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Outline

• This talk is not be related to AdS/CFT, string 
theory

• but we will see how thinking about curve space 
helps us understand flat-space physics



Quantum Hall state

• simplest example: noninteracting electrons filling n Landau levels 
(interger QH effect)

• Fractional QH effect: much more complicated theory (Laughlin)

• gapped, no low-energy degree of freedom

• The effective action can be expanded in polynomials of external 
fields

• To lowest order: Chern-Simons action
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What is missing

• CS action does not involve metric

• Stress-energy tensor = 0

• It is not how real quantum Hall system behaves



Hall viscosity

• Turn on hxy(t) metric perturbations

• observe Txx = - Tyy ~ h’xy(t)

• there must be a term proportional first derivative 
of metric in the effective Lagrangian

• How? curvature ~ 2nd derivative

Avron et al 1995



Wen-Zee term

• Hall viscosity: described by Wen-Zee term 
(W.Goldberger & N.Read unpublished; N.Read 2009 KITP talk)

• Introduce spatial vielbein (viel=2) gij=eai eaj

• We can now define the spin connection
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Vielbein and curvature
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Wen-Zee terms

1
2�

�µ��(� �µ��A� + ���µ����)

in addition to the Chern-Simons term

will not be important for
futher discussions

The first term gives rise to
•Wen-Zee shift
•Hall viscosity



Wen-Zee shift
• Rewrite SWZ as 
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Hall viscosity from WZ term
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derived by N.Read 
previously

stress ~ time derivative of metric



Flat space physics

• But is this Wen-Zee term be important for physics in flat 
space?

• In this talk we will argue that it is

• Reason: nonrelativistic diffeomorphism

• For a nonrelativistic system of particles with the same charge/
mass ratio, there is a nonrelativistic principle of equivalence

• accelerated frame ~ electric field

• rotating frame ~ magnetic field (Coriolis force ~ Lorentz 
force)

• nonrelativistic diffeomorphism mixes metric and EM field



Symmetries of NR theory
Microscopic theory

Dµ� � (�µ � iAµ)�

Gauge invariance: � � ei�� Aµ � Aµ + �µ�

General coordinate invariance:

�gij = ��k�kgij � gkj�i�
k � gik�j�

k

�Ai = ��k�kAi �Ak�i�
k

�� = ��k�k� � L��

� L�Ai

� L�gij

Here ξ is time independent: ξ=ξ(x) 
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DTS, M.Wingate 2006 
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NR diffeomorphism

• These transformations can be generalized to be 
time-dependent: ξ=ξ(t,x)
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Galilean transformations: special case  ξi=vit

Time dependent diffeomorphisms mix metric and gauge field



Where does it come from
Start with complex scalar field
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Relativistic diffeomorphism

μ=0: gauge transform

μ=i: general coordinate transformations

xµ � xµ + �µ

� = e�imcx0 ��
2mc



Interactions

• Interactions can be introduced that preserve 
nonrelativistic diffeomorphism

• interactions mediated by fields

• For example, Coulomb interactions: mediated by 
photon propagating in 3+1 dimensions
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Is CS action invariant?
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Is CS action invariant?
• CS action is gauge invariant

• CS action is Galilean invariant

• CS action is not diffeomorphism invariant

�SCS =
�m

2�

�
dt d2x �ijEigjk �̇k

Higher order terms in the action should changed by -δSCS 

But this cannot be achieved by local terms



Resolution

• Higher order terms contain inverse powers of B

�µ��Aµ��A� +
m

B
gijEiEj + · · ·

• Quantum Hall state with diff. invariance does not exist at 
zero magnetic field!



Diff invariant terms
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Kohn’s theorem ~ 1960
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Kohn’s theorem

• Response of the system on uniform electric field 
does not depend on interactions

• Effective action captures first order in omega 
corrections to conductivities at q=0



σxy(q): new prediction
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Physical interpretation

• First term: Hall viscosity

y
v

E

E

v
x

�xvy + �yvx �= 0

Txx = Txx(x) �= 0

additional force Fx~∂x Txx

Hall effect: additional contribution to vy



Physical interpretation (II)

• 2nd term: more complicated interpretation

Fluid has nonzero angular velocity
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Coriolis=Lorentz

Hall fluid is diamagnetic: d� = �MdB

M is spatially dependent M=M(x)

Extra contribution to current j = c ẑ��M



Current ~ gradient of magnetization

j = c ẑ��M



High B limit

• In the limit of high magnetic field: ϵ(B) known: free 
fermions

• n Landau levels for IQH states

• first Landau level for FQH states with ν<1

• Wen-Zee shift is known 
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exact nonperturbative results!

ν=n



Conclusions

• Thinking about the curved space is productive in 
nonrelativistic physics

• Reason: NR principle of equivalence

• NR diffeomorphism mixes metric and EM field

• Nontrivial consequences in quantum Hall physics

• Wen-Zee term in the action leads to one 
contribution to the Hall conductivity at finite q


