QCD and gauge/string duality

Tadakatsu Sakai (Nagoya Univ./KMI)

§1. Introduction

How to understand strong coupling dynamics of QCD?

low energy hadron physics, sQGP, ···

- numerical analysis
- effective theory
 - ♦ chiral perturbation
 - hidden local symmetry

• gauge/string duality

AdS/CFT and its extension. As an application,

$$\frac{\eta}{s} = \frac{1}{4\pi} \qquad \qquad {\rm Kovtun-Son-Starinets}$$

-QCD and gauge/string duality- 1/13

Maldacena, ...

A string dual of large $N_c \ \mathbf{QCD}$

Sakai-Sugimoto '04

Intersecting $D4/D8/\overline{D8}$ -brane configuration in type IIA superstring

Claim:

5d $U(N_f)$ **YM-CS** theory on **D8** governs hadron dynamics

$$\begin{split} S &= S_{\rm YM} + S_{\rm CS} \\ S_{\rm YM} &= -\kappa \int d^4 x dz \ {\rm tr} \left[\frac{1}{2} h(z) \mathcal{F}_{\mu\nu}^2 + k(z) \mathcal{F}_{\mu z}^2 \right] \\ S_{\rm CS} &= \frac{N_c}{24\pi^2} \int_{M^4 \times \mathbb{R}} \omega_5^{U(N_f)}(\mathcal{A}) = \frac{N_c}{24\pi^2} \int_{M^4 \times \mathbb{R}} {\rm tr} \left(\mathcal{A} \mathcal{F}^2 - \frac{i}{2} \mathcal{A}^3 \mathcal{F} - \frac{1}{10} \mathcal{A}^5 \right) \\ \kappa &= \frac{\lambda N_c}{216\pi^3} , \ \lambda = g_{\rm YM}^2 N_c , \ h(z) = (1+z^2)^{-1/3} , \ k(z) = 1+z^2 \end{split}$$

Results from the model

- chiral symmetry $U(N_f)_L \times U(N_f)_R$ manifest
- simple geometric explanation of χSB
- incorporating an infinite tower of mesons including ho, a_1, \cdots
- revival of an old idea of baryons as solitons

Bando-Kugo-Yamawaki, ... Son-Stephanov, ...

> Skyrme, Witten, ... Atiyah-Manton, ...

§2. Meson spectrum

Mesons as KK states of \mathcal{A} along the warped 5th direction

$$\begin{aligned} \mathcal{A}_{\mu}(x,z) &= \sum_{n\geq 1} B_{\mu}^{(n)}(x) \,\psi_n(z) ,\\ \mathcal{A}_z(x,z) &= \sum_{n\geq 1} \varphi^{(n)}(x) \phi_n(z) + \varphi^{(0)}(x) \phi_0(z) ,\\ &-k^{1/3} \partial_z(k \,\partial_z \psi_n) = \lambda_n \psi_n , \quad \kappa \int dz k^{-1/3} \,\psi_n \psi_m = \delta_{nm} , \quad \phi_n \propto \partial_z \psi_n . \end{aligned}$$

It is found that

$$\label{eq:product} \begin{array}{c|c} & \varphi^{(0)} & v_{\mu}^{n} = B_{\mu}^{(2n-1)} & a_{\mu}^{n} = B_{\mu}^{(2n)} \\ \hline J^{PC} & 0^{-+} & 1^{--} & 1^{++} \\ \\ \text{mass}^{2} & 0 & \lambda_{2n-1} M_{\text{KK}}^{2} & \lambda_{2n} M_{\text{KK}}^{2} \end{array}$$

Charge conjugation and **parity transformation** comes from **discrete symmetries** of 5d YM-CS:

$$C: \mathcal{A}_{\mu} \to -\mathcal{A}_{\mu}^{T}, \mathcal{A}_{z} \to -\mathcal{A}_{z}^{T}, z \to -z$$
$$P: (x_{1}, x_{2}, x_{3}, z) \to -(x_{1}, x_{2}, x_{3}, z)$$

As an example,

$\frac{m_{a_1(1260)}^2}{m_{\rho}^2} = \begin{cases} \\ \\ \end{cases}$	$\frac{\lambda_2}{\lambda_1} \simeq \frac{1.57}{0.669} \simeq 2.35$	(our model)	
	$\frac{(1230 \text{ MeV})^2}{(776 \text{ MeV})^2} \simeq 2.51$	(experiment)	
$\frac{m_{\rho(1450)}^2}{m_{\rho}^2} = \begin{cases} \\ \\ \end{cases}$	$\frac{\lambda_3}{\lambda_1} \simeq \frac{2.87}{0.669} \simeq 4.29$	(our model)	
	$\frac{(1465 \text{ MeV})^2}{(776 \text{ MeV})^2} \simeq 3.56$	(experiment)	

Problems: How to obtain mesons that are not included in 5d YM-CS?

- mesons with J > 1
- those of $J^{PC} = 1^{+-}$ and 1^{-+}
- massive scalar mesons

This is done by quantizing an open string ending ending on D8

dictionary

- mesons as open strings ending on D8
- baryons as a D4-brane wrapped around S^4
- glueballs as closed strings

Csaki et.al., de Mello Koch et.al., Brower et.al.,...

