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Brownian Motion and Equilibrium
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= “Artist’s” conception
of Brownian Motion

1. Equilibrium is a state constant fluctuations

2. Equilibrium is a perpetual competition between drag and noise
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AdS/CFT

e Classical solutions in curved spacetime = CFT for nonzero temperature

dr? 1
2 T

r4

ds® = (nT)*r? [—f(r)dt2 — da:Q] -

Gravity

“Our” world r = o0

Black Hole r = 1

How can a static metric be dual to equilibrium=constant fluctuations ?



A heavy quark in AdS/CFT

e Solve classical string (Nambu-Goto) EOM and find:

T ="Tn

Gravity

Stretched horizon

---------------------- r, =1-4¢€
r=1

Not the dual of an equilibrated quark!



DiSSipation in classical black hole dynamiCS Herzog et al; DT J. Casalderrey-Solana; Gubser
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Coupling of string to near horizon metric

gravity ? [=c0

Classical dissipation determines drag



Detailed Balance and Hawking Radiation:

d?x°
M = —n z°
az — LT " \g/
Drag Noise
Gravity
Evolves to Classical
Prob. Dist :
4\ Pz, ] o e AHzme]
UV Quant Flucts

Classical Dissipation Balanced by Hawking Radiation. Find in equilibrium:

(ERER)) = 2Tno(t — 1)



How to generalize to non-equilrium?



Non-equilibrium setup in 4D: (Chesler-Yaffe)
1. Chesler and Yaffe turn on a strong gravitational pulse in “our” world
ds* = —dt* + eBO(t)dxi + 6_2Bo<t)d33ﬁ

where
B, t oce —t?/At?

itational
ulse
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Non-equilibrium setup in 5D Chesler-Yaffe

1. Corresponds to non-equilibrium geometry with BH formation in AdS5

ds® = —Adv® + X2 [eBd:BQL + e_zBdazﬁ] + 2dr dv

Bndry Pulse

S =

(holographic coord)

v (Time)

Solve for A(v, ), B(v,r) and (v, r) with Einstein egs with B(v, 1) — B,(t) on bndry.



The boundary stress tensor

e The energy density increases by 50 times for a gaussian pulse with At = 1/7TTf
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Define an effective temperature:




Hawking emission and 2pnt functions in this geometry:

Vac;urum itati B Equilibrated
Low T plasma Sleciic :
Beginning Middle / |
—>
* time

| want to compute the "photon" emission rate in the
non-equilibrium plasma.

1. Study the equilibration of 2pnt functions in the plasma.
2. Study the non-equilibrium emission of quanta from the black brane

Emission from CFT is dual to emission from black brane



Emission of dilatons weakly interacting with equilibrium strongly coupled SYM plasma

Equilibrated Plasma

e Emission:
dI'< A A
(2m)*2k— = G<(K) G<(K) <J(O)J(K)>
e Absorption: The absorption rate of Dilatons is
dar- . .
(2m)* 2k~ = G (K) > (K) = (J(K)J(0))

e FDT: The Fluctuation Dissipation Relation reads

GK)| /] K | =T
emission absorption

We will compute the emission and absorption rates and check for detailed balance



What the classical ADS/CFT usually computes:

Equilibrated Plasma

ny = Dilaton occupation number

= — r- 1 <
Onk = —n I'7 + (1 +nk) IS
absorb emit
e For a classical dilaton field ny > 1 the damping is
(%nk = —Nk X (F> — F<)

A\ J/
-~

classical absorption rate

e The classical absorption rate
G~ (K) — G~ (K) = —2ImGg(K) = p(K)

Without assuming FDT, only the classical absorption rate is computable

with the classical black brane response.



Summary: spectral density and statistical fluctuations

1. Spectral Density (commutator or G~ — G<)

p(tilte) = ([o(t1), o(t2)])

e Records the dissipation of classical waves

2. Statistical fluctuations (anti-commutator or %(G> + G<))

Grr(tilt2) = 3 ({o(t1), p(t2)})

e Invariably suppressed at large /N and only due to Hawking radiation.

