# New physics implications of recent data on $K \rightarrow \pi \nu \bar{\nu}$ searches

**Teppei Kitahara** Nagoya University (KMI)

KMI Topics May 20, 2020, online talk

Based on PRL124, 071801 (2020) [arXiv: 1909.11111] with T.Okui, G.Perez, Y.Soreq, K.Tobioka







- Teppei Kitahara / 北原 鉄平
- KMI, Division of theoretical studies (基礎理論研究部門), YLC Designated Assistant Professor, term: 2018 October – 2021 March (+2 years if pass examination)
- 2018 October-2020 March, Long term visitor at Technion pheno group in Israel
- Nagoya (E-lab)  $\rightarrow$  Tokyo (Ph.D)  $\rightarrow$  Karlsruhe in Germany  $\rightarrow$  Technion in Israel  $\rightarrow$  Nagoya (KMI)
- (KEK) Flavor physics, CP violation, Lepton physics, Dark matter

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020

### Myself













### **B** physics

 $K \rightarrow \pi \nu \bar{\nu}$ 

CORRELATION -



 $K_L \to \pi^0 \ell^+ \ell^-$ 









Both channels are theoretical clean and significantly sensitive to shortdistance contributions, especially  $K_L \rightarrow \pi^0 \nu \bar{\nu}$  is purely CPV decay (almost) CP-odd CP-even in SM, see Buchalla, Isidori 9806501 Sensitive to CPV in NP sector **SM predictions:** [Buras, Buttazzo, Girrbach-Noe, Knegjens '15]  $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (8.4 \pm 1.0) \times 10^{-11}, \quad \text{c.f.} \quad \mathcal{B}(B_s^0 \to \mu^+ \mu^-)_{\rm SM} = (3.65 \pm 0.23) \times 10^{-9}$  $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM} = (3.4 \pm 0.6) \times 10^{-11}.$ On-going experiments: *K***+** 20 SM events are expected in 2016-18 runs ■ SM event is expected @J-PARC in ~2024

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches Teppei Kitahara: Nagoya University, KMI Topics online seminar, May 20, 2020

### $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ and $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$



loop, GIM, and small CKM

 $\mathcal{B}(B^0 \to \mu^+ \mu^-)_{\rm SM} = (1.06 \pm 0.09) \times 10^{-10}$ 











## $K_I \rightarrow \pi^0 \nu \bar{\nu}$ search

In experiments, this process looks  $K_L^0 \rightarrow \pi^0 + \text{missing} \rightarrow 2\gamma + \text{missing}$ ; namely looks "invisible beam emits two photons with missing energy", no charged track! We can measure only photons' energy and positions by the elemag calorimeter; We can not reconstruct the  $m_{\pi}^2$  from two photons (!) In an ideal experiment, the contamination (background) only comes from  $K_L^0 
ightarrow 2\gamma$  $(K^0 - \pi^0 \text{mixing} + \pi^0 \rightarrow 2\gamma)$ :  $\mathscr{B}(K_L \rightarrow 2\gamma)_{exp} = 5.47(4) \times 10^{-4}$ . This BG is totally avoided by imposing large transverse missing energy.























### **Grossman-Nir bound (theoretical relation)**



$$\frac{\Gamma\left(K_L \to \pi^0 \nu \bar{\nu}\right)}{\Gamma\left(K^+ \to \pi^+ \nu \bar{\nu}\right)} = \frac{\left|pA_{\pi^0 \nu \bar{\nu}} - q\bar{A}_{\pi^0 \nu \bar{\nu}}\right|^2}{\left|\sqrt{2}A_{\pi^0 \nu \bar{\nu}}\right|^2} = \frac{1}{4}\left|1 - \lambda_{\pi \nu \bar{\nu}}\right|^2 \qquad \qquad A_{\pi^0 \nu \bar{\nu}} = \langle \pi^0 \nu \bar{\nu} | \mathcal{F} \\
= \frac{1}{4}(1 + |\lambda_{\pi \nu \bar{\nu}}|^2 - 2\operatorname{Re}\lambda_{\pi \nu \bar{\nu}}) \simeq \frac{1}{2}(1 - \operatorname{Re}\lambda_{\pi \nu \bar{\nu}}) = \sin^2\left[\frac{\operatorname{Arg}\left(\lambda_{\pi \nu \bar{\nu}}\right)}{2}\right] \qquad \qquad \lambda_{\pi \nu \bar{\nu}} = \left(\frac{q}{p}\right)_K = \frac{1}{4}\left|1 - \lambda_{\pi \nu \bar{\nu}}\right|^2$$



