The KMI lattice project
— exploring for technicolor from QCD —

Yasumichi Aoki
Kobayashi-Maskawa Institute (KMI), Nagoya University

for the KMI lattice collaboration

@ KMI Inauguration Conference
KMI lattice collaboration members

- YA, T.Aoyama, M.Kurachi, T.Maskawa, K.Nagai, H.Ohki,
- K.Yamawaki, T.Yamazaki
- K.Hasebe
- A.Shibata
Origin of the mass of fundamental particles

— Standard Model —

• Higgs mechanism:
 • VEV of scalar field breaks global gauge symmetry \rightarrow NG boson (massless)
 • NG boson absorbed as longitudinal component of $W, Z \rightarrow$ massive W, Z
 • Yukawa interaction gives mass to fermions
 • fundamental scalar: UV power divergence
 • gauge hierarchy problem (fine tuning)
Origin of the mass of fundamental particles — Technicolor (alternative to Higgs mechanism) —

- Techni-fermion condensate $<\overline{T_R T_L}>$ at low energy (like $<\overline{q_R q_L}>$ in QCD)
 - breaks chiral symmetry
 - produces techni-pion π_{TC} (composite, like pion in QCD)
 - longitudinal component of W, Z
 - $M_W = M_Z \cos \theta_W = g F_\pi / 2$ ($F_\pi = \nu_{\text{weak}} = 246$ GeV)
- no power divergence \Rightarrow no fine tuning necessary
- fermion masses \Rightarrow extended technicolor (ETC)
- for suppressed FCNC with appropriate size of fermion masses \Rightarrow walking TC
Walking Technicolor

- key: to realize suppressed FCNC and appropriate size of fermion masses

- renormalized gauge coupling
 - to run very slowly (walking)
 - logarithmically divergent at low energies → to produce techni pions

- mass anomalous dimension
 - large: $\gamma_m \sim 1$

[Yamawaki-Bando-Matsumoto]
conformal window and walking coupling
- non-Abelian gauge theory with N_f massless fermions -
conformal window and walking coupling
- non-Abelian gauge theory with N_f massless fermions -
conformal window and walking coupling
- non-Abelian gauge theory with N_f massless fermions -

- Walking Technicolor could be realized just below the conformal window

N_f

N_f^{AF}

N_f^{crit}

Asymptotic non-free

Conformal window

Walking Technicolor

QCD-like

$\alpha(\mu)$
conformal window and walking coupling
- non-Abelian gauge theory with N_f massless fermions -

- Walking Technicolor could be realized just below the conformal window

- crucial information: N_f^{crit} & mass anomalous dimension around N_f^{crit}
SU(3) gauge theory with fundamental fermions

- perturbation theory
 - 2 loop universal running coupling at fixed point & 1 loop anomalous dim
 - $N_f^{\text{crit}} \approx 8.05$
 - $\alpha^* \approx 0.04, \gamma^* \approx 0.03$ for $N_f=16 \rightarrow$ likely in conformal phase
 - $\alpha^* \approx 0.8, \gamma^* \approx 0.5$ for $N_f=12$
SU(3) gauge theory with fundamental fermions

- perturbation theory
 - 2 loop universal running coupling at fixed point & 1 loop anomalous dim
 - $N_f^{\text{crit}} \approx 8.05$
 - $\alpha^* \approx 0.04$, $\gamma^* \approx 0.03$ for $N_f=16$ → likely in conformal phase
 - $\alpha^* \approx 0.8$, $\gamma^* \approx 0.5$ for $N_f=12$
 - requires non-perturbative method
most reliable method is lattice gauge theory

- success in QCD in SM: first principles calculation became possible
 - hadron spectrum
 - weak matrix elements: decay constants, bag parameters, form factors
 - running gauge coupling
- same quantity is indispensable and quite informative for technicolor
 - mass of the composite states
 - techni-pion decay constant
 - running technicolor coupling
KMI computer
KMI computer

• non GPU nodes
 • 148 nodes
 • 2x Xenon 3.3 GHz
 • 24 TFlops (peak)

• GPU nodes
 • 23 nodes
 • 3x Tesla M2050
 • 39 TFlops (peak)
Inauguration Ceremony of March 2nd, 2011
1st flagship project on \(\phi \)

- SU(3) + large \(N_f \) fundamental fermions

- utilize knowledge and tools developed in past ~30 years of Lattice QCD
 - reinforced by the knowledge from the real world

- investigates spectrum: techni pion mass, decay constant
SU(3) gauge theory with large N_f [fundamental rep.]

