
KMI School, Nagoya
2018-02-28 – 2018-03-02

DarkSUSY 6
Tutorial – Part II–III

Joakim Edsjö
edsjo@fysik.su.se

With Torsten Bringmann, Paolo Gondolo, Piero Ullio and
Lars Bergström

mailto:edsjo@fysik.su.se

Follow-up of yesterday’s question on
what you want to learn

• Using DarkSUSY 
– will cover

• Non-thermal production 
– the production is not included in DS, but you
can still use it to calculate various rates

• Calculations for direct detection 
– I have added an example on this for today’s
tutorial

• Good parameter choices 
– best option is to look at paper discussing
benchmarks, providing e.g. SLHA files

• Rates from 100 TeV WIMP 
– you cannot currently do this as we cannot
run Pythia for such massive WIMPs

• How do you apply astrophysics
constraints? 
– DarkSUSY focuses on calculating rates, you
have to compare with data on your own. It is
a good idea to have an example of this
though (not in this tutorial though)

• Can we modify the basic equations, like
the Boltzmann equation? 
– you can e.g. change the degrees of freedom,
more advanced changes would require you to
change internal routines

• Calling DarkSUSY from C++?  
– you can call DarkSUSY from C++, I will look
into providing an example on how to do this
(not in the tutorial yet)

• ¯_(ツ)_/  ̄
– OK, I guess…

The tutorial (and later examples/tutorials) will be made
available on the DarkSUSY web page darksusy.org

http://darksusy.org

Outline of hands-on
1. dstest program

2. dsmain_wimp program

- MSSM

- generic WIMP

3. Writing your own programs and using 
makefiles in DarkSUSY 6

4. Using dsmain_wimp with SLHA files

5. Other example programs

6. Replaceable functions

7. Direct detection example

8. Creating a new particle physics module

}
}

Part I

Part II+III

3. Makefiles and 
writing your own code

Makefiles
• The way we choose which particle physics module to use is when we build

our main program, e.g.  
 
gfortran -o dsmain_wimp dsmain_wimp.F -lds_core.a -lds_mssm.a

• This can be made more flexible with makefiles,

dscheckmod :
 test `ls ../lib/ | grep libds_${DS_MODULE}.a` || { echo ERROR: Module $
{DS_MODULE} does not exist, or is not compiled; exit 1;}

dsmain_wimp : DS_MODULE = $(shell sed -n '1p' dsmain_wimp.driver)

dsmain_wimp : dscheckmod makefile dsmain_wimp.F
 printf "#define MODULE_CONFIG MODULE_"$(DS_MODULE)"\n" > module_compile.F
 printf "$(LIB)/libds_core_user.a\n"$(LIB)"/libds_core.a\n"$(LIB)"/libds_"$
(DS_MODULE)"_user.a\n"$(LIB)"/libds_"$(DS_MODULE)".a" > module_link.txt
 $(ADD_SCR) libds_tmp.a module_link.txt
 $(FF) $(FOPT) $(INC) $(INC_MSSM) -L$(LIB) -o dsmain_wimp dsmain_wimp.F \
 libds_tmp.a $(shell if ["x$(DS_MODULE)" = "xmssm"]; then printf "%s" " $
(AUX_LIB_MSSM)"; fi)
 rm -f module_compile.F
 rm -f module_link.txt
 rm -f libds_tmp.a

Some details of dsmain_wimp.F

• In dsmain_wimp we have code blocks of this type  
 
#if MODULE_CONFIG == MODULE_generic_wimp 
 subroutine dspmenterparameters 
 [more code for this module] 
#endif

• This is how dsmain_wimp.F performs model-specific
setup.

• We could as well have prepared one separate main
program for each particle physics module if we
preferred (the makefile is then a bit simpler as well,
see e.g. examples/aux/makefile)

Starting points for your own programs
• dsmain_wimp.F is a good starting point for your own program.

