Topcolor in the LHC Era

ELIZABETH H. SIMMONS MICHIGAN STATE UNIVERSITY

- Top Mass and TopColor
- Effective Field Theory
- New Fermions, Top-Higgs, & Top-Pions
- What LHC Can See... and Has (Not) Seen
- Conclusions

KMIIN (NAGOYA) 10 - 26 - 2011

TOP MASS AND TOPCOLOR

QUESTIONS ABOUT BROKEN SYMMETRIES

Electroweak:

Why are the W & Z bosons heavy while the photon is massless?

Flavor:

Why do fermions with the same charge have different masses?

TRIAL ANSWER: SM WITH A HIGGS DOUBLET

Problems with the Higgs Model

 $\Rightarrow \beta = \frac{3\lambda^2}{2-2} > 0$

 $\Rightarrow m_H^2 \propto \Lambda^2$

- No fundamental scalars observed in nature
- No explanation of dynamics causing EWSB
- Hierarchy/Naturalness Problem
- Triviality Problem...

REVISED ANSWER FOR EWSB:

Technicolor: (as in previous talk)

Introduce SU(N)_{TC} with

technigluons, inspired by QCD gluons

techniquarks carrying SU(N)_{TC} charge:

- e.g. weak doublet $T_L = (U_L, D_L)$; weak singlet U_R, D_R
- Lagrangian has $SU(2)_L \times SU(2)_R$ chiral symmetry

SU(N)_{TC} gauge coupling becomes large at $\Lambda_{TC} \approx 1 \text{TeV}$

- $\langle T_L T_R \rangle \approx 250 \,\mathrm{GeV}$ causes EWSB
- `**techni**pions' \prod_{TC} become the W_L, Z_L

REVISED ANSWER FOR FERMION MASSES: ETC*

E.g. the top quark mass arises from:

<u>Challenge</u>: ETC must violate custodial symmetry to make $m_t >> m_b$. But how to avoid large changes to $\Delta \rho$?

*Dimpoulos & Susskind; Eichten & Lane

SIZE OF ISOSPIN VIOLATION

ETC *must* violate weak-isospin to make $m_t \gg m_b$. ETC boson mixing with Z through technifermion loops induces dangerous contributions to $\Delta \rho$

$$\sum_{\Psi} \sum_{\Psi} \sum_{\Psi$$

How to satisfy experimental constraint: $\Delta \rho \leq 0.4\%$? • make ETC boson heavy ?

$$\frac{M_{ETC}}{g_{ETC}} > 5.5 \text{ TeV} \cdot \left(\frac{\sqrt{N_D}F_{TC}}{250 \text{ GeV}}\right)^2$$

too heavy to provide $m_t = 172 \,\mathrm{GeV}$

• arrange for $N_D F_{TC}^2 \ll (250 GeV)^2$? e.g. separate sectors for m_t and EW symmetry breaking If the top quark feels a new strong interaction, a top-quark condensate $\langle \bar{t}t \rangle \neq 0$ can provide <u>some</u> or even <u>all</u> of electroweak symmetry breaking

some (topcolor*, topcolor-assisted technicolor*)

in these models the top quark feels an additional gauge interaction that causes top condensation

<u>all</u> (top mode^, top seesaw^^)

in top seesaw models, a heavy partner quark T forms the condensate; the top quark mass eigenstate that we observe is a seesaw mixture between T and the standard model's top quark gauge eigenstate

* Hill ^Bardeen, Hill & Lindner; Yamawaki; Miranski; Nambu ^^Chivukula, Dobrescu, Georgi & Hill

PHYSICAL REALIZATION: TOPCOLOR

One physical realization of a new interaction for top is a (spontaneously broken) extended color gauge group: topcolor

 $SU(3)_h \times SU(3)_\ell \xrightarrow{\mathsf{M}} SU(3)_{QCD}$

where (t,b) feel SU(3)_h and (u,c,d,s) feel SU(3)_l

Below the scale M, exchange of massive topgluons $-\frac{4\pi\kappa}{M^2}\left(\bar{t}\gamma_{\mu}\frac{\lambda^a}{2}t\right)^2$ yields four-fermion interactions among top quarks

TOPCOLOR-ASSISTED TECHNICOLOR (TC2)

