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Outline
• Goal:

Study chiral phase transition of massless two-flavor QCD at finite T 
and in vanishing μ in terms of ε expansion

• Assumption: Non-zero breaking of UA(1) symmetry remains at Tc

• Focusing on:
i) Whether 2nd order phase transition is possible?
ii) What is the universality class? (⇐ critical exponents)

• How:
Analyze RG-flow of the 3-d Ginsburg-Landau-Wilson model. 
IRFP ⇔ 2nd order possible

• Conclusions:
i) No IRFP, but still 2nd order phase transition is possible.
ii) Exponent differs from those in O(4) due to non-decoupling effects.



Effective theory approach
Look at RG flow of 3-d linear σ model (LσM)

The nature in PT 2-f QCD depends on fate of UA(1) at Tc. 
(Nf ≥ 3 ⇒ 1st order)

i) Largely broken ⇒ SU(2)×SU(2) ⇒ O(4) LσM
⇒ Wilson-Fisher FP ⇒ 2nd with O(4) scaling is possible

ii)Fully, effectively restored ⇒ U(2)×U(2) [or O(2)×O(4)] LσM 
⇒ IRFP? ⇒ 1st or 2nd with U(2)×U(2) scaling

iii) If breaking is small,
⇒ U(2)×U(2) LσM with UA(1)  [UA(1) broken LσM]
⇒ ???

Pisarski and Wilczek, PRD29, 338 (1984)



Then, the order parameters suitably chosen are small and hence is used as an expansion

parameter to construct Landau-Ginzburg-Wilson (LGW) field theory. At the critical tem-

perature, the system becomes infrared conformal, and modes with a divergent correlation

length arise. Then, the original system defined in four space-time dimensions can be ap-

proximately described in three space dimensions. In the following, the calculation is done

in D = 4− ϵ dimension, and in the end ϵ = 1 is substituted.

The building block of the LSM is a 2× 2 complex matrix field

Φ =
√
2(φ0 − iχ0)t0 +

√
2(χi + iφi)ti, (1)

where t0 = 12×2/2 and ti=σi/2 (i = 1, 2, 3) is the generator of SU(2) group. φ0 and φi

correspond to σ and πi in more commonly used name, respectively. Similarly χ0 and χi to

η′ and δi. Thus, χ0 denotes the iso-singlet pseudoscalar, and χi the iso-triplet scalar. Under

chiral and UA(1) transformations, Φ transform as

Φ → e2iθAL†ΦR (L ∈ SUL(2), R ∈ SUR(2), θA ∈ Re). (2)

UV (1) symmetry corresponding to the baryon number conservation was omitted. Since Φ can

be considered as the order parameter of chiral symmetry, nonzero vacuum expectation value

of Φ indicates spontaneous chiral symmetry breaking (SχSB). Most general renormalizable

Lagrangian conserving chiral and UA(1) rotations is then given by

LU(2)×U(2) =
1

2
tr
[
∂µΦ

†∂µΦ
]
+

1

2
m2

0 tr
[
Φ†Φ

]
+

π2

3
g1

(
tr[Φ†Φ]

)2
+

π2

3
g2tr

[
(Φ†Φ)2

]
. (3)

which is referred to as U(2) × U(2) LSM. Since we are interested in the system at around

Tc, m0 will be set to zero in the analysis of U(2)× U(2) LSM.

In order to incorporate the effect of UA(1) symmetry breaking into the system, the fol-

lowing terms are added

Lbreaking = −cA
4
(detΦ+ detΦ†) +

π2

3
xTr[ΦΦ†](detΦ+ detΦ†) +

π2

3
y (detΦ+ detΦ†)2

+w
(
tr
[
∂µΦ

† t2 ∂µΦ
∗ t2

]
+ h.c.

)
. (4)

The third term is symmetric under Z4, and so is the rest under Z2. Rewriting the total

Lagrangian in terms of the component fields, we obtain

Ltotal = LU(2)×U(2) + Lbreaking

= (1 + w)
1

2
(∂µφa)

2 + (1− w)
1

2
(∂µχa)

2 +
m2

φ

2
φa

2 +
m2

χ

2
χa

2

+
π2

3

[
λ(φa

2)2 + (λ− 2x)(χa
2)2 + 2(λ+ g2 − z)φa

2χb
2 − 2g2(φaχa)

2
]
, (5)
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Rewriting in terms of components

UA(1) broken LσM

Setting T=Tc ⇔ m2
φ=0 ⇔ m2

χ= cA > 0 (Thus χ  is massive)
At Tc, calculate β-functions in d=4-ε dims with ε=1.
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β functions
1-loop calc. with dim reg., a mass-dep. scheme and w=0 yields