Other good starting points are the example programs in examples/
aux. If you want to use any of these as a starting point, either

- make a copy out of it

- modify examples/makefile.in
to copy-paste the lines
about dsmain_wimp.F and
modify to your liking

- run ./configure in the DS
root

- make and run

- make a copy out of it

- put it in your own private
folder

- copy examples/makefile to
your private folder and
modify it to your liking

- make in your private folder
and run your code

Option A (preferred) Option B

B) is not the best way as it will
make it harder for you to upgrade
to new DarkSUSY versions

A) keeps your own routines
separate from the DarkSUSY
routines, makes updates easier

http://makefile.in

Task: Make your own program

• Make your own program to setup an MSSM model

• Let it calculate e.g. the relic density

• Make sure it links to the correct libraries and
compiles

• Run it!

Task: Make your own program
• Make your own program to

setup an MSSM model

• Let it calculate e.g. the relic
density

• Make sure it links to the
correct libraries and compiles

• Run it!

Hints:
• Make your own folder, e.g. examples/own where you put your program
• Write your main program (e.g. by following the example on Part 1, slide 7,

see above)
• Copy examples/aux/makefile to own/makefile and setup build instructions

for your code, e.g. by copying the build lines for flxconv and replace flxconv
with your program name

• Make your program

 program myprogram
 implicit none

 include ‘dsver.h’
 real*8 oh2,xf
 integer unphys,war,ierr,iwar,nfc
 real*8 dsrdomega

 call dsinit
 call dsgive_model(500.0d0,1000.d0,300.d0,10.d0,
 & 3000.d0,0.d0,0.d0)
 call dsmodelsetup(unphys,war)
 oh2=dsrdomega(1,1,xf,ierr,iwar,nfc)
 write(*,*) ‘Relic density, omega h^2 = ‘,oh2

 end

Dropbox link: https://www.dropbox.com/s/3m8bmlky7eyzs00/myprog.f?dl=0

mu M2 MA tan(beta)

m0
Ab/m0
At/m0

https://www.dropbox.com/s/3m8bmlky7eyzs00/myprog.f?dl=0

Output

Initialization of particle physics module MSSM complete.
 Initialization of DarkSUSY complete.

 --
 FeynHiggs 2.13.0
 built on Feb 27, 2018
 H. Bahl, T. Hahn, S. Heinemeyer, W. Hollik, S. Passehr, H. Rzehak, G. Weiglein
 http://feynhiggs.de
 --
 FHHiggsCorr contains code by:
 P. Slavich et al. (2L rMSSM Higgs self-energies)
 H. Rzehak et al. (2L cMSSM asat Higgs self-energies)
 S. Passehr et al. (2L cMSSM atat Higgs self-energies)
 Relic density, omega h^2 = 4.7486651906502690E-002

Task: generic WIMP model
• Do the same exercise, i.e. write your own main program to

setup a generic WIMP model and calculate e.g. the relic density

• You can e.g. choose a generic WIMP with the following
parameters

- mass: 100 GeV

- selfconjugate=.true. (is its own antiparticle)

- annihilation cross section, 3x10-26 cm3 s-1

- annihilation channel, b b-bar, pdg code 5

- scattering cross section (SI): 10-7 pb
Hints:

• set up your makefile as in the previous example, changing module to generic_wimp
• look in src_models/generic_wimp/ini/dsgivemodel_generic_wimp how to set up the

model (a logical parameter is expressed as .true. or .false. in Fortran)

Dropbox link: https://www.dropbox.com/s/ovpm1v61j3qnf76/mygenprog.f?dl=0

https://www.dropbox.com/s/ovpm1v61j3qnf76/mygenprog.f?dl=0

Output

 *** Welcome to DarkSUSY version
 *** darksusy-6.0.0

 Initializing native DarkSUSY SM routines...
 Initialization of particle physics module generic_wimp complete.
 Initialization of DarkSUSY complete.

 Relic density, omega h^2 = 8.3169607208332816E-002

This relic density was obtained for an annihilation cross section of 3x10-26
cm3 s-1. It is a bit too low compared to the Planck measurement of
0.1193±0.0028 (2σ). [arXiv:1502.01589]

Question: Should we increase or decrease the annihilation cross section to
get closer to the Planck measurement?