Grossman-Nir bound for general NP models (including  $\nu_i \bar{\nu}_i$ )

$$\mathcal{B}\left(K_L \to \pi^0 \nu \overline{\nu}\right) = \left(\frac{\tau_L}{\tau^+} + \Delta_{\mathrm{IB, EM}}\right)$$

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020



[Grossman, Nir '97]

 $)\sin^2\theta \mathcal{B}\left(K^+ \to \pi^+ \nu \overline{\nu}\right) \le 4.32 \mathcal{B}\left(K^+ \to \pi^+ \nu \overline{\nu}\right)$ 







### New preliminary result@NA62

[NA62, KAON2019; 2016+17 data]

events observed in signal region



[BNL-E949, '09]  

$$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) < 3.35 \times 10^{-10} \text{ at } 90\% \text{CL}$$
  
[NA62, FPCP2018; 2016 data]  
 $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) < 11(14) \times 10^{-10} \text{ at } 90(95)\% \text{CI}$   
Factor 6 improved  
 $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) < 1.85(2.44) \times 10^{-10} \text{ at } 90(95)\%$   
 $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) = 0.47^{+0.72}_{-0.47} \times 10^{-10}$   
 $\frac{\text{# of events}}{1.65 \pm 0.31}$   
Expected BG  $1.65 \pm 0.31$   
Expected SM  $2.4 \pm 0.3$ 







### New data@KOTO

6

5

4

3

2



New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020 [KOTO, PRL '19; 2015 data]

 $\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu}) < 3.0 \times 10^{-9} \text{ at } 90\% \text{CL}$ 

1 event in 4 events is suspected as a BG from an upstream activity

KOTO is planning to re-evaluate other BG sources, especially  $K^+$ /planning a special run for BG in Feb.–Mar.

| # of events              | 4 (3)     |
|--------------------------|-----------|
| Single event sensitivity | ~7×10-10  |
| Expected BG              | 0.05±0.02 |
| Expected SM              | 0.05±0.01 |







### Revised P<sub>T</sub>-Z plot



\* S.E.S. is also updated; A run-dependent efficiency correction was not applied in the old value. Slide by T. Nomura (January 17, 2020)

observed expectation

Preliminary improved back ground estimation  $0.05 \rightarrow 0.34$ 

**2 events** in 4 events are suspected as a BG

The data still could not explain the BG

33













Assuming signal = 3 events in KOTO events



**Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020



- NA62 is almost probing the SM signals. Great but no surprises.
- KOTO events are about two orders of magnitude larger than the SM [~3.8 (3.4)  $\sigma$  discrepancy]
- If we consider general new physics that interacts with neutrinos or stable and invisible new particles, the discrepancy can be reduced to  $2.1\sigma$  (red circle)
- If the events are true, the Grossman-Nir bound has to be broken or has to be bypassed







### Heavy new physics

- Heavy new physics can not violate the Grossman-Nir bound
  - Current data should be just statistical fluctuation

 $\mathcal{O}_{S,A}^{\nu\nu} = \left[\bar{Q}^2\left(\mathbf{1}_2,\sigma^i\right)Q^1\right]_{V-A} \left[\bar{L}\left(\mathbf{1}_2,\sigma^i\right)L\right]_{V-A}$  $\mathcal{O}_D^{\nu\nu} = \left(\bar{d}^2 d^1\right)_{V+A} (\bar{L}L)_{V-A}$  $C_{S,D}^{\nu\nu} - C_A^{\nu\nu} \approx e^{-i\frac{3}{4}\pi} / (150 \,\text{TeV})^2$ 



Currently no constraint.

Correlation with (or bound from) the other CPV rare decays:  $\mathsf{BR}(K_S \to \mu \mu) < 2.4 \times 10^{-10}$ [LHCb '19]

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches Teppei Kitahara: Nagoya University, KMI Topics online seminar, May 20, 2020

[TK, Okui, Perez, Soreq, Tobioka '20] [Li, Ma, Schmidt, '20]



 $BR(K_L \to \pi^0 ee) < 2.8 \times 10^{-10}$  $BR(K_L \to \pi^0 \mu \mu) < 3.8 \times 10^{-10}$ [KTEV '00] [KTEV '04]





significantly loosened by the background of  $K^+ \rightarrow \pi^+ \pi^0$ 

$$\mathcal{B}\left(K^+ \to \pi^+ X\right) < 5.6 \times$$



New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020

### Pion mass new physics: Z'[Fuyuto, Hou, Kohda '15]

Consider  $K_L \to \pi^0 Z'$  and  $Z' \to \nu \bar{\nu}$  with  $m_{Z'} \sim m_{\pi}$ , the constraint from  $K^+ \to \pi^+ \nu \bar{\nu}$  is

