First results for SU(2) Yang-Mills with one adjoint Dirac Fermion

Ed Bennett

from research with Andreas Athenodorou, Georg Bergner, Biagio Lucini, Agostino Patella

> KMI, Nagoya 10 September 2013

Outline

Introduction

Motivation Dirac → Majorana decomposition Lattice formulation Quantum numbers Lattice topology

Results

Phase diagram Spectrum Mass anomalous dimension Topological observables [arXiv:1209.5579]

 $\mathrm{SU}(2)+1$ adjoint Dirac flavour

+ $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

 $\mathrm{SU}(2)+1$ adjoint Dirac flavour

+ $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

 $\mathrm{SU}(2)+1$ adjoint Dirac flavour

+ $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

SUSY?

- $\mathrm{SU}(2)+1$ adjoint Dirac flavour
 - + $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window

 $\mathrm{SU}(2)+1$ adjoint Dirac flavour

+ $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

 $\mathrm{SU}(2)+1$ adjoint Dirac flavour

+ $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

 $\mathrm{SU}(2)+1$ adjoint Dirac flavour

+ $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

What do we know?

• Conformal window:

 $\mathrm{SU}(2)+1$ adjoint Dirac flavour

+ $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

- Conformal window:
 - ${\rm SU}(2)$ + 2 flavours is conformal (e.g. arXiv:1104.4301 etc.)

- $\mathrm{SU}(2)+1$ adjoint Dirac flavour
 - + $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

- Conformal window:
 - $\mathrm{SU}(2)$ + 2 flavours is conformal (e.g. arXiv:1104.4301 etc.)
 - $\mathop{\rm SU}(2)$ + 1 flavour predicted to be confining (e.g. Bringoltz & Sharpe)

- $\mathrm{SU}(2)+1$ adjoint Dirac flavour
 - + $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

- Conformal window:
 - $\mathrm{SU}(2)$ + 2 flavours is conformal (e.g. arXiv:1104.4301 etc.)
 - $\mathop{\rm SU}(2)$ + 1 flavour predicted to be confining (e.g. Bringoltz & Sharpe)
- Technicolor

- $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
 - + $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

- Conformal window:
 - $\mathrm{SU}(2)$ + 2 flavours is conformal (e.g. arXiv:1104.4301 etc.)
 - $\,{\rm SU}(2)$ + 1 flavour predicted to be confining (e.g. Bringoltz & Sharpe)
- Technicolor
 - SU(2) + 1 flavour $\chi SB SU(2) \rightarrow SO(2) \Rightarrow$ 2 Goldstones

- $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
 - + $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

- Conformal window:
 - $\mathrm{SU}(2)$ + 2 flavours is conformal (e.g. arXiv:1104.4301 etc.)
 - $\,{\rm SU}(2)$ + 1 flavour predicted to be confining (e.g. Bringoltz & Sharpe)
- Technicolor
 - $\mathrm{SU}(2)$ + 1 flavour $\chi SB \ \mathrm{SU}(2) \rightarrow \mathrm{SO}(2) \Rightarrow$ 2 Goldstones
 - Insufficient for EWSB

- $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
 - + $\equiv \mathrm{SU}(2) + 2$ adjoint Majorana flavours

Why?

- SUSY?
- Conformal window
- Technicolor?

- Conformal window:
 - ${
 m SU}(2)$ + 2 flavours is conformal (e.g. arXiv:1104.4301 etc.)
 - $\operatorname{SU}(2) + 1$ flavour predicted to be confining (e.g. Bringoltz & Sharpe)
- Technicolor
 - $\mathrm{SU}(2)$ + 1 flavour $\chi SB \ \mathrm{SU}(2) \rightarrow \mathrm{SO}(2) \Rightarrow$ 2 Goldstones
 - Insufficient for EWSB
 - Not a walking technicolor candidate

- First-principles determination of whether $\mathrm{SU}(2)+1$ flavour is conformal or confining

- First-principles determination of whether $\mathrm{SU}(2)+1$ flavour is conformal or confining
- Spectroscopy

- First-principles determination of whether $\mathrm{SU}(2)+1$ flavour is conformal or confining
- Spectroscopy
- Mass anomalous dimension

- First-principles determination of whether $\mathrm{SU}(2)+1$ flavour is conformal or confining
- Spectroscopy
- Mass anomalous dimension
- What about 3 Majorana flavours ($\equiv 1.5$ Dirac dof)?

• Confining: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.

- Confining: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :

- Confining: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :

-
$$m_{\text{PCAC}} < m_{\text{lock}} \Rightarrow m_{\text{state}} \sim m^{1/(1+\gamma_*)} \rightarrow 0.$$

- Confining: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :
 - $m_{\rm PCAC} < m_{\rm lock} \Rightarrow m_{\rm state} \sim m^{1/(1+\gamma_*)} \rightarrow 0.$
 - Ratios of spectral quantities in this regime constant.

- Confining: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :
 - $\label{eq:prod} \textbf{-} \ m_{\rm PCAC} < m_{\rm lock} \Rightarrow m_{\rm state} \sim m^{1/(1+\gamma_*)} \rightarrow 0.$
 - Ratios of spectral quantities in this regime constant.
 - Very different from QCD

- Confining: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :
 - $\label{eq:prod} \ m_{\rm PCAC} < m_{\rm lock} \Rightarrow m_{\rm state} \sim m^{1/(1+\gamma_*)} \to 0.$
 - Ratios of spectral quantities in this regime constant.
 - Very different from QCD

(Figure: Agostino Patella, from arXiv:0911.0020)

- Confining: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :
 - $\label{eq:prod} \ m_{\rm PCAC} < m_{\rm lock} \Rightarrow m_{\rm state} \sim m^{1/(1+\gamma_*)} \to 0.$
 - Ratios of spectral quantities in this regime constant.
 - Very different from QCD

(Figure: Agostino Patella, from arXiv:0911.0020)

 Dynamical quenching in semiclassical dynamics—fermions decouple from e.g. topology

• Lots of Dirac code, little Majorana

- Lots of Dirac code, little Majorana
- ullet \Rightarrow Can we find Majorana observables with Dirac algorithms?

