Linking U(2)×U(2) to O(4) via decoupling

Norikazu Yamada (KEK, GUAS)

in collaboration with Tomomi Sato (KEK, GUAS)

Based on

 n "Linking U(2)×U(2) to O(4) model via decoupling", PRD91(2015)034025 [arXiv:1412.8026 [hep-lat]]
 "RG flow of linear sigma model with U_A(1) anomaly", PoS LATTICE 2014, 191 (2015)[arXiv:1501.06684 [hep-lat]]
 "More about vacuum structure of Linear Sigma Model", PoS LATTICE 2013, 430 (2014)[arXiv:1311.4621 [hep-lat]]

Outline

• Goal:

Study chiral phase transition of massless two-flavor QCD at finite T and in vanishing μ in terms of ε expansion

• Assumption: Non-zero breaking of $U_A(1)$ symmetry remains at T_c

• Focusing on:

- i) Whether 2nd order phase transition is possible?
- ii) What is the universality class? (← critical exponents)

• How:

Analyze RG-flow of the 3-d Ginsburg-Landau-Wilson model. IRFP $\Leftrightarrow 2^{nd}$ order possible

• Conclusions:

- i) No IRFP, but still 2nd order phase transition is possible.
- ii) Exponent differs from those in O(4) due to non-decoupling effects.

Effective theory approach

Pisarski and Wilczek, PRD29, 338 (1984)

Look at RG flow of 3-d linear σ model (LσM)

The nature in PT 2-f QCD depends on fate of $U_A(1)$ at T_c . ($N_f \ge 3 \Rightarrow 1^{st}$ order)

i) Largely broken \Rightarrow SU(2)×SU(2) \Rightarrow O(4) L σ M \Rightarrow Wilson-Fisher FP \Rightarrow 2nd with O(4) scaling is possible

ii) Fully, effectively restored \Rightarrow U(2)×U(2) [or O(2)×O(4)] LoM \Rightarrow IRFP? \Rightarrow 1st or 2nd with U(2)×U(2) scaling

iii) If breaking is small, $\Rightarrow U(2) \times U(2) L \sigma M$ with $U_A(1) [U_A(1) broken L \sigma M]$ $\Rightarrow ???$

$U_A(1)$ broken $L\sigma M$

$$\Phi = \sqrt{2}(\phi_0 - i\chi_0)t_0 + \sqrt{2}(\chi_i + i\phi_i)t_i \rightarrow e^{2i\theta_A}L^{\dagger}\Phi R \quad (L \in SU_L(2), \ R \in SU_R(2), \ \theta_A \in \operatorname{Re})$$

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{U(2) \times U(2)} + \mathcal{L}_{\text{breaking}}$$

$$\mathcal{L}_{U(2) \times U(2)} = \frac{1}{2}\operatorname{tr} \left[\partial_{\mu}\Phi^{\dagger}\partial_{\mu}\Phi\right] + \frac{1}{2}m_0^2\operatorname{tr} \left[\Phi^{\dagger}\Phi\right] + \frac{\pi^2}{3}g_1\left(\operatorname{tr}[\Phi^{\dagger}\Phi]\right)^2 + \frac{\pi^2}{3}g_2\operatorname{tr} \left[(\Phi^{\dagger}\Phi)^2\right]$$

$$\mathcal{L}_{\text{breaking}} = -\frac{c_A}{4}\left(\det \Phi + \det \Phi^{\dagger}\right) + \frac{\pi^2}{3}x\operatorname{Tr}[\Phi\Phi^{\dagger}]\left(\det \Phi + \det \Phi^{\dagger}\right) + \frac{\pi^2}{3}y\left(\det \Phi + \det \Phi^{\dagger}\right)^2 + w\left(\operatorname{tr} \left[\partial_{\mu}\Phi^{\dagger}t_2 \partial_{\mu}\Phi^*t_2\right] + \operatorname{h.c.}\right)$$
Rewriting in terms of components
$$\mathcal{L}_{\text{total}} = (1+w)\frac{1}{2}(\partial_{\mu}\phi_a)^2 + \frac{m_{\phi}^2}{2}\phi_a^2 + \frac{\pi^2}{3}\lambda(\phi_a^2)^2 \quad \leftarrow \operatorname{O}(4)\operatorname{L}\sigma\operatorname{M} + (1-w)\frac{1}{2}(\partial_{\mu}\chi_a)^2 + \frac{m_{\chi}^2}{2}\chi_a^2 + \frac{\pi^2}{3}\left[(\lambda - 2x)(\chi_a^2)^2 + 2(\lambda + g_2 - z)\phi_a^2\chi_b^2 - 2g_2(\phi_a\chi_a)^2\right]$$