 $(g_h > g_\ell)$ $(g_h > g_\ell)$ $G_{TC} \times SU(3)_h \times SU(3)_\ell \times SU(2)_W \times U(1)_h \times U(1)_\ell$ $\perp M \gtrsim 1 \text{ TeV}$ $G_{TC} \times SU(3)_{QCD} \times SU(2)_W \times U(1)_Y$ \perp $\Lambda_{TC} \sim 1$ TeV $G_{TC} \times SU(3)_{QCD} \times U(1)_{EM}$

technicolor: provides most of EWSB topcolor: provides most of mt hypercharge: keeps mb small

EFFECTIVE FIELD THEORY: THE TOP-TRIANGLE MOOSE

Chivukula, Christensen, Coleppa, Simmons arXiv:0906.5667 Chivukula, Coleppa, Logan, Martin, Simmons arXiv:1101.6023

REMINDER: 3-SITE MODEL

THE TOP TRIANGLE MOOSE

only top couples to Φ

TRIANGLE MOOSE AND TOPCOLOR-ASSISTED TC

KEY MASS TERMS

Top quark: $-\lambda_t \psi_{L0} \Phi t_R$ Top-pions: $4\pi \kappa v^3 \text{Tr} \left(\Phi \Sigma_{01} \Sigma_{12}^{\dagger} \right)$

All fermions (including top) :

 $M_D \begin{bmatrix} \epsilon_L \bar{\psi}_{L0} \Sigma_{01} \psi_{R1} + \bar{\psi}_{R1} \psi_{L1} + \bar{\psi}_{L1} \Sigma_{12} \begin{pmatrix} \epsilon_{uR} & 0 \\ 0 & \epsilon_{dR} \end{pmatrix} \begin{pmatrix} u_{R2} \\ d_{R2} \end{pmatrix} \end{bmatrix}$ ideal delocalization says $\epsilon_L^2 = M_W^2 / 2M_{W'}^2$

light fermion masses are <u>still</u> of the form $m_f \approx M_D \epsilon_L \epsilon_{fR}$ each light mass value is tied to the value of ϵ_{fR} Top mass value is different...

TOP MASS

Top mass matrix:

$$M_t = M_D \begin{pmatrix} \epsilon_{tL} & a \\ 1 & \epsilon_{tR} \end{pmatrix} \qquad a \equiv \frac{\lambda_t v \sin\omega}{M_D}$$

Perturbative diagonalization yields...

$$m_t = \frac{\lambda_t}{v} \sin \omega \left[1 + \frac{\epsilon_{tL}^2 + \epsilon_{tR}^2 + \frac{2}{a} \epsilon_{tL} \epsilon_{tR}}{2(-1+a^2)} \right]$$

 t_{R2}, b_{R2}

Top mass now depends strongly on λ_t , weakly on ϵ_{tR}

A large top mass <u>no longer</u> conflicts with making ϵ_{tR} small to minimize $\Delta \rho$

$$\Delta \rho = \frac{M_D^2 \,\epsilon_{tR}^4}{16 \,\pi^2 \, v^2}$$

KK fermions are light enough to produce at LHC

TOP STATES OF INTEREST

top's KK partner: T

• can be produced at LHC

top-Higgs state: Ht

• production in gg \rightarrow H_t higher than in SM by factor $[\sin \omega]^{-1}$

top-Pion states: Π_t^{\pm} , Π_t^0

 one-loop R_b contributions minimized by non-ideal delocalization of t_L as indicated in <u>plot at right</u>:

fractional shift in ε_{tL} to help R_{b} agree with data

WHAT THE LHC CAN SEE

<u>W' searches:</u> Belyaev, et al., arXiv:0708.2588 [hep-ph] <u>KK quarks:</u> Chivukula, Christensen, Coleppa, Simmons arXiv:0906.5667 [hep-ph] <u>KK top quark, top-Higgs, and top-Pions</u> Chivukula, Coleppa, Logan, Martin, Simmons arXiv:1101.6023 [hep-ph]

LHC POTENTIAL FOR FINDING THE W'

LHC DETECTION OF KK QUARKS

TOP SECTOR AT LHC: H_T

Integrated luminosity needed for Top-Higgs discovery in $H_t \rightarrow ZZ$ at 14 TeV LHC is encouragingly low:

For heavier H_t, the most promising mode is $H_t \rightarrow W \Pi_t$

A top-Higgs of moderate mass would be visible in di-bosons due to enhancement of $gg \rightarrow H_t$ production by $[sin\omega]^{-1}$.

