Indirect Searches for Dark Matter with Gamma rays and Other Messengers

Hiroyasu Tajima Institute for Space-Earth Environmental Research, Nagoya University

February 28 – March 2, 2018 KMI School on "Dark Matter" Nagoya University, Japan

- * Introduction
- * Dark matter searches with charged cosmic rays
- * Dark matter searches with GeV gamma rays
 - * "Galactic Center Excess"
 - * Dwarf Spheroidal
- * Dark matter search with TeV gamma rays
- * Future prospects

* What we know

- * Dark matter exists
 - Orbital velocities of stars in galaxies, velocity dispersions of galaxies in clusters, temperature distribution of hot gas in clusters of galaxies and gravitational lensing
- * Non-relativistic ("cold dark matter")
- * ~6 x ordinary matter
- * What we don't know
 - * What is dark matter?
 - MACHO: constrained by micro-lensing
 - WIMP
 - Weak scale new particles happen to have suitable mass and cross-section

WIMP miracle

• Axion

neutrino ν

neutralino

-5

Roszkowski, Pramana 62 (2004) 389

WIMP

* Accelerator production

- Exhaustive searches can be made for specific mode and mass range as far as WIMP has coupling to quarks
- * Mass reach is heavily model dependent
- * Direct detection of WIMP scattering
 - * Wide mass coverage
 - * Sensitivity limit due to neutrino backgrounds
- * Indirect detection of WIMP annihilation
 - * "Direct" constraints on annihilation cross section
 - * Sensitivity is less model dependent
 - * Large systematics due to astrophysics

* Those approaches are complimentary

* Different model dependences and sensitivity phase space

KMI School on "Dark Matter", FEB 28 – MAR 2 2018, Nagoya University

 Ω_{x}

 WIMP is in equilibrium between pair creation and annihilation in early Universe

Thermal Relic Dark Matter (WIMP)

- * Pair creation stops when thermal energy is not sufficient
- Annihilation continues and WIMP density become too low compared with annihilation cross section
 - WIMP density and annihilation cross section is anti-correlated
- * Current dark matter density (Ω_{DM}) constrains annihilation cross section to ~3x10⁻²⁶ cm²/s
- Indirect searches are sensitive to WIMP annihilation cross section

 10^{3}

- * Dark Matter Searches with Charged Cosmic Rays
 - Anti-particles are in general secondary particles from interactions of cosmic rays with interstellar gas
 - * Dark matter annihilations and decays can produce more or less equal amount of particles and anti-particles in energies close to DM mass
 - Anti-particle spectra from DM tend to have bump structures which tend to be different from spectra for secondary particles Cosmic ray
 - * Weak constraints on annihilation cross section

- Positrons can be produced directly by DM interactions (annihilations and/ or decays)
 - * Positrons can also be produced via π^+ , τ^+ and μ^+ from DM interactions
 - * Positron spectra depend on mass and properties of DM
- * Pulsars can also produce positrons with bump spectra
 - Spectra depends on number of nearby (<500 pc) pulsars (in particular, at high energy end) and spectra at the origins
 - * Dipole anisotropy is expected for nearby pulsars

Indirect Searches for Dark Matter with Gamma rays and Other Messengers KMI School on "Dark Matter", FEB 28 –MAR 2 2018, Nagoya University

 sr^{-1}

°-1

ຸ ເຊິ

B

 $dN_{e^+}/dE_{e^+} E_{e^+}^3$ (GeV²

JCAP 0901:025,2009

- Positrons can be produced directly by DM interactions (annihilations and/ or decays)
 - * Positrons can also be produced via π^+ , τ^+ and μ^+ from DM interactions
 - * Positron spectra depend on mass and properties of DM
- * Pulsars can also produce positrons with bump spectra
 - Spectra depends on number of nearby (<500 pc) pulsars (in particular, at high energy end) and spectra at the origins
 - * Dipole anisotropy is expected for nearby pulsars

ຸ 2000

E

JCAP 0901:025,2009

- * Positrons can be produced directly by DM interactions (annihilations and/ or decays)
 - * Positrons can also be produced via π^+ , τ^+ and μ^+ from DM interactions
 - * Positron spectra depend on mass and properties of DM
- * Pulsars can also produce positrons with bump spectra
 - * Spectra depends on number of nearby (<500 pc) pulsars (in particular, at high energy end) and spectra at the origins
 - * Dipole anisotropy is expected for nearby pulsars

