DarkSUSY 6 Tutorial – Part I

Joakim Edsjö edsjo@fysik.su.se

With Torsten Bringmann, Paolo Gondolo, Piero Ullio and

Lars Bergström

Stockholm University KMI School, Nagoya 2018-02-28 – 2018-03-02

Cocar Clein centre

Have you managed to install DarkSUSY and run dstest?

Go to menti.com and enter the code 98 63 15 to answer

How well do you know Fortran?

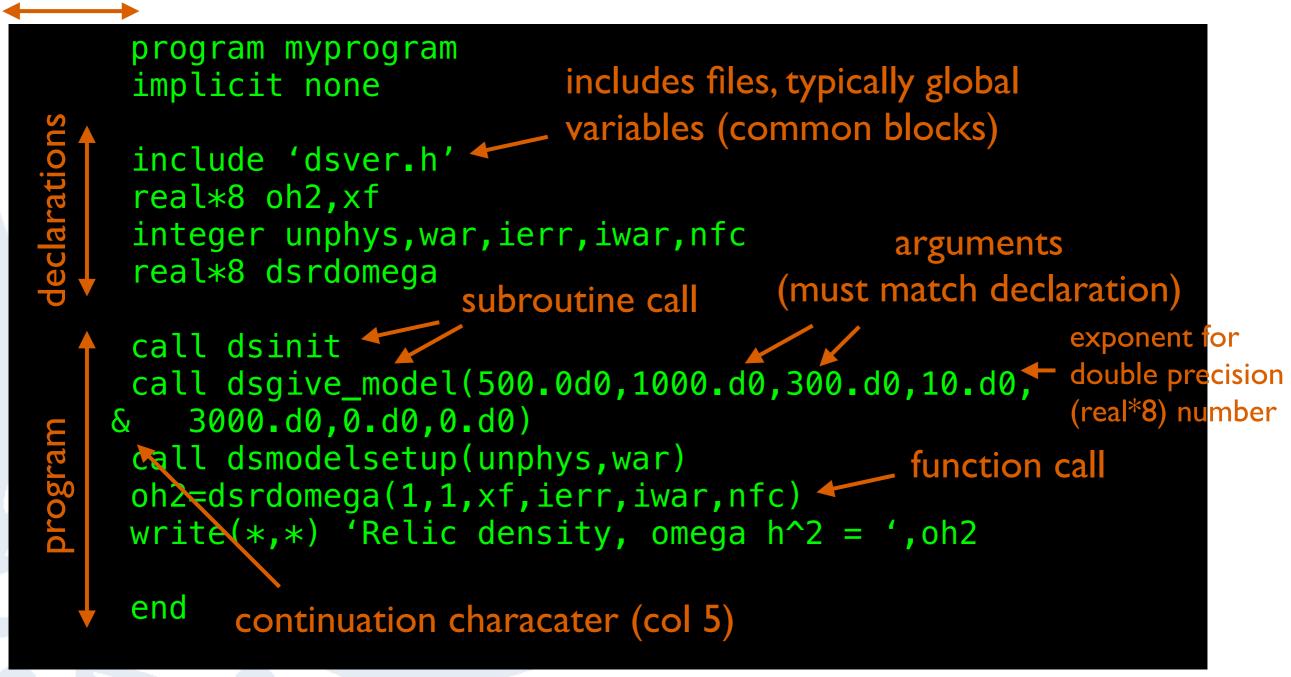
Go to menti.com and enter the code 84 11 03 to answer

DarkSUSY 6.0.0

- DS 6.0.0 is a major re-organization and (partly) rewrite of the code.
 - It is tested on gfortran 5, 6 and 7 on Mac OS
 X and Ubuntu.
 - The manual is included in the distribution
- If you find problems/have questions, ask me during the school or e-mail me at edsjo@fysik.su.se

Main programs

- DarkSUSY is essentially a *library* of routines and functions
- You, as a user, provide a suitable main program
- Some examples of main programs exist and are good starting points


Fortran

 Fortran is rather basic, but gives fast code and should be fairly easy to follow/write

