21cm Line and Dark Matter

Kiyotomo ICHIKI (Nagoya U.)

review part references SKA science book Bullok and Bolan-Kolchin, ARAA, 2017

seminar part is based on: Shimabukuro, Ichiki, Inoue and Yokoyama, PRD '14 Ichiki, Shimabukuro and Inoue, in progress

contents

- 1. Introduction
 - 1-1. 21cm line signal and the epoch of reionization
 - 1-2. Lambda CDM cosmology and the CDM crisis
- 2. 21cm forest
- 3. constraints on WDM from 21cm forest observation
- 4. summary

what is the 21cm line?

21cm line photons are emitted from the hyperfine structure transition of the hydrogen

because hydrogen is most abundant in the universe 21cm line is frequently used in radio astronomy

spin temperature determines relative abundance

$$\frac{n_{\text{para}}}{n_{\text{anti-para}}} = \frac{3}{1} \exp\left(-\frac{h\nu_{21}}{kT_s}\right)$$

important connection between the 21cm line and Dark Matter

 In 1970s, astronomers found not the Kepler motion, but the flat rotation curve in M31 using 21cm line (V. Rubin+,1970~)

$$v(r) = \sqrt{\frac{GM(r)}{r}} ~ \rho \propto r^{-2}$$

what is the epoch of reionization (EoR)

recombination (CMB)

- First star form (Cosmic Dawn)
- galaxies form (EoR start)
- reionization (EoR end)

large scale structure

today

EoR 21cm observation

 $T_{\rm cmb} + \delta T_b$

we observe 21cm line with CMB as background light

if $T_s > T_{\rm cmb}$	emission
if $T_s < T_{\rm cmb}$	absorption

Because it is a line, we can observe the universe at each redshift

redshift	λ	u
0	21cm	1420MHz
9	2.1 m	142MHz
19	4.2 m	71MHz

what determines spin temperature ?

- spin temperature (Ts) is affected by CMB (Tcmb), gas temperature (Tk), and by Lyα photons (Tα) (WF effect)
- Wouthuysen Field effect: HI in the grand state is excited into P state by Lyα, then deexcite into the spin-parallel S state (Ly α transition probability >> 21cm transition probability)
- Lyα photons frequently interact with HI gas, so approximately Tα=Tk

WF effect (or Lyα pumping)

 2_2P_3

 $2_0 P_1$

 $T_s^{-1} = (T_{\rm cmb}^{-1} + x_c T_K^{-1} + x_\alpha T_\alpha^{-1}) / ((1 + x_c + x_\alpha))$

 $1 {}_{1}S_{\frac{1}{2}} - 1 {}_{0}S_{1} -$

physics determining spin temperature

 $(1 + x_c + x_\alpha)T_s^{-1} = T_\gamma^{-1} + x_cT_K^{-1} + x_\alpha T_\alpha^{-1}$

How does the EoR look like in 21cm observation?

today

frequency spectrum will reveal the thermal history of the universe

current situation: latest results from EDGES

some exotic models (such as no heating models) begin to be ruled out (Monsalve et al., ApJ, '17)

https://www.haystack.mit.edu/ast/arrays/Edges/

LETTER cosmological 21cm detected !?

doi:10.1038/nature25792

An absorption profile centred at 78 megahertz in the sky-averaged spectrum

Judd D. Bowman¹, Alan E. E. Rogers², Raul A. Monsalve^{1,3,4}, Thomas J. Mozdzen¹ & Nivedita Mahesh¹

foreground

 current and future experiment will have enough sensitivity to detect cosmological 21cm signal, but foreground is a sever problem

foreground

 current and future experiment will have enough sensitivity to detect cosmological 21cm signal, but foreground is a sever problem

6 orders of magnitude

contents

- 1. Introduction
 - 1-1. 21cm line signal and the epoch of reionization
 - 1-2. Lambda CDM cosmology and the CDM crisis
- 2. 21cm forest
- 3. constraints on WDM from 21cm forest observation
- 4. summary