- * Dominant background is cosmic-ray interactions
 - * No major background expected from astronomical sources
 - * Anti-proton backgrounds are greater than DM signals in general
 - Uncertainties of anti-proton backgrounds can mask DM signals
 - * Anti-deuteron signal can be clearly separated from secondary backgrounds

- * Dominant background is cosmic-ray interactions
 - * No major background expected from astronomical sources
 - * Anti-proton backgrounds are greater than DM signals in general
 - Uncertainties of anti-proton backgrounds can mask DM signals
 - * Anti-deuteron signal can be clearly separated from secondary backgrounds

- AMS-02 observed positron spectrum which may peak at several 100 GeV
 AMS suggested WIMP hypothesis
- AMS-02 also observed anti-proton spectrum which is similar to proton and positron spectra, but different from electron spectrum

*

- AMS-02 observed positron spectrum which may peak at several 100 GeV
 AMS suggested WIMP hypothesis
- AMS-02 also observed anti-proton spectrum which is similar to proton and positron spectra, but different from electron spectrum

- AMS-02 observed positron spectrum which may peak at several 100 GeV
 AMS suggested WIMP hypothesis
- AMS-02 also observed anti-proton spectrum which is similar to proton and positron spectra, but different from electron spectrum

AMS Press Release December 8th, 2016

*

- DAMPE measurement of electron+positron spectrum shows clear break around 1 TeV
 - * Sharp peak at 1.4 TeV is 2σ level
 - * Consistent with Fermi-LAT + H.E.S.S. spectra

- *p*/*p*, position, electron+positron spectra can be interpreted by pulsar and DM models
 - * χ²/d.o.f = 255/298 for pulsar model
 - * χ²/d.o.f = 277/296 for DM model

- $\cdot \overline{p}/p$, position, electron+positron spectra can be interpreted by pulsar and **DM models**
 - * χ²/d.o.f = 255/298 for pulsar model

KMI School on "Dark Matter", FEB 28 – MAR 2 2018, Nagoya University

* x²/d.o.f = 277/296 for DM model

- *p*/*p*, position, electron+positron spectra can be interpreted by pulsar and DM models
 - * χ²/d.o.f = 255/298 for pulsar model
 - * χ²/d.o.f = 277/296 for DM model

Dark Matter Searches with Gamma Rays

Dark Matter Searches with Gamma Rays

Dark Matter Searches with Gamma Rays

Fermi "Galactic Center Excess"

KMI School on "Dark Matter", FEB 28 –MAR 2 2018, Nagoya University

Fermi "Galactic Center Excess"

KMI School on "Dark Matter", FEB 28 – MAR 2 2018, Nagoya University

Fermi "Galactic Center Excess"

Publication	Data set	Galactic diffuse model	m _{DM} (GeV/ <i>c</i> ²) (for bb pair)	<σv> (10 ⁻²⁶ cm ³ /s) (for bb pair)
2014PhRvD. .89f3515M	Pass 7, 45 months, Ibl<3.5°, Iℓl<3.5°	Fermi/LAT p7v6 + HI gas (20 cm)	29±9	2.0±0.6
2014PhRvD. .90b3526A	Pass 7, 57 months, Ibl<3.5°, Iℓl<3.5°	HI gas (20 cm) + "new diffuse"	39.4±7.9	5.1±2.1
2016PDU 121D	Pass 7, 64 months, 1 <ibl<20°, iℓi<20°<="" td=""><td>Fermi/LAT <mark>p6v11</mark> + Fermi Bubbles</td><td>~35.5</td><td>~3.0</td></ibl<20°,>	Fermi/LAT <mark>p6v11</mark> + Fermi Bubbles	~35.5	~3.0
	Pass 7, 64 months, Ibl<5°, Iℓl<5°	Fermi/LAT p7v6 + HI gas (20 cm)	35.5±4.5	3.0±0.5
2015JCAP 03038C	Pass 7, 64 months, 2 <ibi<20°, iℓi<20°<="" td=""><td>HI&H₂ gas + Inverse Compton</td><td>49±6</td><td>1.8±0.3</td></ibi<20°,>	HI&H ₂ gas + Inverse Compton	49±6	1.8±0.3

* Fermi/LAT diffuse model is NOT intended for diffuse analysis

- * "All the released diffuse models were derived for point sources and compact extended sources studies only, and are not suited for studies of extended sources and/or large-scale diffuse emissions."
- * "Each diffuse model should be used with the corresponding Event Selection and IRF." Acero, F. et al. 2016, ApJS, 223, 26