- Lots of Dirac code, little Majorana
- ullet \Rightarrow Can we find Majorana observables with Dirac algorithms?
- Re-express action, appropriate operators

- Lots of Dirac code, little Majorana
- ullet \Rightarrow Can we find Majorana observables with Dirac algorithms?
- Re-express action, appropriate operators
- Translate quantum numbers

Chiral representation of Dirac algebra:

$$\gamma^{\mu} = \left(\begin{array}{cc} 0 & \overline{\sigma}_{\mu} \\ \sigma_{\mu} & 0 \end{array}\right)$$

Chiral representation of Dirac algebra:

$$\gamma^{\mu} = \left(\begin{array}{cc} 0 & \overline{\sigma}_{\mu} \\ \sigma_{\mu} & 0 \end{array}\right)$$

$$\sigma^{\mu} = (1, \sigma_i), \ \overline{\sigma}^{\mu} = (1, -\sigma_i)$$

Chiral representation of Dirac algebra:

$$\gamma^{\mu} = \left(\begin{array}{cc} 0 & \overline{\sigma}_{\mu} \\ \sigma_{\mu} & 0 \end{array}\right)$$

$$\sigma^{\mu} = (1, \sigma_i), \ \overline{\sigma}^{\mu} = (1, -\sigma_i)$$

$$\gamma_5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight)$$

Chiral representation of Dirac algebra:

$$\gamma^{\mu} = \left(\begin{array}{cc} 0 & \overline{\sigma}_{\mu} \\ \sigma_{\mu} & 0 \end{array}\right)$$

$$\sigma^{\mu} = (1, \sigma_i), \ \overline{\sigma}^{\mu} = (1, -\sigma_i)$$

$$\gamma_5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight)$$

Charge conjugation: $\psi_{\mathsf{C}} = C \overline{\psi}^{\mathrm{T}}$,

$$C = -i\gamma^2\gamma^0 = \left(\begin{array}{cc} i\sigma_2 & 0\\ 0 & -i\sigma_2 \end{array}\right)$$

Decomposition

See also e.g. Montvay, hep-lat/9510042

Decomposition

See also e.g. Montvay, hep-lat/9510042

$$\psi = \psi_{\mathsf{M}+} + i\psi_{\mathsf{M}-}$$
See also e.g. Montvay, hep-lat/9510042

$$\psi = \psi_{\mathsf{M}+} + i\psi_{\mathsf{M}-}$$

$$\psi_{\mathsf{M}+} = \frac{1}{2}(\psi + C\overline{\psi}^{\mathrm{T}}) \qquad \psi_{\mathsf{M}-} = \frac{1}{2i}(\psi - C\overline{\psi}^{\mathrm{T}})$$

See also e.g. Montvay, hep-lat/9510042

$$\psi = \psi_{\mathsf{M}+} + i\psi_{\mathsf{M}-}$$

$$\psi_{\mathsf{M}+} = \frac{1}{2}(\psi + C\overline{\psi}^{\mathrm{T}}) \qquad \qquad \psi_{\mathsf{M}-} = \frac{1}{2i}(\psi - C\overline{\psi}^{\mathrm{T}}) \\ \Rightarrow \overline{\psi}_{\mathsf{M}+} = \frac{1}{2}(\overline{\psi} + \psi^{\mathrm{T}}C) \qquad \qquad \overline{\psi}_{\mathsf{M}-} = \frac{1}{2i}(\psi^{\mathrm{T}}C - \overline{\psi})$$

See also e.g. Montvay, hep-lat/9510042

$$\psi = \psi_{\mathsf{M}+} + i\psi_{\mathsf{M}-}$$

$$\begin{split} \psi_{\mathsf{M}+} &= \frac{1}{2}(\psi + C\overline{\psi}^{\mathrm{T}}) \qquad \qquad \psi_{\mathsf{M}-} &= \frac{1}{2i}(\psi - C\overline{\psi}^{\mathrm{T}}) \\ \Rightarrow \overline{\psi}_{\mathsf{M}+} &= \frac{1}{2}(\overline{\psi} + \psi^{\mathrm{T}}C) \qquad \qquad \overline{\psi}_{\mathsf{M}-} &= \frac{1}{2i}(\psi^{\mathrm{T}}C - \overline{\psi}) \end{split}$$

Majorana constraint $\psi_{M\pm C} \equiv C \overline{\psi}_{M\pm}^{T} = \psi_{M\pm}$ satisfied.

See also e.g. Montvay, hep-lat/9510042

$$\psi = \psi_{\mathsf{M}+} + i\psi_{\mathsf{M}-}$$

$$\psi_{\mathsf{M}+} = \frac{1}{2}(\psi + C\overline{\psi}^{\mathrm{T}}) \qquad \qquad \psi_{\mathsf{M}-} = \frac{1}{2i}(\psi - C\overline{\psi}^{\mathrm{T}})$$

$$\Rightarrow \overline{\psi}_{\mathsf{M}+} = \frac{1}{2}(\overline{\psi} + \psi^{\mathrm{T}}C) \qquad \qquad \overline{\psi}_{\mathsf{M}-} = \frac{1}{2i}(\psi^{\mathrm{T}}C - \overline{\psi})$$

Majorana constraint $\psi_{M\pm C} \equiv C \overline{\psi}_{M\pm}^{T} = \psi_{M\pm}$ satisfied. Now we can reexpress the action.