In non-equilibrium systems these correlators determine the emission/abs rates






A non-equilibrium definition of the Emission and Absorption Rates
Want to know the rate to emit and absorb in a frequency band w at time ¢

1. Wigner Transforms — perfect frequency resolution, but no time resolution

G= (1 w) = / T AAL A LT AT + AL

— 00

2. Gabor Transform — Wigner smeared with a minimum uncertainty wave packet

G o) = [ T2 2 e R G (1)

"

-~

G< (fo, cDO) determines for the local emission rate for a given temporal resolution



Pulse On
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e Temporal Resolution

1
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e Frequency Resolution
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Equilibration and the coarse-grained FDT

1. If the FDT is satisfied
G(K) = e /TG (K)

then, the coarse-grained quantities satisfy

?< (t_07 Wo, q)J = g~ Wollf [6562&/402 G~ (507 Wo — Beﬂ:/20-27 q)

\ . J/
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absorption

emission

We will monitor this “FDT” as a function of time to quantify equilibrium



Hawking Radiation in and out of equilibrium



Equilbrium:

d?x°
M = —n z°
Tt \g/
Drag Noise
Gravity

¢
¢

UV Quant Flucts

Goals:
1. Will show that Hawking radiation is balanced by gravity in equilbrium

2. Generalize to non-equilibrium



Detailed Balance and Hawking Radiation (Technical Discussion)

0

X 1. Fluctuations:

Gravity 1

\l/ Grr = 5 ({#(t1,11), 8 (t2,72)})

)

UV Quant Flucts 0= <[g%(t17 7“1)7 ,fj(tg, rg)]> :

2. Dissipation (Spectral Density)

e Equilibrium = Fluctuation Dissipation Theorem

1

Grr(w,rl, 7“2) = <2 + nB(CU)> p(W,Tl,T2> n(W) ew/T —1




Formulas

e Action for string fluctuations, h*" = string metric

/3

S = P dtdr guz [ \/Eh“’/ﬁua;(?y:v] :
7
e hM¥ is the string metric
hudotde” = —(xT)*r? f(r)dt* + -
- fr)r?”

e Retarded Green Function

iGR(t1T1|t2’I“2) = 9(t — t/) <[§3(t1,7“1),£(t2, T2)]> 3

G r(tir1|tars) is the classical response to a force at to79

VA

2T

[au ga;x\/ﬁh“yﬁy} GR(tl’rl‘tQ'rQ) = 5(t1 — t2)5(T1 — 7“2) :



The classical Green Function or response to a force:

VA
o Oy gm\/ﬁh“”@y] Gr=Fo(t1 —t2)0(r1 — 1r2),
[ =o0
Upward wave
External Force C@
Downward wave
---------------------- r=1+¢




1/r

Retarded Response function

1.5

v (pi T)
(Infalling Time)

v =Eddington time




Statistical Fluctuations

Gravity

V
A

UV Quant Flucts

Grr = % {z(t1,71), 2(t2,72)})

e The statistical correlator obeys the homogeneous EOM

VA

o

[@L gm\/ﬁh”’/&, Grr(tlrl‘tQTg) =0

® So:
1. Specify the correlations (or density matrix) in the past

2. Final state fluctuations are correlated only through initial conditions



Correlations through Initial conditions

Correlated through
Initial conditions

Specify Initial Data

Time
Horizon characterized by inflating outgoing geodesics:

r(v) —1=(ro—1)e"¥7%)  with k=277



Correlations through Initial conditions
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Correlations through

This 1s the only

initial data that m
At late times

%%

Initial conditions

atters %

Time

Correlated through

Initial conditions

1. Final correlation come from correlated initial data very near horizon

e Short Wavelength

2. Initial data is inflated by near horizon geometry



Initial Data from Quantum Fluctuations:
1. Initial data is determined at short distance = Flat Space Physics

2. Scalar Field in 1+1D vacuum flat space

As?
1 1 /7 "\ N\
2 {o(X1), 9(X2)}) = Ik log | 1, AX*AXY|  K=norm of action
3. String flucts in near horizon geometry
. 1 A
Gnear—horizon _ n/dtd’r [2\/ﬁh“”f9ux8y:c n = \;—;gm(rh)

norm of near horizon-action

The near horizon initial condition is:

local As?
1 e N
Grr(?}17°1|”02?“2) ? —47”7 log v 200 Ar




Summary: Specify IC and Solve Equations of Motion

VA y
% 8M gm\/ﬁh“ (9,/} Grr(tl?“l‘tgrg) =0
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Inflationary near horizon geometry

(r—1) = (r — 1)e



From initial data to final correlations in two steps:

Use/Bopltzmann apro//
‘ Futl wave eqgn here

7“—1—|—e

=

GrIV) = [ dta Gr(1f2) [nVRR™ ()57 Gr(21),

ro=1+4¢€

(a) From horizon to stretched horizon — Waves are very short wavelength

— Use collisionless Boltzmann approximation (geodesic/WKB/eikonal approx)

(b) The stretched horizon to boundary — Waves are longer wavelength

— Use full wave equation



Fluctuations from Equations of Motion

Grr(12) = [ dtundtzn Gr(111) Gr(220) G (1i20).