1 10 100 1000

0.0001

0.001

0.01

Figure 4. Comoving number density of a WIMP in the early Universe. The dashed curves are
the actual abundance, and the solid curve is the equilibrium abundance. From [31].

Γ = nχ ⟨σAv⟩ = H), we find

(nχ

s

)

0
=

(nχ

s

)

f
≃ 100

mχmPlg
1/2
∗ ⟨σAv⟩

≃ 10− 8

(mχ/GeV)(⟨σAv⟩ /10− 27 cm3 sec− 1),

(3.3)

where the subscript f denotes the value at freezeout and the subscript 0 denotes the value
today. The current entropy density is s0 ≃ 4000 cm− 3, and the critical density today is
ρc ≃ 10− 5h2 GeV cm− 3, where h is the Hubble constant in units of 100 km sec− 1 Mpc− 1,
sothe present mass density in units of the critical density is g iven by,

Ωχh2 =
mχnχ

ρc
≃

(
3 × 10− 27 cm3 sec− 1

⟨σAv⟩

)
. (3.4)

31

Relic density
simple approach (more advanced in real life)

• We got a too low
relic density

• To get closer to
the Planck
measurement, we
need freeze-out to
occur earlier

• => We need a
lower annihilation
cross section

Comment on WIMP models

• There are in principle two distinct classes of
WIMP models:

- Concrete models based on a theoretical
framework where the WIMP is embedded in a
bigger theory, e.g. SUSY – predictive,
theoretically motivated

- Ad hoc models where one invents a WIMP with
properties that could explain some data, e.g.
inelastic dark matter, exciting DM, generic WIMP,
etc – simpler, phenomenological framework

4. Using dsmain_wimp.F with SLHA files

• For SUSY, you can use either the built in
spectrum calculator in DS (pMSSM) or
isasugra (cMSSM), interfaced in DS. These
are accessible in dsmain_wimp

• You can also use a stand-alone spectrum
calculator that outputs SLHA files and feed
these into DS

SLHA files
• SLHA files contain blocks

• Typically a spectrum calculator reads input
blocks (e.g. parameters at the GUT scale) and
returns a new SLHA file with output blocks filled
in (e.g. masses and couplings at the EW scale).

• Other codes can read the files and add new
blocks, e.g. particle decay tables

• DM codes typically read SLHA files, but does not
output new SLHA files (except for the particle
physics part of the calculation)

Example of an SLHA file
SUSY Les Houches Accord 2 - MSSM spectrum + Decays
SPheno v4.0.3
W. Porod, Comput. Phys. Commun. 153 (2003) 275-315, hep-ph/0301101;
W. Porod, F.~Staub, Comput. Phys. Commun. 183 (2012) 2458
arXiv:1104.1573 [hep-ph]
in case of problems send email to porod@physik.uni-wuerzburg.de
Created: 27.02.2018, 12:20
Block SPINFO # Program information
 1 SPheno # spectrum calculator
 2 v4.0.3 # version number

Block SPhenoINFO # SPheno specific information
 1 2 # using 2-loop RGEs
Block MODSEL # Model selection
 1 1 # mSUGRA model
Block MINPAR # Input parameters
 1 7.00000000E+01 # m0
 2 2.50000000E+02 # m12
 3 1.01113110E+01 # tanb at m_Z
 4 1.00000000E+00 # cos(phase_mu)
 5 -3.00000000E+02 # A0

Compare with data!

Rare decay calculator
(e.g. SuperIso)

Typical calculation flowchart
CMSSM with generic spectrum calculator

Choose input parameters
for cMSSM model

Calculate masses and
couplings at the EW scale
with spectrum calculator  

(e.g. with SoftSUSY)

Relic density calculator
(e.g. DarkSUSY)

SLHA file

Direct and indirect rate
calculator

(e.g. DarkSUSY)

Repeat…

Compare with data!

Rare decay calculator
(e.g. SuperIso via DarkSUSY)

Typical calculation flowchart
CMSSM with DarkSUSY w/ ISASUGA

Choose input parameters
for cMSSM model

Calculate masses and
couplings at the EW scale
with spectrum calculator  

(DarkSUSY w/ISASUGRA)

Relic density calculator
(e.g. DarkSUSY)

SLHA file  
(optional)

Direct and indirect rate
calculator

(e.g. DarkSUSY)

Repeat…

Compare with data!