 DS6 consists of mainly Fortran 77 code, with some Fortran 95/03 additions

Typical Fortran program

6 chars

See example programs or tutorials on the web for more Fortran examples

Manual

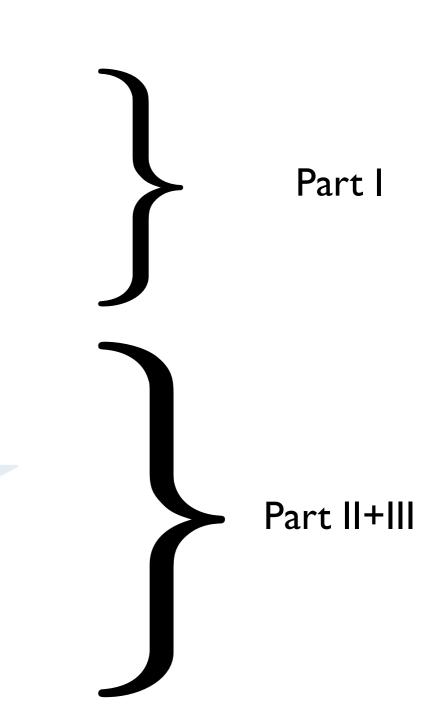
 In the DarkSUSY root folder, type make pdf-manual
 to produce the manual. It is available in docs/Manual.pdf

 There is also a long version (with routine headers) that you create with make pdf-manual-long

Task: create the manual and look at it!

DarkSUSY darksusy-6.0.0

Manual and description of routines


Documentation harvested from documentation and source directories with harvestdoc.pl Wed Feb 28 02:57:36 2018

http://www.darksusy.org

Joakim Edsjö^a*, Torsten Bringmann^{b†}, Paolo Gondolo^{c‡}, Piero Ullio^{d§}, Lars Bergström^{a¶}, Mia Schelke^{||}, Edward A. Baltz^{**} and Gintaras Duda^{††}

Outline of hands-on

- I. dstest program
- 2. dsmain_wimp program
 - MSSM
 - generic WIMP
- 3. Writing your own programs and using makefiles in DarkSUSY 6
- 4. Using dsmain_wimp with SLHA files
- 5. Other example programs
- 6. Replaceable functions
- 7. Direct detection example
- 8. Creating a new particle physics module

I. dstest program

- The dstest program is used to test your installation
- It calculates observables (masses, relic density, direct and indirect rates, ...) and compares with pre-computed values

cd examples/test
./dstest

(already compiled with main make, takes about 60 seconds to run)

Output should end with

Total number of errors in dstest:

0

[Show code]

2. dsmain_wimp.F

 In examples/ we have the file dsmain_wimp.F which essentially does what dstest does, but in a more user-friendly way.

Task: run it with

./dsmain_wimp

It will ask you which model you want to run:

What kind of SUSY model do you want to look at?
1 = MSSM-7
2 = cMSSM
3 = as read from an SLHA2 file

MSSM-7 example

- Pick I: MSSM-7 and enter (e.g.) mu: 1000 M2: 1000 MA: 400 tan(β): 10 m0: 3000 At/m0: 0 Ab/m0: 0
- Then answer 0 to not write out an SLHA file (or something else if you want to)
- Observables are then calculated...

Task: run dsmain_wimp and inspect the output to see what is calculated

Output

FeynHiggs 2.13.0
built on Feb 27, 2018
H. Bahl, T. Hahn, S. Heinemeyer, W. Hollik, S. Passehr, H. Rzehak, G. Weiglein
http://feynhiggs.de