IV. RG FLOW FOR FINITE cA

We now turn to the UA(1) broken theory (5) with a finite and positive cA. The explicit

one loop calculation yields

βλ̂ = −ϵλ̂+ 2λ̂2 +
1

6
f(µ̂)

(
4λ̂2 + 6λ̂ĝ2 + 3ĝ22 − 8λ̂ẑ − 6ĝ2ẑ + 4ẑ2

)
, (15)

βĝ2 = −ϵĝ2 +
1

3
λ̂ĝ2 +

1

3
f(µ̂)ĝ2

(
λ̂− 2x̂

)
+

1

3
h(µ̂)ĝ2

(
4λ̂+ ĝ2 − 4ẑ

)
, (16)

βx̂ = −ϵx̂+ 4f(µ̂)
(
λ̂x̂− x̂2

)

+
1

12
(1− f(µ̂))

(
8λ̂2 − 6λ̂ĝ2 − 3ĝ22 + 8λ̂ẑ + 6ĝ2ẑ − 4ẑ2

)
, (17)

βẑ = −ϵẑ +
1

2

(
2λ̂2 − λ̂ĝ2 + 2λ̂ẑ

)
− 1

6
h(µ̂)

(
4 λ̂2 + 3 ĝ22 − 8 λ̂ ẑ + 4 ẑ2

)

+
1

6
f(µ̂)

(
−2λ̂2 + 3λ̂ĝ2 + 3ĝ22 − 2λ̂ẑ − 6ĝ2ẑ + 12λ̂x̂+ 6ĝ2x− 12x̂ẑ + 4ẑ2

)
, (18)

where µ̂ = µ/
√
cA and

f(µ̂) = 1− 4

µ̂
√

4 + µ̂2
arctan

√
µ̂2

4 + µ̂2
, h(µ̂) = 1− 1

µ̂2
ln[1 + µ̂2] . (19)

For small µ̂ these functions take the asymptotic forms,

f(µ̂) =
µ̂2

3
+O(µ̂4), h(µ̂) =

µ̂2

2
+O(µ̂4), (20)

and for large µ̂,

lim
µ̂→∞

f(µ̂) = lim
µ̂→∞

h(µ̂) = 1. (21)

Thus, for infinitely large cA (or µ̂ → 0 with µ fixed), βλ̂ [eq. (15)] reduces to βλ̂,cA=∞

[eq. (12)] as expected. On the other hand, in the cA → 0 limit (or µ̂ → ∞ with µ fixed), the

β functions eqs.(15)-(18) agree with those in Ref. [37], where the calculation is done with

cA = 0 in the mass independent scheme. Note that the first term in each of eqs.(15)-(18)

comes from the mass dimension of the original dimensionful quartic couplings. Because of

this, the dimensionless couplings behave like 1/µ at the tree level.

With the dimensional regularization, the wave function renormalizations for φ and χ do

not receive corrections at the one-loop. We take the on-shell scheme in the renormalization

of two-point functions. Thus,
√
cA is defined to be the pole mass of χa and does not depend

on the renormalization scale.
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,

⇐ O(4) LSM

μ→0 (IR limit) with mχ fixed    ➞ ???
(mχ→∞ with μ fixed ➞ O(4) LσM)



RG-flow (1)

No IRFP
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FIG. 1: The RG flow of the couplings in the UA(1) broken LSM (5) projected on to the λ̂-ĝ2 plane.

µ2/cA is 0.01 (left) and 100 (right). The length of arrow does not represent the velocity of the

flow. The solid lines show the stability bound obtained at the tree level analysis of the effective

potential for the U(2)× U(2) LSM [39]. The dashed and dotted lines are just guide to eyes.

Two side remarks related to discrete symmetries are below. Even if we set the mass of

χa to zero (cA = 0) at tree level, it would potentially receive radiative corrections unless x

is also zero and Z2 symmetry is present. But the associated counter terms allow us to keep

the renormalized cA to zero.

Another remark is that ŷ = 0 at a certain scale can be kept at the different scale only if

Z2 symmetry is preserved, i.e. both cA and x̂ are zero. We can explicitly check this in the

β functions (15)-(18). These features are not affected by higher orders of the perturbation

series.

The β functions in (15)-(18) indicate no stable IRFP. Fig. 1 shows an example of the

RG flow in the UA(1) broken LSM with ϵ = 1, where the flow is projected on to the λ̂-ĝ2

plane for clarity. In this example, x̂ and ẑ are set to zero everywhere. The direction of the

flow at each point is indicated by the arrow. It turns out that at a region far from the line

along λ̂ = 1/2 the flow depends on µ2/cA only weakly while it is drastically changed in the

vicinity of the line for ĝ2 > 0.