The **ACDM** model

 $\vec{ heta} = (h, \Omega_b h^2, \Omega_c h^2, A_s, n_s, \tau)$ only 6 parameters

- Geometry (size) of the universe
 - Hubble parameter... *h*
- Initial conditions
 - Baryon and CDM densities... $\Omega_{\rm b}h^2$ $\Omega_{\rm c}h^2$
 - Density fluctuations... $P(k) = A_s (k/k_0)^{n_s-1}$
- astrophysics
 - Thomson optical depth... au

The **ACDM** model

Planck Cosmological Params

Hubble Parameter

$$H_0 = 67.81 \pm 0.92$$
 [km/s/Mpc]

3 sigma away from direct measurements.

Initial Power Spectrum $P(k) = 2.198 \times 10^{-9} \left(\frac{k}{k_0}\right)^{0.9655}$

Consistent with inflation theory

Optical Depth $\tau = 0.055 \pm 0.009$

Consistent with astronomy based observations. the universe was reionized when its size was 1/9 of the present one. 23

the CDM model is excellent on large scales

(Hlozek+, ApJ, '12)

CDM crisis (1) missing satellite problem

Milky way satellites

CDM simulation

only \sim 50 satellite gals down to 300M_sun

 $\sim 1000 \text{ sub-halos}$

CDM crisis (2) core cusp problem

rotation curves of dwarf, dark matter dominated galaxies

dark matter simulations predict $\rho \propto r^{-1} \ ({\rm cusp})$

but observations show

 $\rho \propto r^0 \ (\text{core})$

(Bullok&Boylan-Kolchin 1707.04256)

CDM crisis (3) too big to fail problem

relations between Vcirc and radius from N-body simulation compared with the Milky-Way satellites

$M_{\rm vir}~({ m M}_{\bigodot})$	N_{20}	N ₃₀	N ₄₀	N_{50}
2.19×10^{12}	105	33	15	6
9.54×10^{11}	60	16	7	1
1.99×10^{12}	81	28	12	4
2.19×10^{12}	111	31	15	10
1.39×10^{12}	85	25	11	3
1.32×10^{12}	99	29	12	5
	$M_{\rm vir} (M_{\odot})$ 2.19 × 10 ¹² 9.54 × 10 ¹¹ 1.99 × 10 ¹² 2.19 × 10 ¹² 1.39 × 10 ¹² 1.32 × 10 ¹²	$M_{\rm vir} (\rm M_{\odot})$ N_{20} 2.19×10^{12} 105 9.54×10^{11} 60 1.99×10^{12} 81 2.19×10^{12} 111 1.39×10^{12} 85 1.32×10^{12} 99	$M_{\rm vir} (\rm M_{\odot})$ N_{20} N_{30} 2.19×10^{12} 10533 9.54×10^{11} 6016 1.99×10^{12} 8128 2.19×10^{12} 11131 1.39×10^{12} 8525 1.32×10^{12} 9929	$M_{\rm vir} (\rm M_{\odot})$ N_{20} N_{30} N_{40} 2.19×10^{12} 1053315 9.54×10^{11} 60167 1.99×10^{12} 812812 2.19×10^{12} 1113115 1.39×10^{12} 852511 1.32×10^{12} 992912

Milky Way size

there should be a number of more massive sub-halos around MW that are believed to be too big to have failed to form stars

(Boylan-Kolchin, Bullock, Kaplinghat, MNRAS, '12)

• solution 1: astrophysical feedback (see, e.g., Bullok&Boylan-Kolchin 1707.04256)

Kinetic energy from SN destroies the central structure, forming the core

less star formation efficiency

in smaller scale halos decreases the number of satellite-size galaxies compared with that of dark matter satellite halos

solution 2: modifying the nature of DM

WDM erase small scale structure, solving the missing satellite problem

WDM delay structure formation and decrease density of a halo, solving the too big too fail problem

WDM with mass of $\approx 2 \, \mathrm{keV}$ may explain observations

(Bozek+, MNRAS, '15; Anderhalden+, JCAP, '12)

contents

- 1. Introduction
 - 1-1. 21cm line signal and the epoch of reionization
 - 1-2. Lambda CDM cosmology and the CDM crisis
- 2. 21cm forest
- 3. constraints on WDM from 21cm forest observation
- 4. summary

21cm forest (e.g., Carilli, Gnedin, Owen, ApJ, '02)

Bright radio source (QSO, GRB etc.)