• Mass term:

• Mass term:

$$- \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right]$$

• Mass term:

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ &- \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{aligned}$$

• Mass term:

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ &- \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{aligned}$$

• Mass term:

$$\begin{array}{l} - \ \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ - \ \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{array}$$

$$- \overline{\psi}_{\mathsf{M}\pm} \partial \!\!\!/ \psi_{\mathsf{M}\pm} = \frac{1}{4} \left[\overline{\psi} \partial \!\!\!/ \psi \pm \psi^{\mathrm{T}} C \partial \!\!\!/ \psi \pm \overline{\psi} \partial C \overline{\psi}^{\mathrm{T}} + \psi^{\mathrm{T}} C \partial \!\!\!/ C \overline{\psi}^{\mathrm{T}} \right]$$

• Mass term:

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ &- \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{aligned}$$

• Mass term:

$$\begin{array}{l} - \ \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ - \ \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{array}$$

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm} \partial\!\!\!/ \psi_{\mathsf{M}\pm} = \frac{1}{4} \left[\overline{\psi} \partial\!\!/ \psi \pm \psi^{\mathrm{T}} C \partial\!\!\!/ \psi \pm \overline{\psi} \partial\!\!/ C \overline{\psi}^{\mathrm{T}} + \psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}} \right] \\ &- \frac{\psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}} = \overline{\psi} \partial\!\!\!/ \psi \\ &- \overline{\psi} \partial\!\!/ \psi = \overline{\psi}_{\mathsf{M}+} \partial\!\!/ \psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-} \partial\!\!\!/ \psi_{\mathsf{M}-} \end{aligned}$$

• Mass term:

$$\begin{array}{l} - \ \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ - \ \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{array}$$

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm} \partial\!\!\!/ \psi_{\mathsf{M}\pm} = \frac{1}{4} \left[\overline{\psi} \partial\!\!/ \psi \pm \psi^{\mathrm{T}} C \partial\!\!\!/ \psi \pm \overline{\psi} \partial\!\!/ C \overline{\psi}^{\mathrm{T}} + \psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}} \right] \\ &- \frac{\psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}}}{\overline{\psi} \partial\!\!\!/ \psi} = \overline{\psi} \partial\!\!\!/ \psi \\ &- \overline{\psi} \partial\!\!/ \psi = \overline{\psi}_{\mathsf{M}\pm} \partial\!\!/ \psi_{\mathsf{M}\pm} + \overline{\psi}_{\mathsf{M}\pm} \partial\!\!/ \psi_{\mathsf{M}\pm} \end{aligned}$$

$$\Rightarrow S_{1 \text{ Dirac}} = S_{2 \text{ Majorana}}$$

• Mass term:

$$\begin{array}{l} - \ \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ - \ \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{array}$$

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm} \partial\!\!\!/ \psi_{\mathsf{M}\pm} = \frac{1}{4} \left[\overline{\psi} \partial\!\!/ \psi \pm \psi^{\mathrm{T}} C \partial\!\!\!/ \psi \pm \overline{\psi} \partial\!\!/ C \overline{\psi}^{\mathrm{T}} + \psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}} \right] \\ &- \frac{\psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}}}{\overline{\psi} \partial\!\!\!/ \psi} = \overline{\psi} \partial\!\!\!/ \psi \\ &- \overline{\psi} \partial\!\!/ \psi = \overline{\psi}_{\mathsf{M}\pm} \partial\!\!/ \psi_{\mathsf{M}\pm} + \overline{\psi}_{\mathsf{M}\pm} \partial\!\!/ \psi_{\mathsf{M}\pm} \end{aligned}$$

$$\Rightarrow S_{1 \text{ Dirac}} = S_{2 \text{ Majorana}} \\ = \overline{\psi}_{M+} \partial \!\!\!/ \psi_{M+} + \overline{\psi}_{M-} \partial \!\!/ \psi_{M-} + m(\overline{\psi}_{M+} \psi_{M+} + \overline{\psi}_{M-} \psi_{M-})$$

• Mass term:

$$\begin{array}{l} - \ \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ - \ \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{array}$$

• Kinetic term:

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm} \partial\!\!\!/ \psi_{\mathsf{M}\pm} = \frac{1}{4} \left[\overline{\psi} \partial\!\!/ \psi \pm \psi^{\mathrm{T}} C \partial\!\!\!/ \psi \pm \overline{\psi} \partial\!\!/ C \overline{\psi}^{\mathrm{T}} + \psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}} \right] \\ &- \psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}} = \overline{\psi} \partial\!\!\!/ \psi \\ &- \overline{\psi} \partial\!\!/ \psi = \overline{\psi}_{\mathsf{M}+} \partial\!\!/ \psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-} \partial\!\!\!/ \psi_{\mathsf{M}-} \end{aligned}$$

$$\Rightarrow S_{1 \text{ Dirac}} = S_{2 \text{ Majorana}} \\ = \overline{\psi}_{M+} \partial \!\!\!/ \psi_{M+} + \overline{\psi}_{M-} \partial \!\!/ \psi_{M-} + m(\overline{\psi}_{M+} \psi_{M+} + \overline{\psi}_{M-} \psi_{M-})$$

and the action needs no modification.