E.g., see enhanced production relative to Tevatron* limit:

*T. Aaltonen et al. [CDF and D0 Collaborations], arXiv:1005.3216

TOP SECTOR AT LHC

Sample strategy to find states in the top sector and confirm they belong to this kind of Higgsless model:

- 1. With initial LHC data, find H_t in $H_t \rightarrow WW$, ZZ; higher-than-SM production rate will indicate that it is exotic
- 2. As integrated luminosity grows, find top quark's KK partner **T** via its dominant decay to $T \rightarrow Wb$
- 3. Confirm the $T \rightarrow H_t$ t decay; this shows H_t is strongly coupled to the top sector as well as the EW sector
- 4. Discover Π_t in pp \rightarrow t Π_t^{\pm} ; this establishes the top-pion's strong link to the top sector
- 5. Confirm Π_t in pp \rightarrow $H_t \Pi_t^{\pm}$; this links the top-pion to the EW sector as well

TOP SECTOR AT LHC: T

Top's KK partner, T, will be most visible in $T \rightarrow Wb$.

Analysis for other KK quark partners (assuming $W \rightarrow Iv$) still roughly applies; the channel with one hadronically-decaying W should offer larger signal and full reconstruction of T.

The $T \rightarrow H_t$ t decays will also be helpful.

Top sector at LHC: Π_{T}

FNAL limits^{*} on t \rightarrow H[±] b imply Π_t is heavier than t, so the main production process is pp \rightarrow t $\Pi_t \rightarrow$ t t b.

CMS studies^{**} of H[±] \rightarrow t b imply 30 fb⁻¹ of data can find a Π_t up to 400 GeV

Top sector at LHC: Π_{T}

Associated production $pp \rightarrow W^*$ $\rightarrow H_t \Pi_t$ can provide useful confirmation of the relationship between H_t and Π_t .

Single production followed by either $H_t \rightarrow W\Pi_t$ or $\Pi_t \rightarrow WH_t$ would be similarly informative.

 $H_t \rightarrow W^+ W^-$

 $\begin{array}{l} H_t \to {\Pi_t}^\pm W^\mp \\ H_t \to t\bar{t} \end{array}$

 $H_t \rightarrow \Pi_t^0 Z$

 $H_t \rightarrow \Pi_t \Pi_t$

 $H_t \rightarrow t\overline{T} + h.c.$

600

 M_{H_t} (GeV)

 $H_t \rightarrow ZZ$

1.0

0.8

0.6

0.4

0.2

0.0

200

400

BR

WHAT THE LHC Has (NOT) Seen

Chivukula, Coleppa, Logan, Martin, Simmons arXiv: 1108.4000 [hep-ph]

NEW ATLAS LIMITS ON HIGGS PRODUCTION

ATLAS-CONF-2011-112

NEW CMS LIMITS ON HIGGS PRODUCTION

CMS PAS HIG-11-011

NEW CMS LIMITS ON HIGGS PRODUCTION

ATLAS VS H_T (LIGHT TOP-PION)

Preliminary

ATLAS VS HT (HEAVIER TOP-PION)

Preliminary

IMPACT OF TOP-PION MASS

Tevatron bounds on top decays to charged Higgs bosons imply that $BR(t \rightarrow \Pi_t^+ b) \leq 0.2$ and exclude the dark-blue region below:

LHC LIMITS ON TOP-HIGGS (H_T)

sin ω

IMPLICATIONS OF WHAT THE LHC HAS (NOT) SEEN

LHC limits on the top-Higgs in models with strong top quark dynamics Chivukula, Coleppa, Logan, Martin, Simmons arXiv:1108.4000 [hep-ph]

TRIANGLE MOOSE AND TOPCOLOR-ASSISTED TC

Consider the top triangle moose as a deconstructed version of topcolor-assisted technicolor (TC2):