- Our goals:
 - Understand the n_f dependence of the theory
 - Find the conformal window
 - Find the walking regime and investigate mass anomalous dimension

- Status:
 - $N_f=16$ likely conformal
 - $N_f=12$: controversial
 - $N_f=10$: one study showing evidence of IR fixed point. Some more...
 - $N_f=8$: studies suggesting no IR fixed point \leftrightarrow one for conformal
 - $N_f=6$: confining: enhancement of condensation
our approach

- study N_f dependence systematically using single set up of the lattice simulation
 - target: $N_f=(0), 4, 8, 12, 16$
 - this talk mainly focuses on $N_f=12$ (most controversial in the community)
 - $N_f=12$ poster [Ohki]
 - $N_f=16$ poster [Yamazaki] (deep in conformal window ?)
 - results with 2 lattice spacings and a trial lattice spacing determination
 - $N_f=8$ poster [Nagai] (candidate for WTC?)
 - Swinger-Dyson approach and comparison with lattice $N_f=4, 12$ [Kurachi]
simulation strategy

• use of improved staggered action
 • to get nearly continuum results from non-zero lattice spacing
 • to reduce flavor violation for good SU(N) chiral symmetry
 • bound to \(N_f = 4 \) n

• we use MILC version of HISQ (Highly Improved Staggered Quark) action
 • Asqtad + \(g^2 a^2 \) taste exchange interaction & up to \((ma)^4\) removed, but
 • use tree level Symanzik gauge action
 • no \((ma)^2\) improvement (no interest to heavy quarks)
 • = HISQ/tree (HotQCD collaboration)
HISQ action

• proposed by HPQCD collaboration for
 • smaller taste violation than other approaches
 • better handling of heavy quarks

• being used in simulations (slightly changed versions)
 • MILC: Nf=2+1+1 QCD
 • HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat’10 proceedings)
 • HISQ/tree is best of [HISQ/tree, Asqtad, stout]
 for flavor (taste) symmetry, dispersion relation
HISQ action

- proposed by HPQCD collaboration for
 - smaller taste violation than other approaches
 - better handling of heavy quarks
- being used in simulations (slightly changed versions)
 - MILC: Nf=2+1+1 QCD
 - HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat’10 proceedings)
 - HISQ/tree is best of [HISQ/tree, Asqtad, stout]
 for flavor (taste) symmetry, dispersion relation

Figure 2: RMS pion mass when $m_{\pi} = 140$ MeV. See details in the text.
simulation procedure

• using MILC code v7
 • changed to do simple HMC (remove R) with 3g1f Omelyan integrator
 • note: our $\beta = 6/g^2$

• global search for β & m with small volume

• measure meson spectrum
 • in particular Goldstone pion mass and decay constants

• varying volume
$N_f=12$ SU(3): current situation

<table>
<thead>
<tr>
<th>collaboration</th>
<th>conclusion</th>
<th>method</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fodor et al</td>
<td>χ Broken</td>
<td>spectrum</td>
<td>big V, single lat.spgs.</td>
</tr>
<tr>
<td>Columbia</td>
<td>χ Broken</td>
<td>spectrum, T_c</td>
<td>naive KS</td>
</tr>
<tr>
<td>Deutchman et al</td>
<td>Conformal</td>
<td>spectrum, T_c</td>
<td>KS+Naik</td>
</tr>
<tr>
<td>Itou et al</td>
<td>Conformal</td>
<td>coupling</td>
<td>naive KS + cont.lim.</td>
</tr>
<tr>
<td>Appelquist et al</td>
<td>Conformal</td>
<td>coupling</td>
<td>non-exact algorithm</td>
</tr>
<tr>
<td>Appelquist et al</td>
<td>Conformal</td>
<td>spectrum</td>
<td>using Fodor’s data</td>
</tr>
<tr>
<td>DeGrand</td>
<td>consistent with Conformal</td>
<td>spectrum</td>
<td>using Fodor’s data</td>
</tr>
</tbody>
</table>
now our results come.
now our results come.