• Mass term:

$$\begin{array}{l} - \ \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ - \ \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{array}$$

• Kinetic term:

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm} \partial\!\!\!/\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[\overline{\psi} \partial\!\!\!/\psi \pm \psi^{\mathrm{T}} C \partial\!\!\!/\psi \pm \overline{\psi} \partial\!\!\!/ C \overline{\psi}^{\mathrm{T}} + \psi^{\mathrm{T}} C \partial\!\!\!/ C \overline{\psi}^{\mathrm{T}} \right] \\ &- \psi^{\mathrm{T}} C \partial\!\!\!/ C \overline{\psi}^{\mathrm{T}} = \overline{\psi} \partial\!\!\!/\psi \\ &- \overline{\psi} \partial\!\!/ \psi = \overline{\psi}_{\mathsf{M}+} \partial\!\!/ \psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-} \partial\!\!\!/ \psi_{\mathsf{M}-} \end{aligned}$$

$$\Rightarrow S_{1 \text{ Dirac}} = S_{2 \text{ Majorana}} \\ = \overline{\psi}_{M+} \partial \!\!/ \psi_{M+} + \overline{\psi}_{M-} \partial \!\!/ \psi_{M-} + m(\overline{\psi}_{M+} \psi_{M+} + \overline{\psi}_{M-} \psi_{M-})$$

and the action needs no modification.

+ $\mathrm{SU}(2)$ global chiral symmetry

• Mass term:

$$\begin{array}{l} - \ \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ - \ \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{array}$$

• Kinetic term:

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm} \partial\!\!\!/\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[\overline{\psi} \partial\!\!\!/\psi \pm \psi^{\mathrm{T}} C \partial\!\!\!/\psi \pm \overline{\psi} \partial\!\!\!/ C \overline{\psi}^{\mathrm{T}} + \psi^{\mathrm{T}} C \partial\!\!\!/ C \overline{\psi}^{\mathrm{T}} \right] \\ &- \psi^{\mathrm{T}} C \partial\!\!\!/ C \overline{\psi}^{\mathrm{T}} = \overline{\psi} \partial\!\!\!/\psi \\ &- \overline{\psi} \partial\!\!/ \psi = \overline{\psi}_{\mathsf{M}+} \partial\!\!/ \psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-} \partial\!\!\!/ \psi_{\mathsf{M}-} \end{aligned}$$

$$\Rightarrow S_{1 \text{ Dirac}} = S_{2 \text{ Majorana}} \\ = \overline{\psi}_{M+} \partial \!\!\!/ \psi_{M+} + \overline{\psi}_{M-} \partial \!\!\!/ \psi_{M-} + m(\overline{\psi}_{M+}\psi_{M+} + \overline{\psi}_{M-}\psi_{M-})$$

and the action needs no modification.

- + $\mathrm{SU}(2)$ global chiral symmetry
 - Breaks to $\mathrm{SO}(2)\equiv\mathrm{U}(1)$

• Mass term:

$$\begin{array}{l} - \ \overline{\psi}_{\mathsf{M}\pm}\psi_{\mathsf{M}\pm} = \frac{1}{4} \left[2\overline{\psi}\psi \pm \psi^{\mathrm{T}}C\psi \pm \overline{\psi}C\overline{\psi}^{\mathrm{T}} \right] \\ - \ \Rightarrow \overline{\psi}\psi = \overline{\psi}_{\mathsf{M}+}\psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-}\psi_{\mathsf{M}-} \end{array}$$

• Kinetic term:

$$\begin{aligned} &- \overline{\psi}_{\mathsf{M}\pm} \partial\!\!\!/ \psi_{\mathsf{M}\pm} = \frac{1}{4} \left[\overline{\psi} \partial\!\!/ \psi \pm \psi^{\mathrm{T}} C \partial\!\!\!/ \psi \pm \overline{\psi} \partial\!\!/ C \overline{\psi}^{\mathrm{T}} + \psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}} \right] \\ &- \psi^{\mathrm{T}} C \partial\!\!/ C \overline{\psi}^{\mathrm{T}} = \overline{\psi} \partial\!\!\!/ \psi \\ &- \overline{\psi} \partial\!\!/ \psi = \overline{\psi}_{\mathsf{M}+} \partial\!\!/ \psi_{\mathsf{M}+} + \overline{\psi}_{\mathsf{M}-} \partial\!\!\!/ \psi_{\mathsf{M}-} \end{aligned}$$

$$\Rightarrow S_{1 \text{ Dirac}} = S_{2 \text{ Majorana}} \\ = \overline{\psi}_{M+} \partial \!\!\!/ \psi_{M+} + \overline{\psi}_{M-} \partial \!\!\!/ \psi_{M-} + m(\overline{\psi}_{M+}\psi_{M+} + \overline{\psi}_{M-}\psi_{M-})$$

and the action needs no modification.

- $\mathrm{SU}(2)$ global chiral symmetry
 - Breaks to $\mathrm{SO}(2)\equiv\mathrm{U}(1)$
 - $\mathrm{U}(1)$ in Weyl basis \leftrightarrow baryon number B in Dirac basis

- Lattice action: $S = S_{\rm g} + S_{\rm f}$

- Lattice action: $S=S_{\rm g}+S_{\rm f}$
- Wilson gauge action: $\beta \sum_p \left(1 \Re {\rm tr} \, {\it U}(p) \right)$

- Lattice action: $S=S_{\rm g}+S_{\rm f}$
- Wilson gauge action: $\beta \sum_{p} (1 \Re \operatorname{tr} U(p))$
- Wilson (Dirac) fermion action: $S_{\rm f}^{\rm Dirac} = \sum_{x,y} \overline{\psi}(x) D(x,y) \psi(y)$

- Lattice action: $S=S_{\rm g}+S_{\rm f}$
- Wilson gauge action: $\beta \sum_p \left(1 \operatorname{\Re tr} U(p)\right)$
- Wilson (Dirac) fermion action: $S_{\rm f}^{\rm Dirac} = \sum_{x,y} \overline{\psi}(x) D(x,y) \psi(y)$