Rare decay calculator
(e.g. SuperIso via DarkSUSY)

Typical calculation flowchart
pMSSM (all parameters at EW scale)

Choose input parameters
for pMSSM model

Calculate masses and
couplings at the EW scale
with spectrum calculator  

(e.g. with DarkSUSY)

Relic density calculator
(e.g. DarkSUSY)

SLHA file  
(optional)

Direct and indirect rate
calculator

(e.g. DarkSUSY)

Repeat…

Task: use SPheno with DS

• Download SPheno from https://spheno.hepforge.org

• Unpack it (tar zxvf SPheno-4.0.3.tar.gz)

• Modify Makefile so that F90 is set to your compiler
(typically gfortran)

• make

• ./bin/SPheno input/LesHouches.in 
⇒SPheno.spc

• Run dsmain_wimp and read in this SLHA file

This is an mSUGRA model
specified at the GUT scale

This is an SLHA file with masses etc
specified at the EW scale

If you have trouble running SPheno, the SLHA file can be downloaded here:  
https://www.dropbox.com/s/zptsfn3ictlkfhs/SPheno.spc?dl=0

https://spheno.hepforge.org
http://LesHouches.in
https://www.dropbox.com/s/zptsfn3ictlkfhs/SPheno.spc?dl=0

Example, SPheno

• The output should look something like

 info = 2176
 WIMP mass = 98.091678500000000

 Calculating relic density without coannihilations, please be patient...
 Oh2 = 0.14139676870838372 0 0
 Calculating omega h^2 with coannihilations, please be patient...
 with coannihilations Oh2 = 0.11662741351469266 0 0
 Chemical decoupling (freeze-out) occured at
 T_f = 4.2152773169914024 GeV.

etc

 No ModSel_FV option found, will try to determine file type from content.
 Found 2x2 stau mixing but no 6x6 mixing, assumes ModSel_FV=2
 SLHA mSUGRA file regarded as output file, will read low-energy values from file.

⋮

5. Other main programs

• In examples/aux we have a few example
programs for other typical calculations, e.g.

- the program to calculate the relic density
in the Silveira-Zee model

- the program to calculate the relic density
in the generic wimp model

Programs in examples/aux I

• generic_wimp_oh2.f – to calculate the cross
section that gives a correct relic density for
different masses

• ScalarSinglet_RD.f – to calculate the couplings
required in the scalar singlet model to give a
correct relic density

• ucmh_test.f – example of how the ultra-
compact mini halo routines can be used

• wimpyields.f – to calculate yields from a generic
WIMP annihilating into different particles

Programs in examples/aux II

• flxconv.f – to convert between different fluxes
and rates from searches for neutrinos from the
Sun/Earth

• caprates.f – to calculate capture rates in the
Sun from spin-independent and spin-dependent
scattering

• caprates_ff.f – to calculate capture rates in a
more advanced setting using full numerical
routines and keeping track of capture on
individual elements

Programs in examples/aux III

• DMhalo_predef.f – example on how to use
dsdmsdriver to load additional profiles into the
halo database

• DMhalo_table.f – example on how to load a
halo profile from a data file

• DMhalo_new.f – example on how to add a new
halo parameterization

• DMhalo_bypass.f – an example of using a new
dsdmsdriver to load a halo profile (i.e. not adding
to the existing setup)

wimpyields.f

• wimpyields.f is a simple program that shows how to access
the Pythia tables of yields

• These tables can give yields of different particles for different
annihilation final states, interpolating in both mass and
energy

• Task: Calculate the differential gamma ray flux for a WIMP of

- mass 500 GeV

- annihilating to W+W-

• The PDG particle numbering scheme can be found here:  
http://pdg.lbl.gov/2017/reviews/rpp2017-rev-monte-carlo-
numbering.pdf

http://pdg.lbl.gov/2017/reviews/rpp2017-rev-monte-carlo-numbering.pdf
http://pdg.lbl.gov/2017/reviews/rpp2017-rev-monte-carlo-numbering.pdf