all the following results are preliminary...
$n_f=12$: pion mass and decay constant, $\beta=3.5$
$n_f=12$: pion mass: fit for χ broken scenario?

$\beta=3.5$

χ^2: $8^3 \times 12$, $12^3 \times 24$, $24^3 \times 32$
$n_f=12$: pion mass: fit for χ broken scenario?

$\beta=3.5$

\[m_{\pi}^2 = a m^2 + b m + c \]
$n_f=12$: pion mass: fit for χ broken scenario?

$$a m_q^2 + b m_q + c$$

$\beta=3.5$
\(n_f=12 : \) pion mass : fit for \(\chi \) broken scenario?

- \(a m_q^2 + b m_q + c \)
- \(c=-0.090(5), \chi^2/dof=1.1 \)
\(n_f=12 : \) pion mass : fit for \(\chi \) broken scenario?

- \(a m_q^2 + b m_q + c \)

- \(c=-0.090(5), \chi^2/dof=1.1 \)

- \(c=0 \rightarrow \chi^2/dof=104 \)
\(n_f=12 \): pion mass: fit for \(\chi \) broken scenario?

\[\beta = 3.5 \]

- \(a m_q^2 + b m_q + c \)
 - \(c = -0.090(5), \chi^2/dof = 1.1 \)
 - \(c = 0 \rightarrow \chi^2/dof = 104 \)

- \(a m_q^\delta \)
$n_f=12$: pion mass: fit for χ broken scenario?

$\beta=3.5$

- $a m_q^2 + b m_q + c$
 - $c=-0.090(5)$, $\chi^2/dof=1.1$
 - $c=0 \rightarrow \chi^2/dof=104$

- $a m_q^\delta$
 - $\delta=1.45(7)$, $\chi^2/dof=32$
$n_f=12$: pion mass : fit for χ broken scenario?

$\beta=3.5$

- $a m_q^2 + b m_q + c$
 - $c=-0.090(5), \chi^2/dof=1.1$
 - $c=0 \rightarrow \chi^2/dof=104$

- $a m_q^\delta$
 - $\delta=1.45(7), \chi^2/dof=32$
 - $\Rightarrow \gamma^*=0.38(7)$
nf=12 : pion decay constant

\[\beta = 3.5 \]

- \(a m_q^2 + b m_q + c \)
 - \(c = 0.021(3), \chi^2/\text{dof}=1.7 \)
 - \(c = 0 \rightarrow \chi^2/\text{dof}=17 \)

- \(b m_q^\delta \)
 - \(\delta = 0.681(9), \chi^2/\text{dof}=2.3 \)
 - \(\gamma^* = 0.47(2) \)
hyper scaling

- mass deformation in a massless conformal theory: Miransky 1999.
- mass dependence is described by anomalous dimensions at IRFP
 - quark mass anomalous dimension γ^*
 - operator anomalous dimension
- meson mass and pion decay constant obey same scaling
 \[m_\pi = c_m m_f^{1+\gamma^*} \quad f_\pi = c_f m_f^{1+\gamma^*} \]
- finite size scaling formula (Del Debbio et al)
 - scaling variable: \(x = Lm_f^{1+\gamma^*} \)
 \[Lf_\pi = F(x) \quad Lm_\pi = G(x) \]
m_{π}: finite size hyper scaling $N_f=12$, $\beta=3.5$
m_{π}: finite size hyper scaling $N_f=12, \beta=3.5$
m_π: finite size hyper scaling $N_f=12, \beta=3.5$
m_{π}: finite size hyper scaling $N_f=12$, $\beta=3.5$
m_π: finite size hyper scaling $N_f=12$, $\beta=3.5$
m_π: finite size hyper scaling $N_f=12, \beta=3.5$
m_π: finite size hyper scaling $N_f=12, \beta=3.5$
m_π: finite size hyper scaling $N_f=12$, $\beta=3.5$
m_π: finite size hyper scaling $N_f=12, \, \beta=3.5$