Hydrogen cloud (minihalos)

absorption linesat (redshifted)21cm wavelength

what are minihalos ?

 small collapsed objects where atomic cooling is <u>not</u> <u>effective</u>

21cm forest observation

- pros
 - small optical depth, thus one can probe deep (z>10) universe, compared to Lyα
 - less foreground problem (compared to HI tomography)
 because bright background QSOs are used
- cons
 - the number of QSOs is highly uncertain
 - sensitive to the IGM temperature

our model: DM profile

Assumptions:

1) DM density profile of mini-halo is given by the NFW profile

(Navarro, Frenk, White, ApJ, '96)

$$\rho(r) = \frac{\rho_{\rm m} (1+z)^3 \delta_c}{c(r/r_{\rm vir})(1+c(r/r_{\rm vir}))^2}$$

$$c = \frac{9}{1+z} \left(\frac{M}{1.5 \times 10^{13} h^{-1} M_{\odot}}\right)^{-0.13}$$
 (Bullok+, MNRAS, '01)

$$r_{\rm vir} = 0.784 \left(\frac{M}{10^8 h^{-1} M_{\odot}}\right)^{1/3} \left[\frac{\Omega_m}{\Omega_m^z} \frac{\Delta_c}{18\pi^2}\right]^{-1/3} \\ \times \left(\frac{1+z}{10}\right)^{-1} h^{-1} [\rm kpc]$$

minihalo

our model: gas profile

Assumptions:

2) If one assumes that gas density profile of mini-halo is determined via hydrostatic equilibrium, the profile is analytically described by the escape velocity (gravitational potential) (Makino,Sasaki,Suto, ApJ, '98)

$$\rho_{\rm gas}(r) = \rho_{\rm gas}(0) \exp\left(-\frac{m_p}{2kT_{\rm vir}} \left[v_{\rm e}^2(0) - v_{\rm e}^2(r)\right]\right)$$

$$r$$

$$r_{\rm vir}$$
minihalo

visual description of density profile of minihalo

simple model (optical depth)

optical depth of a minihalo is given by an integration of the number density of HI along the line of sight:

simple model (optical depth)

Smaller mass halos and smaller impact parameters give larger optical depth

simple model (line abundance)

 mini-halo line abundance that has an optical depth larger than τ is given by

virial mass corresponding to T_{vir} =10⁴ K

maximum impact parameter that gives an optical depth greater than $\, \tau \,$

$$\frac{dN}{dz}(>\tau) = \frac{dr}{dz} \int_{M_{\min}}^{M_{\max}} dM \frac{dN}{dM} (M) \pi x_{\tau}^{2}(M)$$
Jeans mass to T=T_{IGM}(Z) mass function of DM halo

Strongly depends on cosmological models and warm dark matter mass

absorption line abundance

Smaller mass halos give dominant contribution to the line abundance

target mass range of 21cm forest:

 $10^4 M_\odot \lesssim M \lesssim 10^6 M_\odot$

we want to see 'clean' universe (z>10)

less abundant at higher z

Shimabukuro, KI, Inoue, Yokoyama, PRD, '14

contents

- 1. Introduction
 - 1-1. 21cm line signal and the epoch of reionization
 - 1-2. Lambda CDM cosmology and the CDM crisis
- 2. 21cm forest
- 3. constraints on WDM from 21cm forest observation
- 4. summary