- Massive Dirac operator:

$$\delta_{x,y} - \frac{\kappa}{2} \left[(1 - \gamma_{\mu}) \ U_{\mu} \left(x \right) \delta_{y,x+\mu} + (1 + \gamma_{\mu}) \ U_{\mu}^{\dagger} (x - \mu) \delta_{y,x-\mu} \right]$$

- Lattice action: $S=S_{\rm g}+S_{\rm f}$
- Wilson gauge action: $\beta \sum_p \left(1 \Re {\rm tr} \, {\it U}(p) \right)$
- Wilson (Dirac) fermion action: $S_{\rm f}^{\rm Dirac} = \sum_{x,y} \overline{\psi}(x) D(x,y) \psi(y)$
 - Massive Dirac operator:

$$\delta_{x,y} - \frac{\kappa}{2} \left[(1 - \gamma_{\mu}) U_{\mu}(x) \delta_{y,x+\mu} + (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(x-\mu) \delta_{y,x-\mu} \right]$$

• For observables, calculate correlation functions

$$\langle X \rangle = \frac{\int D\overline{\psi} D\psi dU X e^{-S}}{\int D\overline{\psi} D\psi dU e^{-S}}$$

- Lattice action: $S=S_{\rm g}+S_{\rm f}$
- Wilson gauge action: $\beta \sum_p \left(1 \Re {\rm tr} \, {\it U}(p) \right)$
- Wilson (Dirac) fermion action: $S_{\rm f}^{\rm Dirac} = \sum_{x,y} \overline{\psi}(x) D(x,y) \psi(y)$
 - Massive Dirac operator:

$$\delta_{x,y} - \frac{\kappa}{2} \left[(1 - \gamma_{\mu}) U_{\mu}(x) \delta_{y,x+\mu} + (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(x - \mu) \delta_{y,x-\mu} \right]$$

• For observables, calculate correlation functions

$$\langle X \rangle = \frac{\int D\overline{\psi} D\psi dU X e^{-S}}{\int D\overline{\psi} D\psi dU e^{-S}}$$

• $X = O^{\dagger}(\mathbf{x}, t) O(\mathbf{0}, 0)$, operator O encodes quantum numbers

- Lattice action: $S=S_{\rm g}+S_{\rm f}$
- Wilson gauge action: $\beta \sum_p \left(1 \Re {\rm tr} \, {\it U}(p) \right)$
- Wilson (Dirac) fermion action: $S_{\rm f}^{\rm Dirac} = \sum_{x,y} \overline{\psi}(x) D(x,y) \psi(y)$
 - Massive Dirac operator:

$$\delta_{x,y} - \frac{\kappa}{2} \left[(1 - \gamma_{\mu}) U_{\mu}(x) \delta_{y,x+\mu} + (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(x-\mu) \delta_{y,x-\mu} \right]$$

• For observables, calculate correlation functions

$$\langle X \rangle = \frac{\int D \overline{\psi} D \psi \, dU X e^{-S}}{\int D \overline{\psi} D \psi \, dU e^{-S}}$$

- $X = O^{\dagger}(\mathbf{x}, t) O(\mathbf{0}, 0)$, operator O encodes quantum numbers
- $\lim_{t\to\infty} \langle X \rangle \sim e^{-mt}$

• Majorana mesons:
$$O(\mathbf{x}, t) = \overline{\psi}_{Mi} \Gamma \psi_{Mj} = O_{ij}(\Gamma)$$
, $i, j \in \{+, -\}$

- Majorana mesons: $O(\mathbf{x}, t) = \overline{\psi}_{Mi} \Gamma \psi_{Mj} = O_{ij}(\Gamma)$, $i, j \in \{+, -\}$
- Reexpress these in Dirac form:

$$O_{\pm\mp}(\Gamma) = \begin{cases} \frac{1}{4i} \left(\psi^{\mathrm{T}} C \Gamma \psi - \overline{\psi} \Gamma C \overline{\psi}^{\mathrm{T}} \right) & \Gamma = \mathbb{1}, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ \pm \frac{1}{2i} \overline{\psi} \Gamma \psi & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma_{5} \gamma \end{cases}$$
$$O_{\pm\pm}(\Gamma) = \begin{cases} \frac{1}{4} \left(2 \overline{\psi} \Gamma \psi \pm \psi^{\mathrm{T}} C \Gamma \psi \pm \overline{\psi} \Gamma C \overline{\psi}^{\mathrm{T}} \right) & \Gamma = \mathbb{1}, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ 0 & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma, \gamma_{0} \gamma_{5} \gamma \end{cases}$$

- Majorana mesons: $O(\mathbf{x}, t) = \overline{\psi}_{Mi} \Gamma \psi_{Mj} = O_{ij}(\Gamma)$, $i, j \in \{+, -\}$
- Reexpress these in Dirac form:

$$O_{\pm\mp}(\Gamma) = \begin{cases} \frac{1}{4i} \left(\psi^{\mathrm{T}} C \Gamma \psi - \overline{\psi} \Gamma C \overline{\psi}^{\mathrm{T}} \right) & \Gamma = \mathbb{1}, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ \pm \frac{1}{2i} \overline{\psi} \Gamma \psi & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma_{5} \gamma \end{cases}$$
$$O_{\pm\pm}(\Gamma) = \begin{cases} \frac{1}{4} \left(2 \overline{\psi} \Gamma \psi \pm \psi^{\mathrm{T}} C \Gamma \psi \pm \overline{\psi} \Gamma C \overline{\psi}^{\mathrm{T}} \right) & \Gamma = \mathbb{1}, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ 0 & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma, \gamma_{0} \gamma_{5} \gamma \end{cases}$$

