Quantum Hall effect: what can
be learned from curved space!

Dam Thanh Son (INT, University of Washington)

Carlos Hoyos, DTS 201 |

In memory of my father Dam Trung Bao (1929-2011)




Outline

® This talk is not be related to AdS/CFT, string
theory

® but we will see how thinking about curve space
helps us understand flat-space physics




Quantum Hall state

simplest example: noninteracting electrons filling n Landau levels
(interger QH effect)

Fractional QH effect: much more complicated theory (Laughlin)
gapped, no low-energy degree of freedom

The effective action can be expanded in polynomials of external
fields

To lowest order: Chern-Simons action
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VVhat is missing

® (S action does not involve metric
® Stress-energy tensor =0

® |t is not how real quantum Hall system behaves




Rall viscosity

Avron et al 1995

Turn on hyy(t) metric perturbations
observe Txx = - Tyy ~ h'xy(t)

there must be a term proportional first derivative
of metric in the effective Lagrangian

How? curvature ~ 2nd derivative




Wen-Zee term

® Hall viscosity: described by Wen-Zee term
(W.Goldberger & N.Read unpublished; N.Read 2009 KITP talk)

® |ntroduce spatial vielbein (viel=2) gj=e? €3

® We can now define the spin connection
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Vielbein defined up to a local O(2) rotation
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Vielbein and curvature
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Wen-Zee terms

in addition to the Chern-Simons term
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will not be important for
futher discussions

The first term gives rise to
*Wen-ZLee shift
*Hall viscosity




Wen-Zee shift

® Rewrite Swz as
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On a sphere: Q=v(Ny+S),

IQH states: v=n, k=n%/2
Laughlin’s states: v=1/n, k=1/2




Hall viscosity from WZ term
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stress ~ time derivative of metric
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Flat space physics

But is this Wen-Zee term be important for physics in flat
space?

In this talk we will argue that it is
Reason: nonrelativistic diffeomorphism

For a nonrelativistic system of particles with the same charge/
mass ratio, there is a nonrelativistic principle of equivalence

® accelerated frame ~ electric field

® rotating frame ~ magnetic field (Coriolis force ~ Lorentz
force)

nonrelativistic diffeomorphism mixes metric and EM field




Symmetries of NR theory

: : DTS, M.Wingate 2006
Microscopic theory
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NR diffeomorphism

® These transformations can be generalized to be
time-dependent: E=&(t,X)
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Time dependent diffeomorphisms mix metric and gauge field

Galilean transformations: special case &=vit




Where does it come from

Start with complex scalar field

S = /dil? \/7( 'uya,u¢*al/¢ -+ ¢ ¢)

Take nonrelativistic limit:
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Relativistic diffeomorphism

Tt — P 4 M
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( =0: gauge transform ¢=eimer

L =i: general coordinate transformations




Interactions

® |nteractions can be introduced that preserve
nonrelativistic diffeomorphism

® interactions mediated by fields

® For example, Coulomb interactions: mediated by
photon propagating in 3+| dimensions
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|Is CS action invariant!?
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|Is CS action invariant!?

® (S action is gauge invariant
® (S action is Galilean invariant

® CS action is not diffeomorphism invariant

M, . :

Higher order terms in the action should changed by -0Scs

But this cannot be achieved by local terms




Resolution

® Higher order terms contain inverse powers of B
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® (Quantum Hall state with diff. invariance does not exist at
zero magnetic field!




Diff invariant terms
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\ Kohn’s theorem ~ 1960
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Kohn’s theorem

® Response of the system on uniform electric field
does not depend on interactions

® Effective action captures first order in omega
corrections to conductivities at q=0




Oxy(q): new prediction
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From effective field theory
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Physical interpretation

® First term: Hall viscosity

additional force Fx~0x Txx
Hall effect: additional contribution to vy




Physical interpretation (ll)

® 2nd term: more complicated interpretation

Fluid has nonzero angular velocity

1 cE’ ()

Q(x) = 5 0xvy = 53 0B = 2mcfl/e

Coriolis=Lorentz

Hall fluid is diamagnetic: de = —MdB

M is spatially dependent M=M(x)

Extra contribution to current j=czx VM



Current ~ gradient of magnetization




High B limit

® |n the limit of high magnetic field: €(B) known: free
fermions

® n Landau levels for IQH states

® first Landau level for FQH states with v<1

® \VWen-Zee shift is known
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exact nonperturbative results!




Conclusions

Thinking about the curved space is productive in
nonrelativistic physics

Reason: NR principle of equivalence
NR diffeomorphism mixes metric and EM field

Nontrivial consequences in quantum Hall physics

Wen-Zee term in the action leads to one
contribution to the Hall conductivity at finite g