To see other aspects of the RG flow, the flow is calculated for two initial conditions,

9
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RG-flow (2)

RG flows can be classified by its IR behavior into two types:
1. All couplings diverge ⇒ 1st order

2. λ̂ approaches ε/2 and others diverge ⇒ 2nd order?

0
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FIG. 2: The RG flow of the couplings in the UA(1) broken LSM (5) on the λ̂-ĝ2 plane. Two initial

conditions are chosen to be (λ̂(Λ), ĝ2(Λ), x̂(Λ), ẑ(Λ)) = (0.25, 0.25, 0, 0) and cA/Λ2 =
(

1
2n+1

)2

(left), and (0.75, 0.25, 0, 0) and cA/Λ2 =
(

1
10 (2n+1)

)2
(right), as an example, where n = 0, · · · , 10.

The IRFP of U(2)× U(2) LSM reported in Ref. [21] is plotted at (λ̂, ĝ2) ∼ (0.0048,0.073) (cross)

as a reference.

(λ̂(Λ), ĝ2(Λ), x̂(Λ), ẑ(Λ)) = (0.25, 0.25, 0, 0) and (0.75, 0.25, 0, 0) with varying cA/Λ2.

Fig. 2 shows the result projected onto the λ̂-ĝ2 plane, where the flows are classified into two

types: one approaching λ̂ = 1/2 (solid curves) and the other going λ̂ = −∞ (dashed curves).

In the latter case (dashed curves), ĝ2 also diverges, ı.e. not approaching some finite value,

and then one usually expects first order phase transition.

In the former case (solid curves), the flow never reaches an IRFP because it does not

exist, at least, at this order, but projecting it onto the λ̂-axis, it appears to reach the IRFP,

λ̂ = ϵ/2. In the infrared limit, µ2/cA becomes arbitrary small as long as cA is finite. Then χ

would be effectively seen as a very massive field and decoupled from the system. Actually,

λ̂ = ϵ/2 is the IRFP of O(4) LSM (7), which seems to support our interpretation that the

UA(1) broken theory (5) is reduced to the O(4) LSM in the IR limit via the decoupling of

χ. This point is further discussed in the sec. VI.

When approaching the O(4) fixed point, ĝ2(µ) and ẑ(µ) diverge as we will see below, but

the terms including those couplings in βλ̂ asymptotically vanish due to the suppression of

f(µ̂) (see eq. (20)). It means that although the couplings connecting φ and χ diverge the

perturbative expansion of βλ̂ is still sensible as long as this suppression works.

10
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How to interpret no IRFP but λ̂ → λ̂FP

Usually, no IRFP ⇒ 1st order

But, in the present case, we infer that
the system undergoes 2nd order.

Reason: UA(1) broken LσM = O(4) LσM in IR limit

If, in IR limit, massive χ decouples and arbitrary n-point 
functions of φi agree btw two theories:

Confirmed for arbitrary 4-point functions to 1-loop.

O(4) LσM has Wilson-Fisher FP in IR limit.
⇒ IR limit of UA(1) broken LσM should have it, too.



Critical exponents
Critical exponents ⇒ Universality class
Powerful tool to analyze various critical phenomena

ν, η, α, β, γ, δ, ω

ν : correlation length ~ |t|−ν  (t: reduced temperature)
η : 〈φ(x) φ(0)〉 ~ |x|−d+2−η

ω : scaling dim. of the leading irrelevant op.



Critical exponents in O(4) model

Model ν η ω
O(4)
(a few % error.) 0.750 0.0360 0.774
O(4) ε-exp
(at leading order) 2/(4-ε) 0 ε

←Hasenbusch and Vicari,
      PRB84, 125136 (2011)



Critical exponents in UA(1) model

Model ν η ω
O(4)
(a few % error.) 0.750 0.0360 0.774
O(4) ε-exp
(at leading order) 2/(4-ε) 0 ε
UA(1) ε-exp
(at leading order)

2/(4-ε) 0 2−5ε/3 ⇐ This work

At least, one of the critical exponents, ω, is different from O(4).

Two-loop calculation is underway.

←Hasenbusch and Vicari,
      PRB84, 125136 (2011)



Reason for different ω

ω : determined by RG dimension of leading irrelevant op.

the light φa and heavy χb fields have a mass dimension in three dimensional theory.