• Then take correlation functions

- Majorana mesons: $O(\mathbf{x},t) = \overline{\psi}_{Mi} \Gamma \psi_{Mj} = O_{ij}(\Gamma)$, $i,j \in \{+,-\}$
- Reexpress these in Dirac form:

$$O_{\pm\mp}(\Gamma) = \begin{cases} \frac{1}{4i} \left(\psi^{\mathrm{T}} C \Gamma \psi - \overline{\psi} \Gamma C \overline{\psi}^{\mathrm{T}} \right) & \Gamma = \mathbb{1}, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ \pm \frac{1}{2i} \overline{\psi} \Gamma \psi & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma_{5} \gamma \end{cases}$$
$$O_{\pm\pm}(\Gamma) = \begin{cases} \frac{1}{4} \left(2 \overline{\psi} \Gamma \psi \pm \psi^{\mathrm{T}} C \Gamma \psi \pm \overline{\psi} \Gamma C \overline{\psi}^{\mathrm{T}} \right) & \Gamma = \mathbb{1}, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ 0 & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma, \gamma_{0} \gamma_{5} \gamma \end{cases}$$

- Then take correlation functions; e.g. for $\Gamma \in \{\mathbb{1}, \gamma_5 \gamma_\mu, \gamma_5\}$,

$$\begin{split} \left\langle O_{+-}^{\dagger}(x) O_{+-}(0) \right\rangle \\ &= -\mathrm{tr} \overline{\Gamma} C D^{-1\mathrm{T}}(0; x) C \Gamma D^{-1}(0; x) + \mathrm{tr} (\overline{\Gamma} C)^{\mathrm{T}} D^{-1\mathrm{T}}(0; x) C \Gamma D^{-1}(0; x) \\ &- \mathrm{tr} C \overline{\Gamma} D^{-1}(x; 0) \Gamma C D^{-1\mathrm{T}}(x; 0) + \mathrm{tr} (C \overline{\Gamma})^{\mathrm{T}} D^{-1}(x; 0) \Gamma C D^{-1\mathrm{T}}(x; 0) \\ &= -\frac{1}{4} \mathrm{tr} \overline{\Gamma} D^{-1}(x; 0) \Gamma D^{-1}(0; x) \end{split}$$

Quantum numbers

Dirac bilinears	Majorana bilinears	$U(1)^P$	correlators
$ar{\psi}\gamma_0\gamma_5\psi$	$O_{++}(\gamma_0\gamma_5) + O_{}(\gamma_0\gamma_5)$	0-	singlet γ_5 , $\gamma_0\gamma_5$
$ar{\psi}\gamma_5\psi$	$O_{++}(\gamma_5) + O_{}(\gamma_5)$		
$\psi^{\mathrm{T}} C \gamma_5 \psi$	$-i(O_{++}(1) - O_{}(1) + 2iO_{+-}(1))$	2^{-} -2^{-}	triplet 1
$\psi^{\dagger} C \gamma_5 \psi^*$	$-i(O_{++}(1) - O_{}(1) - 2iO_{+-}(1))$		
$ar{\psi}\psi$	$O_{++}(1) + O_{}(1)$	0^{+}	singlet 1, γ_0
$ar\psi\gamma_0\psi$	$O_{+-}(\gamma_0)$		
$\psi^{\mathrm{T}} C \psi$	$-i(O_{++}(\gamma_5) - O_{}(\gamma_5) + 2iO_{+-}(\gamma_5))$	2^{+}	- triplet $\gamma_5, \gamma_0\gamma_5$
$\psi^{\mathrm{T}} C \gamma_0 \psi$	$-i(O_{++}(\gamma_5\gamma_0) - O_{}(\gamma_5\gamma_0) + 2iO_{+-}(\gamma_5\gamma_0))$		
$\psi^{\dagger} C \psi^{*}$	$-i(O_{++}(\gamma_5) - O_{}(\gamma_5) - 2iO_{+-}(\gamma_5))$	-2^{+}	
$\psi^{\dagger} C \gamma_0 \psi^*$	$-i(O_{++}(\gamma_5\gamma_0) - O_{}(\gamma_5\gamma_0) - 2iO_{+-}(\gamma_5\gamma_0))$		
$ar{\psi}\gamma_5oldsymbol{\gamma}\psi$	$O_{++}(\gamma_5 \boldsymbol{\gamma}) + O_{}(\gamma_5 \boldsymbol{\gamma})$	0+	singlet $\gamma_5 oldsymbol{\gamma}$, $\gamma_0 \gamma_5 oldsymbol{\gamma}$
$ar{\psi}\gamma_0\gamma_5oldsymbol{\gamma}\psi$	$O_{+-}(\gamma_0\gamma_5oldsymbol\gamma)$		
$ar{\psi}\gamma_0oldsymbol{\gamma}\psi$	$O_{+-}(\gamma_0oldsymbol\gamma)$	0-	singlet $oldsymbol{\gamma}$, $\gamma_0oldsymbol{\gamma}$
$ar{\psi}oldsymbol{\gamma}\psi$	$O_{+-}(oldsymbol{\gamma})$		
$\psi^{\mathrm{T}} C \gamma \psi$	$-i(O_{++}(\gamma_5oldsymbol\gamma) - O_{}(\gamma_5oldsymbol\gamma) + 2iO_{+-}(\gamma_5oldsymbol\gamma))$	2^{-} -2^{-}	triplet $\gamma_5 oldsymbol{\gamma}$
$\psi^{\dagger} C \gamma \psi^{*}$	$-i(O_{++}(\gamma_5oldsymbol\gamma)-O_{}(\gamma_5oldsymbol\gamma)-2iO_{+-}(\gamma_5oldsymbol\gamma))$		

• Relevant topological objects: instantons

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density:

$$Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$$

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\mathrm{T}} = \sum_i Q_{\mathrm{L}}(i)$

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $\mathit{Q}_{\mathrm{T}} = \sum_{i} \mathit{Q}_{\mathrm{L}}(i)$
- Problem: realistic gauge fields are hot and noisy