" $\pi^0$  blind spot" (NA62); 116 <  $m_{\rm miss}$  < 152 MeV  $\times 10^{-8}$  at 90% CL,  $(m_X = m_{\pi^0})$  [BNL-E949, '09]  $BR(t \to cZ')$ 

> ply. Although the mass range for weakly interacting light particle emission is a bit restricted, our explicit model illustrates the potential wide-ranging impact of discovering  $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) \gtrsim 1.4 \times 10^{-9}$ . Conversely, many measurements at B factories and the LHC could uncover correlated phenomena, which could shed light on what

Large  $\mathscr{B}(K_L \to \pi^0 \nu \bar{\nu})$  was already predicted in 2015





## Pion mass new physics: Minimal Higgs portal

[Egana-Ugrinovic, Homiller, Meade 1911.10203], [Bhupal Dev, Mohapatra, Zhang 1911.12334] SM + light CP-even singlet scalar, which mixes with the SM Higgs by  $\sin \theta$ 











 $K_L \rightarrow \pi^0 X$  is CP-conserving process; CPV is not required in NP sector [Leutwyler, Shifman '90] CP-odd CP-odd

 $K^+ \rightarrow \pi^+ X, X \rightarrow \gamma \gamma$  is rejected in the NA62 detector



New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020

Unstable light new physics:  $K_I \rightarrow \pi^0 X, X \rightarrow \gamma \gamma$ 

X (~CP even scalar) has finite lifetime and decays into diphoton [TK, Okui, Perez, Soreq, Tobioka '20]





missing neutrinos)

$$P = \exp(-\frac{L}{\gamma\beta\tau_X}) = \exp(-\frac{L}{(E_X/m_X)\beta\tau_X}) \simeq (\frac{E_X}{E_X}) = \exp(-\frac{E_X}{E_X}) \approx \frac{1}{(E_X} + \frac{E_X}{E_X}) = \frac{$$

**KOTO** detetor NA62 detetor  $L = 150 \text{ m}, p_X = 37 \text{ GeV}$  $L = 3 m, p_X \sim 1.5 GeV$ 

### This efficiency factor can bypass GN relation

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020

Unstable light new physics:  $K_I \rightarrow \pi^0 X, X \rightarrow \gamma \gamma$ 

Probability that X does not decay in the detector volume (= efficiency factor that X looks

efficiency factor

τ<sub>X</sub>[nsec]





## Unstable light new physics: $K_L \rightarrow \pi^0 X, X \rightarrow \gamma \gamma$

Required  $\mathscr{B}(K_L \to \pi^0 X)$ 



### As *m<sub>X</sub>* increases, *X* and its *pT* tend to soft (X is assumed to be stable in this plot)

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020

### [TK, Okui, Perez, Soreq, Tobioka '20]



 $m_X = O(10)$ MeV is preferred in current data



KOTO 3 events can be explain in white region

Colored regions are excluded



### Specific models are investigated in Egana-Ugrinovic, Homiller, Meade 1911.10203; Liu, McGinnis, Wagner, Wang, 2001.06522

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020



[TK, Okui, Perez, Soreq, Tobioka '20]





### Specific model: KOTO + g-2 anomalies

type-X 2HDM plus singlet  $\phi$ (type-X: only Y<sub>e</sub> is tanβ enhanced)  $\mathscr{B}(\phi \to ee) \simeq 1$  with n sec lifetime KOTO 3 events can be explain in white region muon g-2 anomaly can be solved

Charm beam dump:  $pp \rightarrow K \rightarrow \pi \phi (\rightarrow ee)$ Electron beam dump:  $eN \rightarrow eN\phi(\rightarrow ee)$ Electron beam dump:  $ee \rightarrow \phi(\rightarrow ee)$ 

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020 [Liu, McGinnis, Wagner, Wang, 2001.06522]







### Conclusions 1/2

- be a signal of new physics
- Although the Grossman-Nir bound sets the upper bound on BR( $K_L \rightarrow \pi^0$  inv.), several new physics can bypass it practically
  - 100 TeV new physics with statistical fluctuation
    - " $\pi^0$  blind spot"

Unstable new light scalar using "lifetime gap" 

Connection to other anomaly?