- optimal: $\gamma^*=0.4--0.6$
f_π: finite size hyper scaling $N_f=12$, $\beta=3.5$
f_π: finite size hyper scaling $N_f=12, \; \beta=3.5$

\begin{center}
\begin{tabular}{c|c|c|c}
$L_f \pi$ & $8^3 \times 12$ & $12^3 \times 24$ & $24^3 \times 32$ \\
\hline
$\gamma=0.6$
\end{tabular}
\end{center}
f_π: finite size hyper scaling $N_f=12, \beta=3.5$

- optimal: $\gamma^*=0.4--0.6$
\(\gamma^* \) from a fit: \(\beta=3.5 \)

- \(y = b L m_q^{1/(1+\gamma^*)} + c \) for large \(x \) where linearity is observed

\[\chi^2/\text{dof}=7.2 \]

\[\chi^2/\text{dof}=16.3 \]

• errors are statistical only
\(\gamma^* \): extending calculation towards continuum limit

- from poster by Ohki: \(N_f=12 \)
 - \(\beta=3.5 \) not included due to non-uniform aspect ratio etc...
- consistent with conformal hypothesis
- errors are statistical only
- consistency between: \(m_\pi \) and \(f_\pi \)
- tends to decreases towards the continuum limit, BUT, it could be
 - due to lattice artifact (UV), reduced physical volume (IR) or other sys err.?
N_f=4 from poster by Kurachi

Lattice results

\[\frac{L_m}{1 + \gamma_m} \]

\[L_f \]

\[\beta = 3.5 \]

\[N_f = 12 \]

\[N_f = 4 \]

no scaling observed
$N_f=8$ from poster by Nagai

ChPT analysis in $N_f=8$

> χ SB phase, analyzed by ChPT ??

- **M^2 vs mf**
 - $N_f=8, \beta=3.7$
 - Quadratic fit: $y=c_0+c_1*mf+c_2*mf^2$
 - Conformal-like fit: $y=c_0+c_1*mf^a$

- **PBP vs mf**
 - $N_f=8, \beta=3.7$

- **f_π vs mf**
 - $N_f=8, \beta=3.7$
 - Conformal analysis

It’s difficult to conclude that $N_f=8$ is in the hadron phase.
N_f=8 from poster by Nagai

Fit result of the hyperscaling in the conformal hypothesis for N_f=8

\[\gamma = 0.608(2), \chi^2/\text{dof}=39.8, \text{ at } \beta=3.7 \]
N_f=8, pion mass

\[\gamma = 1.029(7), \chi^2/\text{dof}=57.8, \text{ at } \beta=3.7 \]
N_f=8, decay constant

\[\gamma = 0.799(13), \chi^2/\text{dof}=5.7, \text{ at } \beta=3.7 \]
N_f=8, rho mass

<table>
<thead>
<tr>
<th>γ in M_{π}</th>
<th>$\beta = 3.6$</th>
<th>$\beta = 3.7$</th>
<th>$\beta = 3.8$</th>
<th>$\beta = 3.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.608(2)</td>
<td>0.607(3)</td>
<td>0.563(3)</td>
<td>0.757(14)</td>
<td></td>
</tr>
<tr>
<td>0.766(40)</td>
<td>0.799(13)</td>
<td>0.862(59)</td>
<td>1.18(32)</td>
<td></td>
</tr>
<tr>
<td>1.02(1)</td>
<td>1.03(1)</td>
<td>0.98(1)</td>
<td>1.13(3)</td>
<td></td>
</tr>
</tbody>
</table>