Results

• If you want to explore this further, you could e.g

- look at integrated yields

- look at other channels

- add astrophysical part, the J-factor, see dsmain_wimp.F
and/or DMhalo*.f for examples on how to do that

caprates.f – capture in the Sun

• Task: Compile and run
caprates.f to calculate
the capture rate in the
Sun

• You should be able to
reproduce the upper
solid curves in these
figures

Note: To calculate the capture rates on
individual elements you need to run the
more advanced caprates_ff.f. It takes a bit
too long to run here though.

flxconv.f – converting neutrino fluxes
from the Sun/Earth

• A given scattering cross
section and annihilation
channel gives a relation
between all quantities

• Can calculate
conversion factors to
go between them

• For the Sun, the
dependence on the
annihilation cross
section is usually
suppressed (equilibrium
between capture and
annihilation)

Scattering cross
section

Capture rate

Annihilation rate

Flux of neutrinos

Flux of muons

Annihilation cross
section

Annihilation channels
and branching fractions

flxconv.f

• Imagine you have an experimental limit on the neutrino-induced
muon flux from the Sun from Super-Kamiokande and want to
convert it to a limit on the neutrino flux, flxconv.f can help you out

• Task: Super-Kamiokande (arXiv:1108.3384) gives a limit on the flux
of muons (mu+ and mu-) of 4.1x10-15 cm-2 s-1 for a WIMP of 100
GeV (within 7 degrees, above 1 GeV and assuming a hard
spectrum, W+W-). What is the corresponding limit on the

- spin-dependent scattering cross section σpSD (assuming σpSI=0)?

- Compare with their figure 8. Does your number agree?

- Extra task: can you instead give the limit on the neutrino flux
(muon neutrinos and anti-neutrinos)?

DMhalo_predef.f

• This example sets up a halo of an object at a
given distance from us

• It then shows how you can define multiple
halos and use them to calculate J values and
gamma ray fluxes

• Run the example program, figuring out what
it calculates

scenario or adding a specific new process, or just using a different simulation/analytic calcu-
lation, it is fairly easy to replace either the yield function dsanyield in the chosen particle
physics module or the simulation yields in dsanyield_sim in src/.

The setup described above is for WIMP annihilations in e.g. the galactic halo, a dwarf
galaxy or any other similar environment where the background density is low. For annihila-
tions in the Sun and the Earth, we have similar routines that will be described in Section 10
below.

8 Gamma rays and Neutrinos from the halo

Gamma rays produced in the galactic halo propagate on straight lines and hence point directly
back to their sources. Along with the fact that they are expected to be copiously produced
in many DM models, and can carry distinct spectral features that would allow to relatively
easily distinguish signals from astrophysical backgrounds, this is the reason they are sometimes
referred to as the golden channel of indirect DM searches [78]. Unless produced in celestial
bodies like the Sun or the Earth (see Section 10), the propagation of neutrinos follows the
same simple pattern. Indeed, while not as common as for gamma rays, and not as easily
distinguished because of the poorer energy resolution of neutrino telescopes, neutrino spectra
may also carry characteristic features related to their DM origin [79–82].

For a telescope pointing in the direction , the expected DM-induced differential flux
in gamma rays or neutrinos – i.e. the expected number of particles per unit area, time and
energy – from a sky-region � is thus given by a line-of-sight integral

d�

dE
=

1

4⇡

Z

�
d⌦

Z

l.o.s.
d`

dQ

dE
, (8.1)

where the local injection rate dQ/dE was earlier introduced in Eq. (7.1). For decaying DM,
the above line-of-sight integral always factorizes into the particle source term S1 given in
Eq. (7.3) and a term that only depends on the DM distribution,

d�dec

dEd⌦
=

1

4⇡
JdecS1 , Jdec

⌘

Z

l.o.s.
d` ⇢ (8.2)

For annihilating DM, the corresponding factorization strictly speaking only holds if the an-
nihilation rate is independent of velocity:

d�ann

dEd⌦
=

1

4⇡
JannS2 , Jann

⌘

Z

l.o.s.
d` ⇢2 . (8.3)

While notable exceptions exist (in particular for resonances [83], p-wave annihilation [84] and
Sommerfeld-enhanced annihilation [85]), this is a commonly encountered situation and hence
of general interest.

