \bar{q}q \rangle$ condensate.
- ▶ There need be no phase transition between the low and high density phases: ("quark-hadron continuity")
- ▶ Unbroken "rotated" electromagnetism, Q, photon-gluon mixture.

Color-flavor-locked ("CFL") quark pairing

Conjectured QCD phase diagram

III. Quark matter in compact stars

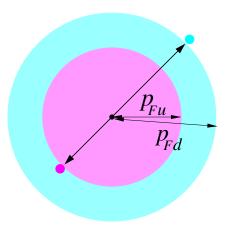
Where in the universe is color-superconducting quark matter most likely to exist? In compact stars.

A quick history of a compact star.

A star of mass $M\gtrsim 10M_\odot$ burns Hydrogen by fusion, ending up with an Iron core. Core grows to Chandrasekhar mass, collapses \Rightarrow supernova. Remnant is a compact star:

mass	radius	density	initial temp
$\sim 1.4 M_{\odot}$	$\mathcal{O}(10 \; km)$	$\gtrsim ho_{ m nuclear}$	\sim 30 MeV

The star cools by neutrino emission for the first million years.

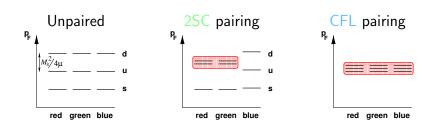

The real world: M_s and neutrality

In the real world there are three factors that combine to oppose pairing between different flavors.

- 1. Strange quark mass is not infinite nor zero, but intermediate. It depends on density, and ranges between about 500 MeV in the vacuum and about 100 MeV at high density.
- **2.** Neutrality requirement. Bulk quark matter must be neutral with respect to all gauge charges: color and electromagnetism.
- **3.** Weak interaction equilibration. In a compact star there is time for weak interactions to proceed: neutrinos escape and flavor is not conserved.

These factors favor different Fermi momenta for different flavors which obstructs pairing between different flavors.

Mismatched Fermi surfaces oppose Cooper pairing


u and d quarks near their Fermi surfaces cannot have equal and opposite momenta.

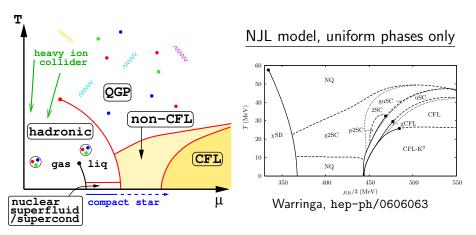
 $\langle u(k)d(-k)\rangle$ condensate is energetically penalized.

The strange quark mass is the cause of the mismatch:

$$p_{Fd} - p_{Fu} \approx p_{Fu} - p_{Fs} \approx \frac{M_s^2}{4\mu}$$

Cooper pairing vs. the strange quark mass

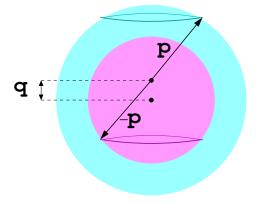
CFL: Color-flavor-locked phase, favored at the highest densities.


$$\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \delta_i^{\alpha} \delta_j^{\beta} - \delta_j^{\alpha} \delta_i^{\beta} = \epsilon^{\alpha \beta N} \epsilon_{ijN}$$

2SC: Two-flavor pairing phase. May occur at intermediate densities.

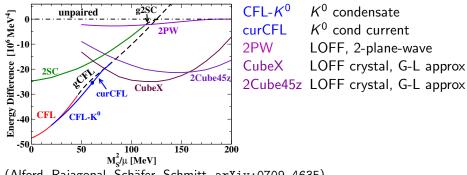
$$\langle q_i^{\alpha} q_i^{\beta} \rangle \sim \epsilon^{\alpha \beta 3} \epsilon_{ij3} \sim (rg - gr)(ud - du)$$

or: CFL with kaon condensation (CFL- K^0), crystalline phase (LOFF), p-wave "meson" condensates, single-flavor pairing (color-spin locking, \sim liq 3 He-B).


Phases of quark matter, again

But there are also non-uniform phases, such as the crystalline ("LOFF" /"FFLO") phase. (Alford, Bowers, Rajagopal, hep-ph/0008208)

Crystalline (LOFF) superconductivity


When the Fermi momenta are such that one flavor of quark is just barely excluded from pairing with another, it may be favorable to make pairs with a net momentum, so each flavor can be close to its Fermi surface.

Every quark pair in the condensate has the same nonzero total momentum 2**q** (single plane wave LOFF).

Free energy comparison of phases

Assuming $\Delta_{\rm CFL}=25$ MeV.

(Alford, Rajagopal, Schäfer, Schmitt, arXiv:0709.4635)

Curves for CubeX and 2Cube45z use G-L approx far from its area of validity: favored phase at $M_s^2 \sim 4\mu\Delta$ remains uncertain.