The contribution of massive fields (χb) with a mass M to a renormalized Green’s function

of light fields (φ) at external momentum P will take the form of ĝ2(P )P 2/M2 when P 2/M2 ≪

1, where ĝ represents a generic dimensionless quartic coupling and is related to the coupling

in Lagrangian as g = µϵĝ. This is indeed seen in eq. (45), if one expands the logarithmic

term assuming 1/ρ̄(P ) = P 2/cA ≪ 1.

If D = 4 (or ϵ = 0), ĝ2(P )P 2/M2 will vanish as P 2 → 0 because ĝ2(P ) depends on P ,

at most, logarithmically, but when D = 3 (or ϵ = 1), it does not in general because the

factor P 2 can be compensated by ĝ2(P ), which behaves ∼ 1/P 2 at the tree level. Thus, in

general, the decoupling theorem does not hold when a coupling has a mass dimension. The

same conclusion is reported in Ref. [31], where non-decoupling effects of the scalar cubic

interaction in 3+1 dimensions is studied.

Another and more important reason is below. Usually, the approaching rate is argued in

terms of more familiar quantity, ω, defined by

ω =
dβλ̂

dλ̂
|λ̂=λ̂IRFP

, (50)

which is one of the universal exponents. The above results yield

ωO(4) = ϵ and ωUA(1)broken = 2− 5ϵ/3, (51)

for the O(4) and the UA(1) broken LSM, respectively.

According to the general argument of renormalization group, ω is determined by the RG

dimension of the leading irrelevant operator in a model under consideration. While (φa
2)2

is the one in the O(4) LSM, it is not evident in the UA(1) broken LSM but should not be

the same as the O(4) LSM because ωO(4) ̸= ωUA(1)broken.

One possible candidate is (φaχa)2, which should become eventually irrelevant since its

effects to the low energy behavior is expected to vanish as χa decouples from the system.

Since the coefficient of (φaχa)2 term is ĝ2, we calculate ω with ĝ2 = 0 as a trial and obtain
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In O(4) LσM,

=
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factor P 2 can be compensated by ĝ2(P ), which behaves ∼ 1/P 2 at the tree level. Thus, in

general, the decoupling theorem does not hold when a coupling has a mass dimension. The

same conclusion is reported in Ref. [31], where non-decoupling effects of the scalar cubic

interaction in 3+1 dimensions is studied.

Another and more important reason is below. Usually, the approaching rate is argued in

terms of more familiar quantity, ω, defined by

ω =
dβλ̂

dλ̂
|λ̂=λ̂IRFP

, (50)

which is one of the universal exponents. The above results yield

ωO(4) = ϵ and ωUA(1)broken = 2− 5ϵ/3, (51)

for the O(4) and the UA(1) broken LSM, respectively.

According to the general argument of renormalization group, ω is determined by the RG

dimension of the leading irrelevant operator in a model under consideration. While (φa
2)2

is the one in the O(4) LSM, it is not evident in the UA(1) broken LSM but should not be

the same as the O(4) LSM because ωO(4) ̸= ωUA(1)broken.

One possible candidate is (φaχa)2, which should become eventually irrelevant since its

effects to the low energy behavior is expected to vanish as χa decouples from the system.
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In UA(1) broken LσM,

?
IR limit

Then, the order parameters suitably chosen are small and hence is used as an expansion

parameter to construct Landau-Ginzburg-Wilson (LGW) field theory. At the critical tem-

perature, the system becomes infrared conformal, and modes with a divergent correlation

length arise. Then, the original system defined in four space-time dimensions can be ap-

proximately described in three space dimensions. In the following, the calculation is done

in D = 4− ϵ dimension, and in the end ϵ = 1 is substituted.

The building block of the LSM is a 2× 2 complex matrix field

Φ =
√
2(φ0 − iχ0)t0 +

√
2(χi + iφi)ti, (1)

where t0 = 12×2/2 and ti=σi/2 (i = 1, 2, 3) is the generator of SU(2) group. φ0 and φi

correspond to σ and πi in more commonly used name, respectively. Similarly χ0 and χi to

η′ and δi. Thus, χ0 denotes the iso-singlet pseudoscalar, and χi the iso-triplet scalar. Under

chiral and UA(1) transformations, Φ transform as

Φ → e2iθAL†ΦR (L ∈ SUL(2), R ∈ SUR(2), θA ∈ Re). (2)

UV (1) symmetry corresponding to the baryon number conservation was omitted. Since Φ can

be considered as the order parameter of chiral symmetry, nonzero vacuum expectation value

of Φ indicates spontaneous chiral symmetry breaking (SχSB). Most general renormalizable

Lagrangian conserving chiral and UA(1) rotations is then given by

LU(2)×U(2) =
1

2
tr
[
∂µΦ

†∂µΦ
]
+

1

2
m2

0 tr
[
Φ†Φ

]
+

π2

3
g1

(
tr[Φ†Φ]

)2
+

π2

3
g2tr

[
(Φ†Φ)2

]
. (3)

which is referred to as U(2) × U(2) LSM. Since we are interested in the system at around

Tc, m0 will be set to zero in the analysis of U(2)× U(2) LSM.