- Most analyses use wrong Galactic diffuse models
 - * Some authors are aware of caveat from the LAT team
- * Uncertainties in cosmic-ray propagation in the Galprop model
 - * Assumptions
 - Homogeneity and isotropy of cosmic-ray diffusion and re-acceleration
 - Radial symmetry of cosmic-ray source distribution: ignore spiral arms
 - Same spatial distribution of hadronic and leptonic cosmic-ray sources
- * Unknown contributions from undetected gamma-ray sources
 - * Spectrum of Calore+ is not necessarily compatible with dark matter spectrum
 - slow rise below the peak
 - no clear cutoff above 10 GeV

* Excess is not limited to Galactic Center

- * Detailed modeling of Galactic diffuse emissions
 - * CR interactions with interstellar medium
 - * CR electron interactions (bremsstrahlung, Compton up-scattering)
 - * Fermi bubble at low galactic latitude
- * GeV excess at Galactic center region is statistically significant
 - * GCE spectrum vary by a factor of 3 at ~ a few GeV
 - * Fermi bubble is major cause of uncertainties
 - * GCE shape is not symmetric
 - * Similar excess can be found outside
 - of Galactic center region

- * Detailed modeling of Galactic diffuse emissions
 - * CR interactions with interstellar medium
 - * CR electron interactions (bremsstrahlung, Compton up-scattering)
 - * Fermi bubble at low galactic latitude
- * GeV excess at Galactic center region is statistically significant
 - * GCE spectrum vary by a factor of 3 at ~ a few GeV
 - * Fermi bubble is major cause of uncertainties
 - * GCE shape is not symmetric
 - * Similar excess can be found outside of Galactic center region

- Detailed modeling of Galactic diffuse emissions
 - * CR interactions with interstellar medium
 - * CR electron interactions (bremsstrahlung, Compton up-scattering)
 - * Fermi bubble at low galactic latitude
- * GeV excess at Galactic center region is statistically significant
 - * GCE spectrum vary by a factor of 3 at ~ a few GeV
 - * Fermi bubble is major cause of uncertainties
 - * GCE shape is not symmetric
 - * Similar excess can be found outside of Galactic center region

- * Detailed modeling of Galactic diffuse emissions
 - * CR interactions with interstellar medium
 - * CR electron interactions (bremsstrahlung, Compton up-scattering)
 - * Fermi bubble at low galactic latitude
- * GeV excess at Galactic center region is statistically significant
 - * GCE spectrum vary by a factor of 3 at ~ a few GeV
 - * Fermi bubble is major cause of uncertainties
 - * GCE shape is not symmetric
 - * Similar excess can be found outside of Galactic center region

- * Detailed modeling of Galactic diffuse emissions
 - * CR interactions with interstellar medium
 - * CR electron interactions (bremsstrahlung, Compton up-scattering)
 - * Fermi bubble at low galactic latitude
- * GeV excess at Galactic center region is statistically significant
 - * GCE spectrum vary by a factor of 3 at ~ a few GeV
 - * Fermi bubble is major cause of uncertainties
 - * GCE shape is not symmetric
 - * Similar excess can be found outside of Galactic center region

- * Many dwarf spheroidal galaxies (dSph) around our Galaxy
 - dSphs are known to have large dark matter fraction (~100%)
 - * Negligible gamma-ray backgrounds from ordinary matter (few stars)

- * 15 dwarf spheroidals (dSphs) with 6 years of Fermi-LAT data
 * Selected based on distance, matter/light (M/L) ratio
- * New "pass 8" data set: >20% more acceptance, ~10% more FOV
- * Exclude up to ~80 GeV/ c^2 in $\tau^+\tau^-$, ~100 GeV/ c^2 in *bb* (and *uu*)

- * 15 dwarf spheroidals (dSphs) with 6 years of Fermi-LAT data
 * Selected based on distance, matter/light (M/L) ratio
- * New "pass 8" data set: >20% more acceptance, ~10% more FOV
- * Exclude up to ~80 GeV/ c^2 in $\tau^+\tau^-$, ~100 GeV/ c^2 in bb (and uu)

- * 45 dSphs with 6 years of Fermi-LAT data
 - * 28 kinematically confirmed and 17 recently discovered dSphs
- * No significant WIMP signal observed

ApJ 834 (2017) 110

ApJ 834 (2017) 110

- * 45 dSphs with 6 years of Fermi-LAT data
 - * 28 kinematically confirmed and 17 recently discovered dSphs
- No significant WIMP signal observed

- * 45 dSphs with 6 years of Fermi-LAT data
 - * 28 kinematically confirmed and 17 recently discovered dSphs
- * No significant WIMP signal observed

* Test statistic (TS=-2[lnL-lnL0]) for each dSph as a function of DM mass show no coherent peak at a certain DM mass

* 4 dSphs are inconsistent with null at 97.5% C.L.