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020

Interesting preliminary events were announced by KOTO experiment. If it is true, it should





### Conclusions 2/2

Very recently, several NP models that can violate the Grossman-Nir bound are proposed: Pair production of dark particles in meson decays, Hostert, Kaneta, Pospelov, 2005.07102;  $K_L \rightarrow X_1 X_2, X_2 \rightarrow \pi^0 X_1$ , in Higgs/Z' portal KOTO vs. NA62 Dark Scalar Searches, Gori, Perez, Tobioka, 2005.05170;  $\blacklozenge$  $K_{I} \rightarrow \sigma \chi, \chi \rightarrow \gamma \gamma$ , in strange flavor symmetry with ChPT Evading the Grossman-Nir bound with  $\Delta I=3/2$  new physics, He, Ma, Tandean, Valencia, 2005.02942, 2002.05467; by dim-7 or -8 SMEFT operators Three Exceptions to the Grossman-Nir Bound, Ziegler, Zupan, Zwicky, 2005.00451;  $K_L \rightarrow \pi^0 \phi, \pi^0 \phi \phi$ , in explicit isospin violating ChPT



## Backup

### Novel new physics interpretations [TK, Okui, Perez, Soreq, Tobioka '20]

Heavy NP e.g.,  $\mathcal{O}_{S}^{\nu\nu} = (\bar{Q}^{2}Q^{1})_{V-A}(\bar{L}L)_{V-A}$ 

consider CPV in  $s \rightarrow d\nu\bar{\nu}$ 

The Grossman-Nir bound holds

still 2.1 $\sigma$  tension (on the GN bound)

Light NP:  $K_I \rightarrow \pi^0 X, X \rightarrow \gamma \gamma$ New idea

> Effectively go beyond the GN bound. Key: finite lifetime, detector difference  $\rightarrow$  "lifetime gap" appears

Can explain 3 signals

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020 Pion mass NP:  $K_L \rightarrow \pi^0 Z', Z' \rightarrow \nu \bar{\nu}, m_{Z'} \sim m_{\pi^0}$ 

" $\pi^0$  blind spot" (NA62); 116 <  $m_{\rm miss}$  < 152 MeV  $\mathcal{B}(K^+ \to \pi^+ X) < 5.6 \times 10^{-8} \text{ at } 90\% CL, \ (m_X = m_{\pi^0})$ [BNL-E949, '09] Can explain 3 signals

Light NP: *p*Au: fixed target  $\rightarrow a \rightarrow \gamma \gamma$  New idea

ALP is produced at fixed target. Key: KOTO does not distinguish  $m_{\gamma\gamma}$ ,  $a \rightarrow \gamma \gamma$  mimics  $\pi^0 \rightarrow \gamma \gamma$  with missing pT Could explain 3 signals













### A simple idea, but does not work

Very simple idea of breaking the Grossman-Nir bound is just kinematics:

$$m_{K_L} = 497.6 \,\mathrm{MeV} \qquad m_{\pi^0} = m_{\pi^0}$$

$$m_{K^{\pm}} = 493.6 \,\mathrm{MeV}$$
  $m_{\pi^{\pm}} = m_{\pi^{\pm}}$ 

(Mass difference comes from the radiative corrections within the SM)





Emitted  $\pi^0$  is too soft, the missing pT can not become large **Predicted signal region** [Fabbrichesi, Gabrielli, 1911.03755]

- $= 134.9 \, \text{MeV}$  $\Delta m = 362.7 \text{ MeV}$  $= 139.5 \,\mathrm{MeV}$  $\Delta m = 354.1 \text{ MeV}$







New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020

### Validations

### [TK, Okui, Perez, Soreq, Tobioka '20]







## Strategy of KOTO experiment



Initial state is neutral long-lived particle  $= K_L + neutron (+ ALP)$ see later)

All particles are invisible. One can observe only photon energy

New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020

### [Figures from Yamanaka-san@FPW2019]

Assuming pion mass, one can reconstruct the decay point and missing pT

Require large missing pT

KOTO can not measure diphoton invariant mass











# [TK, Okui, Perez, Soreq, Tobioka '20]

## ALP interpretation: $pAu \rightarrow a \rightarrow \gamma \gamma$ ALP (a) is produced at the fixed target and decays into $\gamma\gamma$ in the KOTO detector

KOTO does not distinguish  $m_{\gamma\gamma}$ 



New physics implications of recent data on  $K \rightarrow \pi \nu \bar{\nu}$  searches **Teppei Kitahara**: Nagoya University, KMI Topics online seminar, May 20, 2020

Following parameter regions can explain KOTO O(1) events

![](_page_28_Figure_6.jpeg)

![](_page_28_Picture_8.jpeg)

![](_page_28_Picture_9.jpeg)

![](_page_28_Picture_10.jpeg)