Table:

It seems not to be simple hadronic phase: $\gamma \neq 1$. c.f. N_f=4 case.

\[\gamma \approx 1, \text{ walking ??} \]

\[\spadesuit \text{ N_f}=8 \text{ shows the good behavior of the hyperscaling.} \]

\[\spadesuit \text{ Still, } \gamma(M_{\pi}) < \gamma(M_{\rho}) < \gamma(f_{\pi}) \text{ not exact Conformal ??} \]
5. Results of mass and finite size deformed case

Changing γ_* of Lm_π vs $Lm_{\frac{1}{1+\gamma_*}} (\beta = 3.50)$

$\gamma_* \sim 0.3$ gives a nice scaling at larger value of x-axis.
$N_f=16$ from poster by Yamazaki

Lm_π and Lf_π fit with asymptotic form: $Lm_\pi = c_0 + c_1 x, \quad x = Lm_\pi^{\frac{1}{1+\gamma}}$

γ_* at $\beta = 3.50$ is consistent with the one of mass deformed case. Two γ_* from different observables reasonably agree with each other at both β.

However, γ_* at both β is much larger than the perturbative result, $\gamma^\text{pert}_* \sim 0.015$.

\[\text{Poster: Ohki} \]
summary

- large N_f SU(3) gauge theory with fundamental rep. is being investigated
 - quest for the walking technicolor
- using a HISQ type fermion and the tree-level Symanzik gauge action
- aiming to explore a wide range of the N_f systematically
- This talk mainly described $N_f=12$ study
 - three lattice spacings ($\beta=6/g^2$) studied, with spatial size up to $L_s=30$
 - pion mass and decay constant are studied
 - approximate finite size scaling for conformal scenario is observed
 - with the current lattice volume, results favor conformal theory
 - assuming an IR fixed point, mass anomalous dimension calculated
 - $\gamma^* \sim 0.4$
comparison to other works on Nf=12 SU(3)

<table>
<thead>
<tr>
<th>collaboration</th>
<th>conclusion</th>
<th>method</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fodor et al</td>
<td>χ Broken</td>
<td>spectrum</td>
<td>big V, single lat.spgs.</td>
</tr>
<tr>
<td>Columbia</td>
<td>χ Broken</td>
<td>spectrum, Tc</td>
<td>naive KS</td>
</tr>
<tr>
<td>Deutchman et al</td>
<td>Conformal</td>
<td>spectrum, Tc</td>
<td>KS+Naik</td>
</tr>
<tr>
<td>Itou et al</td>
<td>Conformal</td>
<td>coupling</td>
<td>naive KS + cont.lim.</td>
</tr>
<tr>
<td>Appelquist et al</td>
<td>Conformal</td>
<td>coupling</td>
<td>non-exact algorithm</td>
</tr>
<tr>
<td>Appelquist et al</td>
<td>Conformal</td>
<td>spectrum</td>
<td>using Fodor’s data</td>
</tr>
<tr>
<td>DeGrand</td>
<td>consistent with Conformal</td>
<td>spectrum</td>
<td>using Fodor’s data</td>
</tr>
<tr>
<td>KMI</td>
<td>consistent with Conformal</td>
<td>spectrum</td>
<td>HSIQ, 3 lat.spgs.</td>
</tr>
</tbody>
</table>
summary (continued)

• $N_f=4$
 • clearly in χ broken phase
 • finite size hyper scaling not observed
• $N_f=8$
 • more study needed for definite conclusion
• $N_f=12$
 • results are consistent with conformal hypothesis
• $N_f=16$
 • consistent with conformal, but with large anomalous dimension
 • study with weaker coupling necessary
outlook

• to meet our goals

• for $N_f=8, 12$
 • larger size than $L_s=30$ is needed to investigate further IR regime
 • make it possible to study lighter mass
 • glueball mass to check hyper scaling
 • masses for other mesons, baryons, flavor singlets: to check hyper scaling

• for $N_f=16$
 • much weaker coupling
Thank you for your attention