DarkSUSY therefore provides the functions dscrgaflux_dec and dscrgaflux_v0ann that
take Jdec (or Jann) as input and return the fluxes given in the above two equations for
gamma rays (as well as corresponding routines dscrnuflux_dec and dscrnuflux_v0ann for
neutrinos). Here, the subscript _v0ann refers to the fact that, for the purpose of those
routines, S2 is evaluated in the limit of vanishing relative velocity of the annihilating DM pair.
While this is the only situation of practical interest in many DM models, future DarkSUSY

– 19 –

DMhalo_table.f

• Example on how to read a halo profile
from a file instead of defining it
parametrically

Note: DMhalo_new is a more advanced example, which shows how to create a
completely new parametric profile, just like the default ones already included

generic_wimp_oh2

• This is the example program that  
creates the figure of relic density in the  
generic wimp model  
 
cd examples/aux 
make generic_wimp_oh2 
./generic_wimp_oh2 
 
Creates an output file generic_wimp_oh2-planck-sigmav.dat that can
e.g. be plotted

• It scans through the mass range, and for each mass makes a binary
search in sigma v to find the Planck measurement ± 2 sigma

• The default setup takes about 11 min to run, change ‘f=1.1’ to ‘f=1.3’
in line 40 and ‘fth=1.02’ to ‘fth=1.1’ on line 41 to speed it up for the
tutorial (takes 3m07s on my laptop)

Using a replaceable function
• The default in generic_wimp is to use a sharp cut-off

in Weff when mΧ < mfinal

• We can use an effective model with an off-shell final
state particle, i.e. ΧΧ→W+ W-*

• An implementation of this is in examples/aux/
user_replaceables/dsanwx.f

• Just compile replacing the regular dsanwx.f with this
new one to test it:  
 
make generic_wimp_oh2_threshold 
 
(takes about 3m32s to run)

ScalarSinglet_RD.f
• This is an example

of using the scalar
singlet particle
physics module

• The model has
two parameters,
mS and λ

10-10

10-9

10-8

10-7

10-6

�
��
�
/�

⊙

Ωh
2 > 0.1

12Ωh
2 < 0.1

12

10 50 100 500 1000

0.001

0.010

0.100

1

�� [���]
λ

• Task: Run ScalarSinglet_RD and see if you can reproduce the curves in
the figure above, i.e.

- which parameter values that give the correct relic density (black
curve)

- the smallest halo sizes, i.e. the cut-off scale (red curve)

Note: takes about 18 min to run,
we don’t do it here…

6. Replaceable functions

• If you want to modify an existing DarkSUSY
function or subroutine, DON’T!

• Instead create your own version of the routine
and link to that one instead.

• You can either just create your own version and
link to it (before the DS library is linked to), or

• Use the script scr/make_replaceable.f to make a
user_replaceable function for you, for which the
makefiles are already set up to work

Replaceable function example
• As an example, we will look at the source

term for DM annihilation in the galactic
halo 
 
 
 
This code is in src_models/generic_wimp/
cr/dscrsource.f

• Let’s add a boost factor from substructures

*B

Replaceable function (cont)

• In the root directory, type  
scr/make_replaceable.pl src_models/generic_wimp/
cr/dscrsource.f

• This will give you a new file  
src_models/generic_wimp/user_replaceables/
dscrsource.f

• Modify it, configure and make again (in the root), then  
make -B dsmain_wimp DS_MODULE=generic_wimp 
in examples and run dsmain_wimp

• Task: perform this change and run dsmain_wimp to
see if you get the intended change on

Replaceable function (cont.)
• At the end of scr/make_replaceable.pl we

got

• To stop using our user-replaced function, we
just delete the file from src_models/
generic_wimp/user_replaceables/files-to-
include.txt (i.e. the file should just read ‘SRC
= ‘), configure and make again

**
File created: src_models/generic_wimp/user_replaceables/dscrsource.f
The file is also added to the list in
src_models/generic_wimp/user_replaceables/files-to-include.txt
You now need to run configure, modify your file and compile.
**

7. Direct detection example

• The main routine for cross section calculations is
dsddsigma(v,e,a,z,sigij,ierr) (resides in src_models)

• It returns the unpolarized equivalent WIMP nucleus
cross section including form factors

• It relies on the couplings defined by the model and
depends on velocity and recoil energy

• It returns the partial cross section array sigij in an
effective operator framework.