Gauge noise

(left: from Schäfer & Shuryak arXiv:hep-ph/9610451 §III.B.2)

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $\mathit{Q}_{\mathrm{T}} = \sum_{i} \mathit{Q}_{\mathrm{L}}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\mathrm{T}} = \sum_i Q_{\mathrm{L}}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
 - Minimize local action for each site

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\mathrm{T}} = \sum_i Q_{\mathrm{L}}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\mathrm{T}} = \sum_i Q_{\mathrm{L}}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons

Gauge noise

(left: from Schäfer & Shuryak arXiv:hep-ph/9610451 §III.B.2)

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\mathrm{T}} = \sum_i Q_{\mathrm{L}}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons
- Observables:

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\mathrm{T}} = \sum_i Q_{\mathrm{L}}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons
- Observables:

– Topological susceptibility $\chi_{\rm T} = \langle {\it Q}_{\rm T}^2 \rangle / {\it V}$

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} {\rm tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $\mathit{Q}_{\mathrm{T}} = \sum_{i} \mathit{Q}_{\mathrm{L}}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons
- Observables:

- Topological susceptibility $\chi_{\rm T} = \langle Q_{\rm T}^2 \rangle / V \equiv (\langle Q_{\rm T}^2 \rangle - \langle Q_{\rm T} \rangle^2) / V$

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} F^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\rm T} = \sum_i Q_{\rm L}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons
- Observables:
 - Topological susceptibility $\chi_{\rm T} = \langle Q_{\rm T}^2 \rangle / V \equiv (\langle Q_{\rm T}^2 \rangle \langle Q_{\rm T} \rangle^2) / V$ Instanton size: $Q_{\rm peak} = 6/(\pi^2 \rho^4)$

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} F^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\rm T} = \sum_i Q_{\rm L}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons
- Observables:
 - Topological susceptibility $\chi_{\rm T} = \langle Q_{\rm T}^2 \rangle / V \equiv (\langle Q_{\rm T}^2 \rangle \langle Q_{\rm T} \rangle^2) / V$ Instanton size: $Q_{\rm peak} = 6/(\pi^2 \rho^4)$
 - - Instanton size distribution

- Relevant topological objects: instantons
- Continuum topological charge: $Q = \frac{1}{32\pi^2} \int d^4x F^a_{\mu\nu} \tilde{F}^a_{\mu\nu}$
- Define lattice topological charge density: $Q_{\rm L}(i) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left\{ U_{\mu\nu}(i) U_{\rho\sigma}(i) \right\}$
- Then total topological charge: $Q_{\rm T} = \sum_i Q_{\rm L}(i)$
- Problem: realistic gauge fields are hot and noisy
- (Partial) Solution: Cool gauge fields
 - Minimize local action for each site
 - Local fluctuations smoothed out
 - Excessive cooling risks shrinking instantons
- Observables:
 - Topological susceptibility $\chi_{\rm T} = \langle Q_{\rm T}^2 \rangle / V \equiv (\langle Q_{\rm T}^2 \rangle \langle Q_{\rm T} \rangle^2) / V$ Instanton size: $Q_{\rm peak} = 6/(\pi^2 \rho^4)$
 - - Instanton size distribution
 - Average instanton size (correcting for cut-off)

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$

Phase diagram

a m

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code

Lattice parameters

Lattice		$-am_0$	$N_{\rm conf}$	Acceptance	$N_{\rm pf}$	$t_{\rm len}$	$n_{\rm steps}$	Machine
A1	16×8^{3}	1.475	2400	91.4%	1	1.0	10	SC
A2	16×8^3	1.500	2200	90.9%	1	1.0	10	SC, UL
A3	16×8^3	1.510	2400	89.8%	1	1.0	10	SC, UL
A4	16×8^3	1.510	4000	92.4%	2	1.0	8	SC
B1	24×12^3	1.475	2400	79.9%	1	1.0	10	SC, UL
B2	24×12^3	1.500	2300	78.7%	1	1.0	10	SC, UL
B3	24×12^3	1.510	4000	88.5%	2	1.0	10	SC, UL
C1	32×16^3	1.475	2100	90.6%	1	1.0	20	SC
C2	32×16^{3}	1.490	2300	90.0%	1	1.0	20	SC, UL
C3	32×16^{3}	1.510	2200	89.4%	1	1.0	20	UL
C4	32×16^3	1.510	2300	83.2%	2	4.0	45	BGP
C5	32×16^{3}	1.514	2300	89.8%	1	1.0	20	UL, BGP
C6	32×16^3	1.519	2300	81.8%	1	1.0	20	UL, BGP
C7	32×16^3	1.523	2200	88.0%	1	1.0	20	SC
D1	48×24^3	1.510	1534	80.5%	2	4.0	65	BGP
D2	48×24^{3}	1.523	2168	91.4%	1	1.0	40	BGP

Finite-volume study

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0⁺⁺ glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)

Spectrum

Spectral ratios

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)
- Spectral ratios roughly constant-consistent with conformality

Wilson loops

Wilson loops

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma \equiv$ Polyakov loop σ

Center symmetry

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Spectroscopy at 16×8^3 , 24×12^3 , 32×16^3 , 48×24^3 ; $\beta = 2.05, -1.523 \le am \le -1.475$.
 - RHMC: HiRep; observables: HiRep + Münster code
- 16×8^3 & lighter 32×16^3 data finite-volume afflicted; others OK.
- Spectral observables
 - PCAC mass
 - Meson masses
 - 0^{++} glueball mass
 - Spin- $\frac{1}{2}$ state (~gluion-glue)
 - Fundamental string tension (Polyakov loops)
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma~\equiv$ Polyakov loop σ
- Center unbroken