Setting $T=T_c \Leftrightarrow m_{\phi}^2=0 \Leftrightarrow m_{\chi}^2=c_A > 0$ (Thus χ is massive) At T_c , calculate β -functions in $d=4-\varepsilon$ dims with $\varepsilon=1$.

β functions

1-loop calc. with dim reg., a mass-dep. scheme and w=0 yields

$$\begin{split} \beta_{\hat{\lambda}} &= -\epsilon \hat{\lambda} + 2\hat{\lambda}^{2} + \frac{1}{6}f(\hat{\mu})\left(4\hat{\lambda}^{2} + 6\hat{\lambda}\hat{g}_{2} + 3\hat{g}_{2}^{2} - 8\hat{\lambda}\hat{z} - 6\hat{g}_{2}\hat{z} + 4\hat{z}^{2}\right), \iff O(4) \text{ LSM} \\ \beta_{\hat{g}_{2}} &= -\epsilon \hat{g}_{2} + \frac{1}{3}\hat{\lambda}\hat{g}_{2} + \frac{1}{3}f(\hat{\mu})\hat{g}_{2}\left(\hat{\lambda} - 2\hat{x}\right) + \frac{1}{3}h(\hat{\mu})\hat{g}_{2}\left(4\hat{\lambda} + \hat{g}_{2} - 4\hat{z}\right), \\ \beta_{\hat{x}} &= -\epsilon\hat{x} + 4f(\hat{\mu})\left(\hat{\lambda}\hat{x} - \hat{x}^{2}\right) \\ &\quad + \frac{1}{12}\left(1 - f(\hat{\mu})\right)\left(8\hat{\lambda}^{2} - 6\hat{\lambda}\hat{g}_{2} - 3\hat{g}_{2}^{2} + 8\hat{\lambda}\hat{z} + 6\hat{g}_{2}\hat{z} - 4\hat{z}^{2}\right), \\ \beta_{\hat{z}} &= -\epsilon\hat{z} + \frac{1}{2}\left(2\hat{\lambda}^{2} - \hat{\lambda}\hat{g}_{2} + 2\hat{\lambda}\hat{z}\right) - \frac{1}{6}h(\hat{\mu})\left(4\hat{\lambda}^{2} + 3\hat{g}_{2}^{2} - 8\hat{\lambda}\hat{z} + 4\hat{z}^{2}\right) \\ &\quad + \frac{1}{6}f(\hat{\mu})\left(-2\hat{\lambda}^{2} + 3\hat{\lambda}\hat{g}_{2} + 3\hat{g}_{2}^{2} - 2\hat{\lambda}\hat{z} - 6\hat{g}_{2}\hat{z} + 12\hat{\lambda}\hat{x} + 6\hat{g}_{2}x - 12\hat{x}\hat{z} + 4\hat{z}^{2}\right), \end{split}$$

$$\hat{\mu} = \mu/m_{\chi}, \lim_{\hat{\mu} \to 0} f(\hat{\mu}) = \lim_{\hat{\mu} \to 0} h(\hat{\mu}) = O(\hat{\mu}^2), \lim_{\hat{\mu} \to \infty} f(\hat{\mu}) = \lim_{\hat{\mu} \to \infty} h(\hat{\mu}) = 1$$

▶
$$\mu \rightarrow 0$$
 (IR limit) with m_{χ} fixed $\rightarrow ???$
($m_{\chi} \rightarrow \infty$ with μ fixed $\rightarrow O(4)$ LσM)

RG-flow (1)

No IRFP

RG-flow (2)

RG flows can be classified by its IR behavior into two types:

- 1. All couplings diverge $\Rightarrow 1^{st}$ order
- 2. $\hat{\lambda}$ approaches $\varepsilon/2$ and others diverge $\Rightarrow 2^{nd}$ order?