- sigij(1,1) is the usual spin-independent cross section

- sigij(4,4) is the usual spin-dependent cross section

sigij is a 27x27 real*8 array

Direct detection routines

• In src/ we have the two routines

- dsddg2sigma that take couplings g as
input and calculates the sigij array for
given velocities and recoil energies
including form factors

- dsdddrde(t,e,n,a,z,stoich,rsi,rsd,modulatio
n) calculates the differential rate

Chapter 14

dd:

Direct detection

14.1 Direct detection – theory

Specific choices of nuclear structure functions can be selected by calling dsddset(’sf’, label), where
the character variable label indicates the set of structure functions. For the default option (’best’),
e.g., the code automatically picks the best currently available structure function (depending on the
nucleus). This mean, in order Fourier-Bessel, Sum-of-Gaussians, Fermi, Lewin-Smith. The function
returning the value of �̃�T is to be provided by an interface function dsddsigma(v,Er,A,Z,sigij, ierr)
residing in the particle physics module, where on input v=v, Er=ER, A=A, Z=Z and on output
the 27⇥27 array sigij contains the (partial) equivalent cross sections �̃ij in cm2 and the integer
ierr contains a possible error code. The order of the entries in sigij corresponds to that of the
independent nonrelativistic operators Oi; for the first 11 entries, we use the same operators and
convention as in Ref. [46], while for the last 16 entries we add the additional operators discussed
in Ref. [47]. In particular, sigij(1,1) is the usual spin-independent cross section and sigij(4,4) is
the usual spin-dependent cross section. In addition, the direct detection module in DarkSUSY
provides utility functions that can be used in the computation of the cross section. For example,
the subroutine dsddgg2sigma(v, er,A,Z,gg,sigij,ierr) computes the (partial) equivalent scattering cross
sections �̃ij for nucleus (A,Z) at relative velocity v and recoil energy ER starting from values of
the G

N
i constants in gg, with nuclear structure functions set by the previous call to dsddset. The

actual nuclear recoil event rate as given in

dR

dER
=

X

T

cT
⇢
0
�

mTm�

Z

v>vmin

d��T

dER

f(v, t)

v
d
3
v , (14.1)

finally, is computed by the function dsdddrde. The latter two functions are independent of the
specific particle physics implementation and hence are contained in the core library. In the above
expression, the sum runs over nuclear species in the detector, cT being the detector mass fraction
in nuclear species i. mT is the nuclear (target) mass, and µ�T = m�mT /(m� +mT) is the reduced
DM–nucleus mass. Furthermore, ⇢

0
� is the local DM density, v the DM velocity relative to the

detector, v = |v|, and f(v, t) is the (3D) DM velocity distribution. In order to impart a recoil
energy ER to the nucleus, the DM particle needs a minimal speed of vmin =

q
MTER/2µ2

�T .

37

Direct detection example

• Task: Create a main program that

- defines an MSSM model

- calculates and prints the cross sections in
the zero-momentum limit and on some
nucleus, e.g. Na-23 including form factors

- scans over recoil energies and calculates
the differential rate dR/dE as a function of
recoil energy E, e.g. on the target NaI

Direct detection example
• Task: Create a main program that

- defines an MSSM model

- calculates and prints the cross sections in the zero-momentum limit
and on some nucleus, e.g. Na-23 including form factors

- scans over recoil energies and calculates the differential rate dR/dE as a
function of recoil energy E, e.g. on the target NaI

Hints!

