QCD and gauge/string duality

Tadakatsu Sakai (Nagoya Univ./ KMI)

§1. Introduction

How to understand strong coupling dynamics of QCD?

low energy hadron physics, sQGP, ...

- numerical analysis
- effective theory
\diamond chiral perturbation
\diamond hidden local symmetry
- gauge/string duality

AdS/CFT and its extension. As an application,

$$
\frac{\eta}{s}=\frac{1}{4 \pi}
$$

A string dual of large N_{c} QCD

Intersecting D4/D8/D8-brane configuration in type IIA superstring

Claim:

5d $U\left(N_{f}\right)$ YM-CS theory on D8 governs hadron dynamics

$$
\begin{aligned}
S & =S_{\mathrm{YM}}+S_{\mathrm{CS}} \\
S_{\mathrm{YM}} & =-\kappa \int d^{4} x d z \operatorname{tr}\left[\frac{1}{2} h(z) \mathcal{F}_{\mu \nu}^{2}+k(z) \mathcal{F}_{\mu z}^{2}\right] \\
S_{\mathrm{CS}} & =\frac{N_{c}}{24 \pi^{2}} \int_{M^{4} \times \mathbb{R}} \omega_{5}^{U\left(N_{f}\right)}(\mathcal{A})=\frac{N_{c}}{24 \pi^{2}} \int_{M^{4} \times \mathbb{R}} \operatorname{tr}\left(\mathcal{A} \mathcal{F}^{2}-\frac{i}{2} \mathcal{A}^{3} \mathcal{F}-\frac{1}{10} \mathcal{A}^{5}\right) \\
\kappa & =\frac{\lambda N_{c}}{216 \pi^{3}}, \quad \lambda=g_{\mathrm{YM}}^{2} N_{c}, \quad h(z)=\left(1+z^{2}\right)^{-1 / 3}, \quad k(z)=1+z^{2}
\end{aligned}
$$

Results from the model

- chiral symmetry $U\left(N_{f}\right)_{L} \times U\left(N_{f}\right)_{R}$ manifest
- simple geometric explanation of $\chi \mathrm{SB}$
- incorporating an infinite tower of mesons including ρ, a_{1}, \ldots

Bando-Kugo-Yamawaki, ... Son-Stephanov, ...

Skyrme, Witten, ... Atiyah-Manton, ...

§2. Meson spectrum

Mesons as KK states of \mathcal{A} along the warped 5 th direction

$$
\begin{aligned}
\mathcal{A}_{\mu}(x, z)= & \sum_{n \geq 1} B_{\mu}^{(n)}(x) \psi_{n}(z) \\
\mathcal{A}_{z}(x, z)= & \sum_{n \geq 1} \varphi^{(n)}(x) \phi_{n}(z)+\varphi^{(0)}(x) \phi_{0}(z) \\
& -k^{1 / 3} \partial_{z}\left(k \partial_{z} \psi_{n}\right)=\lambda_{n} \psi_{n}, \quad \kappa \int d z k^{-1 / 3} \psi_{n} \psi_{m}=\delta_{n m}, \quad \phi_{n} \propto \partial_{z} \psi_{n} .
\end{aligned}
$$

It is found that

	$\varphi^{(0)}$	$v_{\mu}^{n}=B_{\mu}^{(2 n-1)}$	$a_{\mu}^{n}=B_{\mu}^{(2 n)}$
$J^{P C}$	0^{-+}	1^{--}	1^{++}
mass 2	0	$\lambda_{2 n-1} M_{\mathrm{KK}}^{2}$	$\lambda_{2 n} M_{\mathrm{KK}}^{2}$

Charge conjugation and parity transformation comes from discrete symmetries of 5d YM-CS:

$$
\begin{aligned}
& C: \mathcal{A}_{\mu} \rightarrow-\mathcal{A}_{\mu}^{T}, \mathcal{A}_{z} \rightarrow-\mathcal{A}_{z}^{T}, z \rightarrow-z \\
& P:\left(x_{1}, x_{2}, x_{3}, z\right) \rightarrow-\left(x_{1}, x_{2}, x_{3}, z\right)
\end{aligned}
$$

As an example,

$$
\begin{aligned}
& \frac{m_{a_{1}(1260)}^{2}}{m_{\rho}^{2}}=\left\{\begin{array}{cl}
\frac{\lambda_{2}}{\lambda_{1}} \simeq \frac{1.57}{0.669} \simeq 2.35 & \text { (our model) } \\
\frac{(1230 \mathrm{MeV})^{2}}{(776 \mathrm{MeV})^{2}} \simeq 2.51 & \text { (experiment) }
\end{array}\right. \\
& \frac{m_{\rho(1450)}^{2}}{m_{\rho}^{2}}=\left\{\begin{array}{cl}
\frac{\lambda_{3}}{\lambda_{1}} \simeq \frac{2.87}{0.669} \simeq 4.29 & \text { (our model) } \\
\frac{(1465 \mathrm{MeV})^{2}}{(776 \mathrm{MeV})^{2}} \simeq 3.56 & \text { (experiment) }
\end{array}\right.
\end{aligned}
$$

Problems: How to obtain mesons that are not included in 5d YM-CS?

- mesons with $J>1$
- those of $J^{P C}=1^{+-}$and 1^{-+}
- massive scalar mesons

This is done by quantizing an open string ending ending on D8 dictionary

- mesons as open strings ending on D8
- baryons as a D4-brane wrapped around S^{4}

Hata-Sakai-Sugimoto-Yamato, ...