How to interpret no IRFP but $\hat{\lambda} \rightarrow \hat{\lambda}_{FP}$

Usually, no IRFP $\Rightarrow 1^{st}$ order

But, in the present case, we infer that **the system undergoes 2nd order.**

Reason: $U_A(1)$ broken $L\sigma M = O(4) L\sigma M$ in IR limit

If, in IR limit, massive χ decouples and arbitrary n-point functions of ϕ_i agree btw two theories:

 $\langle \phi_i(x_1)\phi_j(x_2)\cdots
angle |_{O(4)} = \langle \phi_i(x_1)\phi_j(x_2)\cdots
angle |_{U_A(1) ext{broken}}$

Confirmed for arbitrary 4-point functions to 1-loop.

O(4) L σ M has Wilson-Fisher FP in IR limit. \Rightarrow IR limit of U_A(1) broken L σ M should have it, too. Critical exponents \Rightarrow Universality class Powerful tool to analyze various critical phenomena $\nu, \eta, \alpha, \beta, \gamma, \delta, \omega$

 ν : correlation length ~ $|t|^{-\nu}$ (*t*: reduced temperature) η : $\langle \phi(x) \phi(0) \rangle \sim |x|^{-d+2-\eta}$ ω : scaling dim. of the leading irrelevant op.

Critical exponents in O(4) model

Model	ν	η	ω	
O(4) (a few % error.)	0.750	0.0360	0.774	←Hasenbusch and Vicari, PRB84, 125136 (2011)
O(4) <i>E</i> -exp (at leading order)	2/(4- <i>e</i>)	0	8	

Critical exponents in U₄(1) model

Model	u	η	ω	
O(4) (a few % error.)	0.750	0.0360	0.774	←Hasenbusch and Vicari, PRB84, 125136 (2011)
O(4) <i>E</i> -exp (at leading order)	2/(4- <i>ɛ</i>)	0	Е	
U _A (1) E-exp (at leading order)	2/(4- <i>e</i>)	0	2 - 5 <i>ε</i> /3	⇐ This work

At least, one of the critical exponents, ω , is different from O(4).

Two-loop calculation is underway.

Reason for different *w*

$$\omega = \frac{d\beta_{\hat{\lambda}}}{d\hat{\lambda}}|_{\hat{\lambda} = \hat{\lambda}_{\rm IRFP}}$$

ω : determined by RG dimension of leading irrelevant op.
 In O(4) LσM,

$$\mathcal{L}_{O(4)} = \frac{1}{2} (\partial_{\mu} \phi_{a})^{2} + \frac{\pi^{2}}{3} \lambda (\phi_{a}^{2})^{2}$$

$$\Rightarrow \omega_{O(4)} = \epsilon$$

Reason for different *w*

In U_A(1) broken L_oM,

Non-decoupling causes non-universality.

Attractive Basin (large U_A(1) breaking)

$m_{\chi}^{2}/\Lambda^{2}=1$

Attractive Basin (small U_A(1) breaking)

$m_{\chi}^2/\Lambda^2=0.01$

For smaller $m\chi^2$, attractive basin shrinks in vertical (g₂) direction.

 \Rightarrow In order to realize 2nd order transition, g₂ has to be tuned.

Impact on the nature of S_{\chi}SB

So far, three possibilities have been discussed for the nature of transition: i) 1st order ii) 2nd order with O(4) scaling iii)2nd order with U(2)×U(2) scaling

Our study suggests fourth possibility: iv) 2nd order with O(4)-like scaling

- ► $U(2) \times U(2)$ LSM with a finite $U_A(1)$ breaking is studied in ε -expansion.
- A novel possibility for the nature of chiral phase transition of massless two-flavor QCD, 2nd order with a scaling different from O(4).
- ▶ Difference from O(4) comes from non-decoupling.
- Non-decoupling effects induced non-universality.