- Combined TS with proper weighting by J-factors still has a peak (J-factor ∝ expected # of annihilation)
 - * This structure is reflected into the U.L. on the annihilation cross section

* Test statistic (TS=-2[lnL-lnL0]) for each dSph as a function of DM mass show no coherent peak at a certain DM mass

* 4 dSphs are inconsistent with null at 97.5% C.L.

- Combined TS with proper weighting by J-factors still has a peak (J-factor ∝ expected # of annihilation)
 - * This structure is reflected into the U.L. on the annihilation cross section

* Test statistic (TS=-2[InL-InL0]) for each dSph as a function of DM mass show no coherent peak at a certain DM mass

* 4 dSphs are inconsistent with null at 97.5% C.L.

- Combined TS with proper weighting by J-factors still has a peak (J-factor ∝ expected # of annihilation)
 - * This structure is reflected into the U.L. on the annihilation cross section

* Test statistic (TS=-2[lnL-lnL0]) for each dSph as a function of DM mass show no coherent peak at a certain DM mass

* 4 dSphs are inconsistent with null at 97.5% C.L.

- Combined TS with proper weighting by J-factors still has a peak (J-factor ∝ expected # of annihilation)
 - * This structure is reflected into the U.L. on the annihilation cross section

- * H.E.S.S. Observations of Galactic center for 254 hours
 - Galactic diffuse BG in TeV band is relatively low compared with GeV band due to steep spectrum
 - * Local cosmic-ray electrons producing EM showers are dominant BG
 - * Uncertainties of DM density profile give large uncertainties

- * H.E.S.S. Observations of Galactic center for 254 hours
 - Galactic diffuse BG in TeV band is relatively low compared with GeV band due to steep spectrum
 - * Local cosmic-ray electrons producing EM showers are dominant BG
 - * Uncertainties of DM density profile give large uncertainties

Future Gamma-ray Observatory

SS

 10^{2}

10

* Cherenkov Telescope Array (CTA) * Large number of telescopes • Large collection area (x~30) • Better angular resolution (0.03°) * Optimized telescope configuration • LST: ~23 m $\phi \times 4$, ~20 GeV – 200 GeV • MST: ~12 m $\phi \times 20$, ~100 GeV – 10 TeV • SST: ~4 m $\phi \times 70$, ~5 TeV – 300 TeV * ~1000 of TeV gamma-ray sources G. Pérez, IAC, SMM

BayesFITS (2014)

 Sensitivity depends on particle produced by DM annihilation and DM annihilation cross section

BayesFITS (2014)

- * Those are dependent on DM particle model
- * Systematic errors due to CR e

- Sensitivity depends on particle produced by DM annihilation and DM annihilation cross section
 - * Those are dependent on DM particle model
- * Systematic errors due to CR electron subtraction and DM profile

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- $* \sim$ an order of magnitude improvements expected up to 10 TeV/ c^2
 - * Fermi-LAT: increased statistics and more dwarf spheroids
 - New dwarf spheroids have been discovered due to improved detection techniques
 - Improved Galactic center analysis
 - * Cherenkov telescope: better sensitivities with CTA

- Indirect search is one of complimentary approaches in dark matter studies
- Cosmic anti-particle spectra may provide information for existence of dark matter
 - Current measurements by AMS-02 and DAMPE are not sufficient to claim dark matter signature
- * Fermi-LAT "Galactic Center Excess" is intriguing, but further studies are required to draw any conclusions
- Fermi-LAT excludes thermal relic DM for the mass below 80–100 GeV/c²
 - * Excluded mass range would extend to multi-100 GeV/c² in the future with longer observations with more targets
- * CTA is a promising project to search for DM in TeV energy band
 - * Excluded mass range would extend to ~10 TeV/c²
 - Interesting mass range for prominent SUSY models
 - * CTA can access DM phase space where collider and direct searches cannot access

CTA Project Timeline

- * J-Factor is well correlated with the distance
 - * Comparison of three different method to estimate J-factors