- A combination of topcolor dynamics and ETC give rise to the top quark mass: $m_t \approx m_t^{dyn} + m_t^{ETC}$ where the latter is only 0.5% 10% of the total.
- The Pagels-Stokar relation $f_{\Pi_t}^2 = \frac{N_c}{8\pi^2} m_{t,dyn}^2 \ln\left(\frac{\Lambda^2}{m_{t,dyn}^2}\right)$ relates $\sin \omega \equiv f_{\Pi_t}/v$ to the top mass
- The top-pion mass $M_{\Pi_t}^2 = \frac{N_c}{4\pi^2} m_{t,ETC} m_{t,dyn} \left(\frac{\Lambda^2}{f_{\Pi_t}^2}\right) \gamma$ should exceed the top mass to respect bounds on $t \to bH^+$
- The dynamics imply $M_{H_t} \lesssim 2m_{t,dyn}$

Considering the top triangle moose as a low-energy effective theory for TC2, one would then expect the model parameters to lie in the following ranges:

 $185 \text{ GeV} < M_{H_t} < 340 \text{ GeV}$

 $172 \text{ GeV } < M_{\Pi_t} < M_{H_t}$

 $0.2 < \sin \omega < 0.5$

The new LHC data appears to exclude <u>precisely</u> this region.

CONCLUSIONS

CONCLUSIONS AND NEXT STEPS

- Avoiding large weak isospin violation is a challenge for dynamical models of EWSB and fermion masses.
- The top triangle moose is a useful effective theory for studying a range of models where a topcolor-like mechanism generates the top quark mass (such as TC2).

•In this scenario, the heavy partner (KK) quarks are light enough to produce at LHC and the top sector includes T, H_t and Π_t states. Interplay among these states would signal that top dynamics plays a role in EWSB.

• Recent LHC data on $H \rightarrow WW, ZZ$ exclude the most favored TC2 parameter space. New models with heavier H_t (e.g. top-seesaw assisted TC) are required.

WHAT THE LHC CAN SEE (DETAIL)

W' searches:

Belyaev, et al., arXiv:0708.2588

KK quarks:

Chivukula, Christensen, Coleppa, Simmons arXiv:0906.5667 <u>KK top quark, top-Higgs, and top-Pions</u> Chivukula, Coleppa, Logan, Martin, Simmons arXiv:1101.6023

related work: 3-site: Ohl, Speckner arXiv:0809.0023 4-site: Hirn, Martin, Sanz arXiv:0712.3783 4-site: Accomando et al. arXiv:0807.5051

KK QUARK PRODUCTION AT LHC

(TRIANGLE MOOSE MODEL)

KK QUARK DECAY AND DETECTION

KK fermion decay modes

$$M_{Z'} = 500 \text{ GeV}$$

QQ signature: $pp \rightarrow Q\bar{Q} \rightarrow WZqq \rightarrow \ell\ell\ell jj \not\!\!E_T$ **Qq** signature: $pp \rightarrow Qq \rightarrow W'qq \rightarrow WZqq \rightarrow \ell\ell\ell jj \not\!\!E_T$

KK QUARK PAIR PRODUCTION

With basic identification and separation cuts on jets and leptons, **a hard jet p**_T **cut removes nearly all SM background**

Variable	Cut
p_{Tj}	$>100 { m GeV}$
p_{Tl}	$>15 { m GeV}$
Missing E_T	$>15 { m GeV}$
$ \eta_j $	< 2.5
$ \eta_l $	< 2.5
ΔR_{jj}	>0.4
ΔR_{jl}	>0.4
M_{ll}	$89 \text{ GeV} < M_{ll} < 93 \text{ GeV}$

events

KK QUARK SINGLE PRODUCTION

Identification and separation cuts on jets and leptons, a hard jet p_T cut, and jet & lepton rapidity cuts control the SM background

Variable	Cut
$p_{Tj \text{ hard}}$	$>200 { m GeV}$
$p_{Tj \text{ soft}}$	$>15 { m GeV}$
p_{Tl}	$>15 { m GeV}$
Missing E_T	$>15 { m GeV}$
$ \eta_{j \text{ hard}} $	< 2.5
$ \eta_{j \text{ soft}} $	$2 < \eta < 4$
$ \eta_l $	< 2.5
ΔR_{jj}	>0.4
ΔR_{jl}	>0.4

events