J/ A 4
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The fluctuations on the stretched horizon are from UV vacuum flucts in past
G (t1]t2) = Blow-up of initial data oc log(7)

= — %87518152 log ‘Gﬁztl — 6Rt2’ .



The horizon fluctuations and the Lyapunov exponent
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1. Thermal looking:

G,,]?r(w) —Fourier-Trans of — Q6t18t2 log \eml — 6“2\
7

1

= (4 +n(w)) 2en 1) =

2. Temperature  inflation rate

k = 211 = Lyapunov exponent of diverging geodesics



Dissipation - Spectral Density

Gravity

¥
A

UV Quant Flucts

A

= (|Z(t1,71), Z(t2,72)])

e The spectral density also obeys the EOM

VA

o

[8,& gm\/ﬁhw&, p(tl’l“l‘tg’l“g) =0
e But initial conditions are given by the canonical commutation relations

vV hhtt (1) dim Oy, p(tirftars) = id(ry —12).



Spectral Density

,0(1‘2) = /dtlhdtgh GR(l‘lh) GR(Q‘Q}L) ph(lh‘zh) ,
\V-'/ \ - / \ -~ y
bulk specitral fcn outgoing Green fcns  horizon spectral fcn

Init conditions
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Where the horizon spectral density

p"(t1,t2) = local due to canonical commutation relations

=2 [—ié’(tl — tg)] (2wm in Fourier space)



Detailed Balance

Grr(w,m1,72) = (5 +n(w)) p(w,r1,72)

:L,O

Gravity

V
A

x(t,7)
UV Quant Flucts

1. Fluctuations (Anti-commutator)

gw(w,rl,rg) GR(w 7“1’7%) Gr(w rg\rh ) (5 + )an

bulkﬁucts outgoing Green fcns HOI’IZC?FT—ﬂUC’[S

2. DiSSipatiOn: (Commutator)

plw,r1,72) = Gpr(w,r1|rp) Gr(w, r2|rs) 2w

L -~ J " > v

bulk spec dense outgoing Green fcns Horizon spec dense



Non-equilibrium



Fluctuations in non-equilibrium

0

log correlation
here

e Surface Properties — on event horizon

Metric—coeff

A\

(o) _ 1814(7“, V)

N~ 2 or
time dep. Lyapunov exponent

r=rp(v)



K(t) / (2xTy)
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Result:

e General form of near horizon fluctuations in non-equilibrium

G,ffr(vl]@) — \/77(7)1)77(’02)

[ k()dv" efv2 m(v’)dv" .
s

e Can map the near horizon fluctuations up to boundary by finding G g numerically

0




Results for non-equilbrium emission



Emission&Absorption rates and the FDT:

Stress Tensor

TE Ty =, FDT satisfied
0.8 | Lightlike — :’, .
£ Timelike — /!
V@ 06 ’II N
> o4 f | Emission &
FDT-expectation Emission rate :
0.0 | Absorption
o) \ \ \ \ il

Timelike: w ~ 87Tt and g = 0 Lightlike: w ~ 87T} and g1 = qr, = w/v/2
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Pattern of equilibration:

First the stress/geometry
equilibrates

Lightlike —
Timelike —

then

the emission rate
equilibrates




Thermalization of timelike modes g = 0:

(c)

1 777777777777777777
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Find that massive timkelike modes thermalize in a finite time:



Tthermalize ~ CONSt W — OO



Thermalization of approx lightlike modes (w ~ |q|) Chesler et al, Arold&Vaman

0.8 0y/T Ty

0.6 —

0~/ 0 final
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The harder the lightlike mode, the longer it takes to equilibrate — find that

/4 for w — 00 where Q* = (W —¢*) ~ wo !

virtuality

Tthermalize ™ (WU)



Summary:

(c) (d)
e B
0.8 0.8 0/ Ty
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0.2 0.2
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O | | | | ] 0 — | | | |
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1. Find that massive timkelike modes thermalize in a finite time:
Tthermalize ™~ CONSt W — OO

2. The harder the lightlike mode, the longer it takes to equilibrate — expect that:

1/4

Tthermalize ™ (WO' ) for W — O



Conclusions

e Derived Hawking Radiation for non-equilibrium geometries

— Hawking radiation produces statistical fluctuations in strongly coupled plasma
e Used this setup to calculate emission rates in far from equilibrium plasma

e Find a distinct pattern of thermalziation (similar to weak coupling):
1. First the stress tensor equilibrates and then the 2pnt funcs equilibrate
2. Highly offshell modes (w — oo with £ fixed) thermalize first.

3. High momentum onshell modes (w ~ k — o0) thermalize last.
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