mass function of WDM cosmology

free streaming scale

$$\lambda_{\rm fs}^{\rm WDM} = 0.11 \,{\rm Mpc} \left(\frac{\Omega_{\rm WDM} h^2}{0.15}\right)^{\frac{1}{3}} \left(\frac{m_{\rm WDM}}{\rm kev}\right)^{-\frac{4}{3}}$$
$$\lambda_{\rm fs}^{\rm CDM} \approx 0$$

mass function is approximately modeled as

 $\frac{dn}{dM} = \frac{1}{2} \left\{ 1 + \left[\frac{\log_{10}(M/M_{\rm fs})}{0.5} \right] \right\} \left(\frac{dn}{dM} \right)_{\rm PS}$

with the WDM power spectrum (fitting formula) $P_{\text{WDM}}(k) = P_{\text{CDM}}(k) \left\{ \left[1 + (\alpha k)^{2\mu} \right]^{-5/\mu} \right\}^2$

$$\alpha = 0.049 \left(\frac{m_{WDM}}{\text{kev}}\right)^{-1.11} \left(\frac{\Omega_{WDM}}{0.25}\right)^{0.15} \left(\frac{h}{0.7}\right)^{1.22} h^{-1} \text{Mpc}$$

$$\mu = 1.12$$

(M. Viel, et al., PRD, '05, Smith & Markovic, PRD, '11)

new probe to m_{wDM}

Fisher analysis

- Fisher matrix: $F_{ij} \equiv -\frac{\partial^2 \ln \mathcal{L}}{\partial \theta_i \partial \theta_j}|_{\theta = \theta_{fid}}$
- If your likelihood function for parameters θ_i is Gaussian $\ln \mathcal{L} = -\frac{1}{2} \theta_i C_{ij}^{-1} \theta_j$

(covariance matrix)⁻¹ ~ (error)⁻¹

• the fisher matrix is equal to the inverse of the covariance

$$F_{ij} = C_{ij}^{-1}$$

Fisher matrix is useful in estimating errors of model parameters given the likelihood function, and therefore widely used in considering observational strategies.

Fisher analysis

• We assume that the number of absorption lines obeys Poisson statistic and hence the likelihood function:

$$\mathcal{L}(n,\bar{n}) = \bar{n}^n e^{-\bar{n}}/n!$$

- n: total number of absorption lines
- $ar{n}$: its expectation value in the fiducial model

Result (z=10)

·because strong degeneracy is expected with $\,\Omega_m h^2\,$, we put a weak prior $\,\Delta\Omega_m h^2=0.002$

(Ichiki, Shimabukuro, Inoue, in progress)

WDM constraint summary

(Ichiki, Shimabukuro, Inoue, in progress)

WDM (sterile neutrino) constraints

WDM (sterile neutrino) constraints

Challenges: How many radio-loud objects can we expect ?

• QSOs are observed even at high-z universe (z=7.54). We do not know whether they are radio loud. We extrapolate their number abundance assuming the radio loud/quit ratio at lower redshift.

Ciardi et al., SKA science book, 2015

Challenges: How many radio-loud objects can we expect ?

• QSOs are observed even at high-z universe (z=7.54)

Banados+, Nature, '17

Challenges: IGM temperature ?

• the number of absorption lines (mini-halos) highly depends on the global IGM temperature

Challenges: IGM temperature ?

• (good) news from Planck results (XLVII), constraints on reionization from Planck-HFI (polarization) and ACT+SPT (kSZ)

Challenges: IGM temperature ?

 (good) news from Planck results (XLVII), constraints on reionization from Planck-HFI (polarization) and ACT+SPT (kSZ)

the IGM might be cooler than expected at high z (say, z>12)

higher redshift ?

summary of this seminar

- cosmological 21cm observation will give us information how the universe is reionized around z=9
- The CDM model is successful on largest scales, but still needs to be tested on galactic scale, and the WDM model may solve the CDM crisis on that scale.
- 21cm forest is very sensitive to WDM mass
- 6 keV < m_{wdm} < 50 keV WDM mass can be tested by future 21cm forest observations