This is difficult to perform because

- curved background with RR-flux
- D8 curved as well

These problems are addressed using $1/\lambda$ expansions:

Imoto-Sakai-Sugimoto '09

step 1

In the large $\lambda = g_{YM}^2 N_c$ limit, the curved background can be approximated with flat $\mathbb{R}^{9,1}$. The mass spectrum on D8 is given by

$$-p^2 = \frac{N}{\alpha'_{\text{eff}}} = \frac{4}{27} \lambda M_{\text{KK}}^2 N \equiv m_0^2 , \quad N \in \mathbb{Z}_{\ge 1} .$$

Remove the exotic states that are **not composed of the quark and the gluon**.

D4/D8 system has exotic symmetries that have no counterpart in realistic QCD. Since the quarks and gluon are neutral under them,

- the genuine QCD mesons are neutral
- exotic states carry a nontrivial charge of the unphysical symmetries

We are led to focus on only the string modes propagating in $\mathbb{R}^{4,1} \subset \mathbb{R}^{8,1}$.

step 3

Incorporate the 1st-order $1/\lambda$ correction into the mass shell condition, which amounts to turning on a potential term along the extra 5th direction. We obtain

$$M_n^2 = \frac{N}{\alpha_{\text{eff}}'} + \sqrt{\frac{2N}{\alpha_{\text{eff}}'}} \left(n + \frac{1}{2}\right) M_{\text{KK}} \ .$$

Here $n = 1, 2, \cdots$. **step 4** Assign *P* and *C* parity

$$P = I_{123z} , \quad C = I_{489} \,\Omega \,(-)^{F_L}$$

§3 Comparison with experiments

1. For a given $N \ge 1$, the maximal spin state is fixed uniquely with J = N + 1.

$$J = 1 + \alpha'_{\text{eff}} M_n^2 + \sqrt{2} \, \alpha'_{\text{eff}} \left(n + \frac{1}{2} \right) M_{\text{KK}} M_n + \mathcal{O}(\lambda^{-1}) \, .$$

Regge behavior with a nonlinear correction in M_n^2

A plot of the modified Regge trajectory with $\alpha'_{\rm eff} = 1.1 \ {\rm GeV}^{-2}$, $M_{\rm KK} = 949 \, {\rm MeV}$. The dots represent the mesons in the ρ -meson trajectory.

2. The (N, n) = (1, 0) state with label J^{PC} includes

$$2^{++}$$
, 1^{--} , 1^{+-} , 0^{-+} , $0^{++} \times 3$,

which are predicted to have mass $1290 \,\mathrm{MeV}$ by setting

$$\alpha'_{\rm eff} = 1.1 \, {\rm GeV}^{-2} \ , \quad M_{\rm KK} = 949 \, {\rm MeV} \ .$$

- 2^{++} is identified with $a_2(1320)$.
- The rest should be identified with mesons with mass $\sim 1290 \, {\rm MeV}$.
- 3. The (N, n) = (2, 0) state includes

$$3^{--}, 2^{++}, 2^{-+} \times 2, 2^{--}, 1^{--} \times 7, 1^{+-} \times 4, 1^{++} \times 3, 1^{-+}, 0^{++} \times 2, 0^{-+} \times 6,$$

which are predicted to have mass $1680 \,\mathrm{MeV}$.

- 3^{--} is identified with $\rho_3(1690)$.
- The rest should be identified with mesons with mass $\sim 1680\,{\rm MeV}$

$0^{-+}(\pi)$	135 ^{SS}	$1300^{(1,0)}$	$1800^{(2,0)}$			
$0^{++}(a_0)$	980*	$1450^{(1,0)}$				
$1^{}(\rho)$	770 ^{SS}	$1450^{(1,0)\mathrm{orSS}}$	$1570^{\Delta(1,0)\mathrm{orSS}}$	1700	1900^{\bigtriangleup}	2150^{\bigtriangleup}
$1^{++}(a_1)$	1260 ^{SS}	$1640^{ riangle(2,0)}$				
$1^{+-}(b_1)$	1235 ^(1,0)					
$1^{-+}(\pi_1)$	1400*	$1600^{*(2,0)}$				
$2^{++}(a_2)$	$1320^{(1,0)}$	$1700^{ riangle(2,0)}$				
$2^{-+}(\pi_2)$	$1670^{(2,0)}$	$1880^{(2,0)}$	2100^{\bigtriangleup}			
$3^{}(\rho_3)$	$1690^{(2,0)}$	1990^{\bigtriangleup}	$2250^{ riangle}$			
$4^{++}(a_4)$	$2040^{(3,0)}$					
$5^{}(\rho_5)$	$2350^{\Delta(4,0)}$					
$6^{++}(a_6)$	$2450^{\Delta(5,0)}$					

Isovector mesons from meson summary table in PDG. \bigtriangleup indicates a poor evidence. * indicates non- $\bar{q}q$ states.

Comments

- We have obtained the meson states that were missed in 5d YM-CS.
- As N,n grows, our model predicts more redundant states that are not found in PDG data.
 - $\diamond~$ In large $N_c~\rm QCD,$ there exists an infinite number of stable mesons. For finite $N_c,$ it is possible that
 - \star some of them form a bound state
 - \star some correspond to wide resonances with width of $\mathcal{O}(1/N_c)$.
 - No one-to-one correspondence between our model and experiments expected
- Those states identified with the mesons match experiments quantitatively.