In order to incorporate the effect of UA(1) symmetry breaking into the system, the fol-

lowing terms are added

Lbreaking = −cA
4
(detΦ+ detΦ†) +

π2

3
xTr[ΦΦ†](detΦ+ detΦ†) +

π2

3
y (detΦ+ detΦ†)2

+w
(
tr
[
∂µΦ

† t2 ∂µΦ
∗ t2

]
+ h.c.

)
. (4)

The third term is symmetric under Z4, and so is the rest under Z2. Rewriting the total

Lagrangian in terms of the component fields, we obtain

Ltotal = LU(2)×U(2) + Lbreaking

= (1 + w)
1

2
(∂µφa)

2 + (1− w)
1

2
(∂µχa)

2 +
m2

φ

2
φa

2 +
m2

χ

2
χa

2

+
π2

3

[
λ(φa

2)2 + (λ− 2x)(χa
2)2 + 2(λ+ g2 − z)φa

2χb
2 − 2g2(φaχa)

2
]
, (5)
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=

Non-decoupling causes non-universality.

Reason for different ω

Leading 
irrelevant op.



Attractive Basin (large UA(1) breaking)
 mχ2/Λ2=1

1

0

-1

-1 0 1

cA/
2=1,x̂( )=-1,ẑ( )=1 cA/

2=1,x̂( )=0,ẑ( )=1 cA/
2=1,x̂( )=1,ẑ( )=1

FIG. 4: The attractive basin in the (λ̂(Λ), ĝ2(Λ)) plane (hatched area) is shown, where x̂(Λ) and

ẑ(Λ) are varied from -1 to 1 as indicated. cA/Λ2 = 1.

in low energy experiments as long as the momentum scale is much smaller than the heavy

particles’ mass. If the theorem holds in the present case, any n-point Green’s functions

consisting only of φa in the UA(1) broken LSM should agree with those in the ordinary O(4)

LSM in the infrared limit. Thus, even if λ̂ approaches the IRFP of the O(4) LSM and the

UA(1) broken LSM appears to reduce to the O(4) LSM, the observed discrepancy in the

approaching rate indicates that the decoupling theorem does not hold in the UA(1) broken

LSM.

To see this more explicitly, we calculate the four-point Green’s function of φa in the
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0.3

0

-0.3

-0.3 0 0.3

cA/
2=0.01,x̂( )=-0.3,ẑ( )=0.3 cA/

2=0.01,x̂( )=0,ẑ( )=0.3 cA/
2=0.01,x̂( )=0.3,ẑ( )=0.3

FIG. 5: The same plot as Fig. 4 but for cA/Λ2 = 0.01. x̂(Λ) and ẑ(Λ) are varied from -0.3 to 0.3.

ordinary O(4) and the UA(1) broken LSM. In each LSM, the calculation is done with two

renormalization schemes, one being the symmetric scheme defined in (8)-(11) and another

being the MS scheme, to examine the scheme dependence. The external momenta are set

to s = t = u = P 2. Since we consider the case where P 2 is extremely small, the RG

improvement is carried out.

A. ordinary O(4) LSM

First, we present the four-point function, G(4)
O(4)({pi}, λ̂;µ), in the ordinary O(4) LSM, (7).

Calculating it to one loop, and performing the RG improvement, which is described in the
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Attractive Basin (small UA(1) breaking)
 mχ2/Λ2=0.01

For smaller mχ2,
attractive basin shrinks 
in vertical (g2) 
direction.

⇒ In order to realize 
2nd order transition, g2 
has to be tuned.



Impact on the nature of SχSB

Our study suggests fourth possibility: 
iv) 2nd order with O(4)-like scaling

So far, three possibilities have been 
discussed for the nature of transition:
i) 1st order
ii) 2nd order with O(4) scaling
iii)2nd order with U(2)×U(2) scaling



Summary

U(2)×U(2) LSM with a finite UA(1) breaking is 
studied in ε-expansion.

A novel possibility for the nature of chiral phase 
transition of massless two-flavor QCD, 2nd order with 
a scaling different from O(4).

Difference from O(4) comes from non-decoupling.

Non-decoupling effects induced  non-universality.