- glueballs as closed strings

This is difficult to perform because

- curved background with RR-flux
- D8 curved as well

These problems are addressed using $1 / \lambda$ expansions:

```
step 1
```

In the large $\lambda=g_{\mathrm{YM}}^{2} N_{c}$ limit, the curved background can be approximated with flat $\mathbb{R}^{9,1}$. The mass spectrum on D8 is given by

$$
-p^{2}=\frac{N}{\alpha_{\mathrm{eff}}^{\prime}}=\frac{4}{27} \lambda M_{\mathrm{KK}}^{2} N \equiv m_{0}^{2}, \quad N \in \mathbb{Z}_{\geq 1}
$$

```
step 2
```

Remove the exotic states that are not composed of the quark and the gluon.
D4/D8 system has exotic symmetries that have no counterpart in realistic QCD. Since the quarks and gluon are neutral under them,

- the genuine QCD mesons are neutral
- exotic states carry a nontrivial charge of the unphysical symmetries

We are led to focus on only the string modes propagating in $\mathbb{R}^{4,1} \subset \mathbb{R}^{8,1}$.

```
step 3
```

Incorporate the 1st-order $1 / \lambda$ correction into the mass shell condition, which amounts to turning on a potential term along the extra 5th direction. We obtain

$$
M_{n}^{2}=\frac{N}{\alpha_{\mathrm{eff}}^{\prime}}+\sqrt{\frac{2 N}{\alpha_{\mathrm{eff}}^{\prime}}}\left(n+\frac{1}{2}\right) M_{\mathrm{KK}}
$$

Here $n=1,2, \cdots$.
step 4 Assign P and C parity

$$
P=I_{123 z}, \quad C=I_{489} \Omega(-)^{F_{L}}
$$

§3 Comparison with experiments

1. For a given $N \geq 1$, the maximal spin state is fixed uniquely with $J=N+1$.

$$
J=1+\alpha_{\mathrm{eff}}^{\prime} M_{n}^{2}+\sqrt{2} \alpha_{\mathrm{eff}}^{\prime}\left(n+\frac{1}{2}\right) M_{\mathrm{KK}} M_{n}+\mathcal{O}\left(\lambda^{-1}\right)
$$

Regge behavior with a nonlinear correction in M_{n}^{2}

A plot of the modified Regge trajectory with $\alpha_{\text {eff }}^{\prime}=$ $1.1 \mathrm{GeV}^{-2}, \quad M_{\mathrm{KK}}=949 \mathrm{MeV}$. The dots represent the mesons in the ρ-meson trajectory.
2. The $(N, n)=(1,0)$ state with label $J^{P C}$ includes

$$
2^{++}, \quad 1^{--}, \quad 1^{+-}, \quad 0^{-+}, \quad 0^{++} \times 3
$$

which are predicted to have mass 1290 MeV by setting

$$
\alpha_{\mathrm{eff}}^{\prime}=1.1 \mathrm{GeV}^{-2}, \quad M_{\mathrm{KK}}=949 \mathrm{MeV}
$$

- 2^{++}is identified with $a_{2}(1320)$.
- The rest should be identified with mesons with mass $\sim 1290 \mathrm{MeV}$.

3. The $(N, n)=(2,0)$ state includes

$$
\begin{array}{ll}
3^{--}, & 2^{++}, \quad 2^{-+} \times 2, \quad 2^{--}, \quad 1^{--} \times 7, \quad 1^{+-} \times 4, \quad 1^{++} \times 3 \\
1^{-+}, & 0^{++} \times 2, \quad 0^{-+} \times 6
\end{array}
$$

which are predicted to have mass 1680 MeV .

- 3^{--}is identified with $\rho_{3}(1690)$.
- The rest should be identified with mesons with mass $\sim 1680 \mathrm{MeV}$

$0^{-+}(\pi)$	$135^{S S}$	$1300^{(1,0)}$	$1800^{(2,0)}$			
$0^{++}\left(a_{0}\right)$	980^{*}	$1450^{(1,0)}$				
$1^{--}(\rho)$	$770^{S S}$	$1450^{(1,0) \text { orSS }}$	$1570^{\triangle(1,0) \text { orSS }}$	1700	1900^{\triangle}	2150^{\triangle}
$1^{++}\left(a_{1}\right)$	$1260^{S S}$	$1640^{\triangle(2,0)}$				
$1^{+-}\left(b_{1}\right)$	$1235^{(1,0)}$					
$1^{-+}\left(\pi_{1}\right)$	1400^{*}	$1600^{*(2,0)}$				
$2^{++}\left(a_{2}\right)$	$1320^{(1,0)}$	$1700^{\triangle(2,0)}$				
$2^{-+}\left(\pi_{2}\right)$	$1670^{(2,0)}$	$1880^{(2,0)}$	2100^{\triangle}			
$3^{--}\left(\rho_{3}\right)$	$1690^{(2,0)}$	1990^{\triangle}	2250^{\triangle}			
$4^{++}\left(a_{4}\right)$	$2040^{(3,0)}$					
$5^{--}\left(\rho_{5}\right)$	$2350^{\triangle(4,0)}$					
$6^{++}\left(a_{6}\right)$	$2450^{\triangle(5,0)}$					

Isovector mesons from meson summary table in PDG. \triangle indicates a poor evidence. * indicates non- $\bar{q} q$ states.

Comments

- We have obtained the meson states that were missed in 5d YM-CS.
- As N, n grows, our model predicts more redundant states that are not found in PDG data.
\diamond In large N_{c} QCD, there exists an infinite number of stable mesons. For finite N_{c}, it is possible that
* some of them form a bound state
\star some correspond to wide resonances with width of $\mathcal{O}\left(1 / N_{c}\right)$.
\diamond No one-to-one correspondence between our model and experiments expected
- Those states identified with the mesons match experiments quantitatively.