Mass anomalous dimension

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC

Mass anomalous dimension

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates

Mass anomalous dimension

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\sf PCAC})^{rac{1}{1+\gamma_*}}$

γ_* inspection fit

 $\gamma_* = 0.0$

γ_* inspection fit

 $\gamma_* = 0.1$

Mass anomalous dimension

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\rm PCAC})^{rac{1}{1+\gamma_*}}$
 - $\Rightarrow 0.9 \lesssim \gamma_* \lesssim 1.1$

Mass anomalous dimension

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\rm PCAC})^{\frac{1}{1+\gamma_*}}$ - $\Rightarrow 0.9 \lesssim \gamma_* \lesssim 1.1$
- Fitting the Dirac mode number per unit volume $\overline{\nu}(\Omega)$

$$a^{-4}\overline{\nu}(\Omega) \approx a^{-4}\nu_0(m) + A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$$

from Patella [arxiv:1204.4432]

Mode number results

Mode number results

γ_* mode number fit

γ_* mode number fit

 $0.100309 \downarrow - 0.113707 + - 0.12884 \downarrow - 0.14301 \downarrow - - 0.165855 \downarrow - 0.187747 + - 0.21824 \downarrow - 0.212120 \downarrow - - 0.21473 \downarrow - 0.218747 \downarrow - 0.21824 \downarrow - 0.218747 \downarrow - 0.2187747 \downarrow - 0.2187747 \downarrow - 0.$

γ_* mode number fit

Mass anomalous dimension

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\rm PCAC})^{\frac{1}{1+\gamma_*}}$ - $\Rightarrow 0.9 \lesssim \gamma_* \lesssim 1.1$
- Fitting the Dirac mode number per unit volume $\overline{\nu}(\Omega)$

$$a^{-4}\overline{\nu}(\Omega) \approx a^{-4}\nu_0(m) + A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$$

from Patella [arxiv:1204.4432]

 $- \Rightarrow 0.9 \lesssim \gamma_* \lesssim 0.95$

• Theories considered:

- Theories considered:
 - Pure gauge $\mathrm{SU}(2)$

- Theories considered:
 - Pure gauge SU(2)
 - SU(2) + 1 flavour (as above)

- Theories considered:
 - Pure gauge SU(2)
 - SU(2) + 1 flavour (as above)
 - SU(2) + 2 flavours (MWT-see arXiv:1104.4301 etc.)

- Theories considered:
 - Pure gauge SU(2)
 - SU(2) + 1 flavour (as above)
 - SU(2) + 2 flavours (MWT-see arXiv:1104.4301 etc.)
- Expectations:

- Theories considered:
 - Pure gauge SU(2)
 - SU(2) + 1 flavour (as above)
 - SU(2) + 2 flavours (MWT-see arXiv:1104.4301 etc.)
- Expectations:
 - Conformal: Same as pure gauge

- Theories considered:
 - Pure gauge $\mathop{\rm SU}(2)$
 - SU(2) + 1 flavour (as above)
 - SU(2) + 2 flavours (MWT-see arXiv:1104.4301 etc.)
- Expectations:
 - Conformal: Same as pure gauge
 - Confining: Different

Topological susceptibility

Topological observables

- Theories considered:
 - Pure gauge SU(2)
 - SU(2) + 1 flavour (as above)
 - SU(2) + 2 flavours (MWT-see arXiv:1104.4301 etc.)
- Expectations:
 - Conformal: Same as pure gauge
 - Confining: Different
- Results:
 - Topological susceptibility consistent between all three

Instanton size distribution

Instanton size distribution finite-volume effects

Average instanton size

Topological observables

- Theories considered:
 - Pure gauge $\mathop{\rm SU}(2)$
 - SU(2) + 1 flavour (as above)
 - SU(2) + 2 flavours (MWT-see arXiv:1104.4301 etc.)
- Expectations:
 - Conformal: Same as pure gauge
 - Confining: Different
- Results:
 - Topological susceptibility consistent between all three
 - Instanton size distribution consistent (at larger lattices)

Conclusions:

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Topology of MWT confirms existing findings of conformality

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Topology of MWT confirms existing findings of conformality
- Small lattices show strong finite-size effects in instanton size distribution

Conclusions:

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Topology of MWT confirms existing findings of conformality
- Small lattices show strong finite-size effects in instanton size distribution

Conclusions:

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Topology of MWT confirms existing findings of conformality
- Small lattices show strong finite-size effects in instanton size distribution

Outlook:

- Higher values of β to confirm continuum limit

Conclusions:

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Topology of MWT confirms existing findings of conformality
- Small lattices show strong finite-size effects in instanton size distribution

- Higher values of β to confirm continuum limit
- Lower m (towards chiral limit)

Conclusions:

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Topology of MWT confirms existing findings of conformality
- Small lattices show strong finite-size effects in instanton size distribution

- Higher values of β to confirm continuum limit
- Lower *m* (towards chiral limit)
- Apply techniques to other theories; e.g.

Conclusions:

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Topology of MWT confirms existing findings of conformality
- Small lattices show strong finite-size effects in instanton size distribution

- Higher values of β to confirm continuum limit
- Lower m (towards chiral limit)
- Apply techniques to other theories; e.g.
 - SU(3) + 2 sextet flavours

Conclusions:

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios, topology consistent with (near-)conformality
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Topology of MWT confirms existing findings of conformality
- Small lattices show strong finite-size effects in instanton size distribution

- Higher values of β to confirm continuum limit
- Lower *m* (towards chiral limit)
- Apply techniques to other theories; e.g.
 - SU(3) + 2 sextet flavours
 - SU(3) + 8, 12 fundamental flavours

ありがとうございました!

Back-up slides

Visualisation of topological charge distribution in 5D