FHHiggsCorr contains code by: P. Slavich et al. (2L rMSSM Higgs self-energies) H. Rzehak et al. (2L cMSSM asat Higgs self-energies) S. Passehr et al. (2L cMSSM atat Higgs self-energies) FHHiggsProd contains code by - SM XS for VBF, WH, ZH, ttH are taken from the LHC Higgs Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections see there for an extensive list of references - SM bbH XS: Harlander et al. hep-ph/0304035 - SM ggH XS: Grazzini et al. http://theory.fi.infn.it/grazzini/hcalculators.html see there for an extensive list of references - 2HDM charged Higgs XS: Plehn et al. – heavy charged Higgs XS: Dittmaier et al. arXiv:0906.2648 Flechl et al. arXiv:1307.1347 g-2 amplitude [a_mu = (g-2)/2 =]: 3.8183990533120070E-011 Do you want to write out an SLHA2 file for your model? 0 = no1 = yes, with full 6x6 sfermion mixing 2 = yes, with minimal flavour violation 0

```
***** MODEL: INTMOD000001 *****
                  1 (=0 OK, <0 error, >0 warning, =1 experimentally excluded)
 istatus =
 info = 4512
 WIMP mass = 499.30971144910990
 Calculating relic density without coannihilations, please be patient...
  0h2 = 0.96579250432421615
                                         0
 Calculating omega h^2 with coannihilations, please be patient...
  with coannihilations 0h2 = 0.96579250432421615
                                                                       0
                                                            0
  Chemical decoupling (freeze-out) occured at
  T_f = 22.879465168299642 GeV.
 Kinetic decoupling temperature, Tkd = 216.93575300730424 MeV
 The resulting cutoff in the power spectrum corresponds to a mass of M_cut/M_sun =
2.2909066986614345E-009
 Calculating DM-nucleon scattering cross sections...
  sigsip (pb) = 8.8992537784068590E-010
sigsin (pb) = 9.2400044165495133E-010
sigsdp (pb) = 1.9718137439575352E-007
  sigsdn (pb) = 1.4088379669121179E-007
 proton: sigsi (pb) = 8.8992537784068590E-010 sigsd (pb) =
1.9718137439575352E-007
  A= 23 Z= 11 sigsi (pb) = 2.3037796208861801E-004 sigsd (pb) =
5.1548841697066729E-006
  sigsi*ff(pb)= 2.2292275772657175E-004 sigsd*ff(pb)= 4.9743110005459323E-006
            127 Z= 53 sigsi (pb) = 0.15253489069800388 sigsd (pb) =
  A=
1.7886424072791722E-005
  sigsi*ff(pb)= 9.5441464487036914E-002 sigsd*ff(pb)= 1.1823115084786536E-005
             73 Z= 32 sigsi (pb) = 1.9706985553529958E-002 sigsd (pb) =
  A=
4.9292414333092543E-005
 sigsi*ff(pb)= 1.6068638785545389E-002 sigsd*ff(pb)= 3.8390286999876545E-005
              1 Z= 1 sigsi (pb) = 8.8992537784068590E-010 sigsd (pb) =
  A =
1.9718137439575352E-007
```

```
Calculating gamma ray fluxes...
   fluxgacdiff = 1.8515008372241465E-013
                                         ph/(cm<sup>2</sup> s GeV)
      fluxgac = 3.8000236750318762E-011
                                         ph/(cm^2 s)
 Total number of photon lines in module MSSM:
                                                   2
 photon flux from line No. 1 = 1.6539906105554819E-018 ph/(cm^2 s)
        GeV1
 photon flux from line No. 2 = 2.6166109285505223E-019 ph/(cm^2 s)
        [at E = 495.1463744449431 +/- 2.49000000000000002
                                                                       GeV1
  nsigvgacont = 8.3049860752652031E-026
  nsigvgacdiff = 3.6350954555843692E-026 GeV^-1
    nsigvline
                       1 = 1.8074057116456577E-033
    nsigvline
                       2 = 2.8593134128061127E-034
 Calculating antiproton fluxes...
 solar modulated pbar flux at 0.35 GeV [GeV^-1 cm^-2 s^-1 sr^-1]:
6.4724132322023058F-010
 solar modulated pbar flux at 1.76 GeV [GeV^-1 cm^-2 s^-1 sr^-1]:
1.0017260278195632E-009
 solar modulated pbar flux at 3.00 GeV [GeV^-1 cm^-2 s^-1 sr^-1]:
8.9088984206521731E-010
 Calculating antideuteron fluxes...
   solar modulated dbar flux at 1.00 GeV [GeV^-1 cm^-2 s^-1 sr^-1]:
2.3931160388253188E-013
 Calculating positron fluxes at 1 GeV...
   phiep= 7.8088318707756649E-008 GeV^-1 cm^-2 s^-1 sr^-1
 Calculating rates in neutrino telescopes
   Flux from the Earth = 1.9046606405318337E-008 km<sup>2</sup> yr<sup>2</sup>
   Flux from the Sun = 0.57508123135314870
                                                 km^-2 yr^-1
 Calculating neutrino-induced muon fluxes from the halo...
  Muon flux from halo = 2.2035442898808658E-003 km<sup>2</sup> yr<sup>2</sup>
```

Which module?

• At the end of the dsmain_wimp run we got

The DarkSUSY example program has finished successfully. Particle module that was used: MSSM

[simply call 'make -B dsmain_wimp DS_MODULE=<MY_MODULE>' if you want to try
with a different module <MY_MODULE>]

Try compiling again with

make -B dsmain_wimp DS_MODULE=generic_wimp
./dsmain_wimp

Enter e.g. mass: 100 self-conjugate: 0 ann cross section: 3e-26 PDG: 5 scattering cross section: 1e-42

Output

Calculating omega h^2 without coannihilations, please be patient... without coannihilations Oh2 = 8.5782015186659649E-002 0 0 Chemical decoupling (freeze-out) occured at T_f = 4.4034841137539358 GeV.

etc