Signatures of quark matter in compact stars

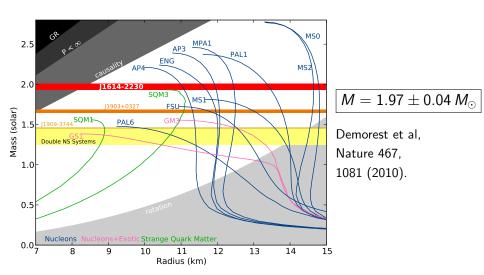
Observable	$\leftarrow egin{array}{l} Microphysical \ p \ (and neutron sta \end{array}$	$\begin{array}{l} Microphysical\ properties \\ (and\ neutron\ star\ structure) \end{array} \leftarrow Phase \end{array}$		
	Property	Nuclear phase	Quark phase	
		len aven	unknauun aan ha	

	Property	Nuclear phase	Quark phase
mass, radius	eqn of state	known up to $n_{ m sat}$	unknown, can be parameterized

Signatures of quark matter in compact stars Observable ← Microphysical properties ← Phases of dense matter

	(and neutron star structure)		
	Property	Nuclear phase	Quark phase
mass, radius	eqn of state	known up to n_{sat}	unknown, can be parameterized
spindown	bulk viscosity	Depends on	Depends on
(spin freq, age)	shear viscosity	լ phase։	phase:
		n p e	unpaired
cooling	heat capacity	n p e $,$ μ	CFL
(temp, age)	neutrino emissivity	$n p e, \Lambda, \Sigma^-$	CFL-K ⁰
	thermal cond.	n superfluid	2SC
		p supercond	CSL
glitches	shear modulus	π condensate	LOFF

K condensate 1SC

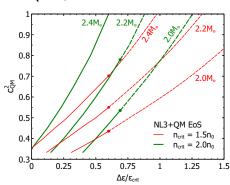

vortex pinning

energy

(superfluid,

crystal)

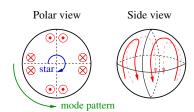
Discovery of a $2M_{\odot}$ mass neutron star



Can quark matter be the favored phase at high density?

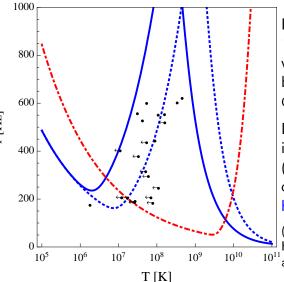
Constraints on the quark matter EoS

Generic ansatz: $arepsilon(p) = arepsilon_{
m crit} + \Delta arepsilon + c_{
m QM}^{-2}(p-p_{
m crit})$


QM + Hard Nuclear Matter

- Alford, Han, Prakash, arXiv:1302.4732
 - 1. Observations can constrain QM EoS but not rule out generic QM
 - 2. Constraints depend on NM EoS up to transition density

r-modes: gravitational spin-down of compact stars

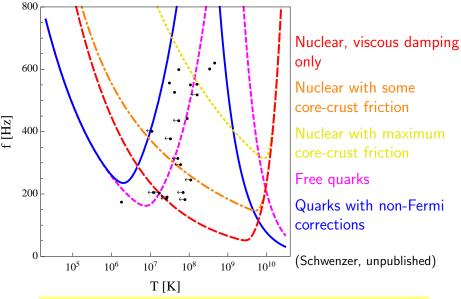

An r-mode is a quadrupole flow that emits gravitational radiation. It becomes unstable (i.e. arises spontaneously) when a star spins fast enough, and if the shear and bulk viscosity are low enough.

Andersson gr-qc/9706075

Friedman and Morsink gr-qc/9706073

Constraints from r-modes: old stars (1)

Regions above curves are "forbidden" because viscosity is too low to hold back the *r*-modes.


Only viscous damping included.

Data for accreting pulsars in binary systems (LMXBs) vs instability curves for nuclear and hybrid stars.

(Schwenzer, arXiv:1212.5242; Haskell, Degenaar, Ho, arXiv:1201.2101)

Need more than nuclear matter viscous damping

Constraints from r-modes: old stars (2)

Need something beyond the simple nuclear matter model

IV. Looking to the future

- Neutron-star phenomenology of color superconducting quark matter:
 - Are there any other r-mode damping mechanisms?
 - neutrino emissivity and cooling
 - structure: nuclear-quark interface (gravitational waves?)
 - ► color supercond. crystalline phase (glitches) (gravitational waves?)
 - CFL: vortices but no flux tubes; stability of vortices...
- More general questions:
 - instability of gapless phases; better treatment of LOFF
 - role of large magnetic fields
 - better weak-coupling calculations
 - better models of quark matter: Functional RG, Schwinger-Dyson
 - solve the sign problem and do lattice QCD at high density.