• You can use the main program for MSSM you made earlier as a
starting point

• Look in dsmain_wimp.F on how to get the cross sections and the
differential rates. The routines you need to call are dsddsigma and
dsdddrde. Look inside those routines to see what the arguments
are what they mean

An example main program can be found here:  
https://www.dropbox.com/s/re7vjl9287q4d83/myddprog.f?dl=0

Example output

To explore this further, you could e.g.
• include modulations (see dsdddrde on how to do this)
• look at other model parameters, e.g. by reading an SLHA file
• change halo properties
• change form factors
• change target material

8. Creating a new particle physics module

• To create a completely new particle physics
module, either

- write it from scratch, making sure to
include the interface functions you need,
or

- start from an already existing particle
physics module (will use this as an
example)

Particle physics modules
• In src_models we currently have

- mssm - Minimal Supersymmetric Standard Model

- silveira_zee - Scalar singlet model

- generic_wimp - a generic annihilating WIMP model

- generic_decayingDM - a generic decaying dark
matter model

- empty - an empty model with just the basic set of
interface functions for a ‘fresh’ start

• If you add one and want others to use it, please let us
know and we can add it to the distribution (or point
to your preferred download page)

Example, extend generic wimp

• The generic WIMP model has the following
parameters

- mwimp = mass of WIMP

- selfconjugated DM or not

- annihilation cross section σv

- pdg code of annihilation final state

- spin-independent scattering cross section

You need to have autoconf installed for this to work

Extended generic wimp

• Now assume that we want to make the
following change: Instead of having the
annihilation cross section constant, we
want to add a term proportional to v2, i.e.

• Task: Create a new module that includes
this additional b-parameter

�v = a ! �v = a+ bv2

Extended generic wimp

• Create a new module by typing (in the root directory)  
 
scr/make_module.pl generic_wimp extended_wimp

• Then type  
./configure 
make

• You then have a new module extended_wimp in src_models

• It is right now identical to generic_wimp (apart from name
changes), but you can modify it to your liking, by adding the
b-term

• Which functions do you need to modify?

You need to have autoconf installed for this to work

Extended generic wimp
• Create a new module by typing (in the root directory)  
 
scr/make_module.pl generic_wimp extended_wimp

• Then type  
./configure 
make

• You then have a new module extended_wimp in src_models

• It is right now identical to generic_wimp (apart from name changes), but you can modify it to your liking, by
adding the b-term

• Which functions do you need to modify?

You need to have autoconf installed for this to work

• You need to modify

- src_models/extended_wimp/ini/dsgivemodel_extended_wimp.f

- src_models/extended_wimp/an/dsanwx.f (annihilation cross section), however,
this one already contains the b-term, but it is not used in the default setup

- src_models/extended_wimp/include/dsextended_wimp.h – if you need to add
more global variables

- a main program of your choice to use your new

Helpful tools

• The extended_wimp is automatically included in the
build system, but when/if you start adding files you
need to tell the build system. To help you, we have a
few scripts

- scr/makemf.pl <directory> - adds all source files in
the given <directory> to the relevant makefiles, or
rather makefile.in's (without argument it adds
source files in all directories in src/ and src_models/)

- scr/preconfig.pl - adds source files AND new
directories to the build system and updates both the
configure script and makefiles

You need to have autoconf installed for this to work

http://makefile.in

Main program

• You can e.g. use your new module with dsmain_wimp
(or any other main program you choose)

• For dsmain_wimp, you need it to be aware of your
new module by adding lines of this type:  
 
#if MODULE_CONFIG == MODULE_extended_wimp 
[add your code here] 
#endif 
 
This can be done by e.g. copy-pasting the
corresponding generic_wimp lines and replace
generic_wimp with extended_wimp

Feedback

• I would like to get feedback on this tutorial

• Please fill out this (short) survey  
 
https://goo.gl/forms/t0AkBk8l7Vupb8Up1 
 

https://goo.gl/forms/t0AkBk8l7Vupb8Up1

Joakim Edsjö
edsjo@fysik.su.se

• DarkSUSY 6 publically available (finally!)

• DarkSUSY 6 is much more modular and include other
improvements.

• When comparing different signals, it is crucial to perform
these calculations in a consistent framework, with e.g. a
tool like DarkSUSY

Conclusions

ありがとう

mailto:edsjo@fysik.su.se

