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updates from LatKMI collaboration

• YA,   T.Aoyama,  M.Kurachi,  T.Maskawa,  K.Miura, 
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• E. Bennett                                            E. Rinaldi
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KMI computer　

• non GPU nodes


• 148 nodes


• 2x Xenon 3.3 GHz


• 24 TFlops (peak)


• GPU nodes


• 23 nodes


• 3x Tesla M2050


• 39 TFlops (peak)


• 62 TFlops (peak;  comparable to Japanese top 20 of top500 list @ 2012.10)

'



    inauguration                              March 2, 2011'



Inauguration Ceremony of  
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Computers

• we have been using comuters:


• phi


• CX400 at Kyushu University


• CX400 at Nagoya Information Technology Center


• CX400 use granted for HPCI




“Higgs boson”

• Higgs boson fund at LHC


• mH = 125 GeV


• so far consistent with Standard Model Higgs  (JPC=0++) fundamental scalar


• but it could be different


• one of the possibilities:


• composite Higgs through strong dynamics


• SM Higgs is the low energy effective description of that, cf: ChPT ⇔ QCD



Physics motivation: new physics
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glueon

• New techni sector


• QCD like interaction


• weakly coupled with SM sector


• resemble Higgs mechanism


• produce Higgs like particle

QCD

Standard Model

qq-

Thanks to Dr. Kimura (KMI PR office) for Standard Model diagram



Role of SM Higgs

• It’s about the origin of mass...


• (99% of the mass of visible universe is made by QCD dynamics)


• masses of fundamental particles:  weak bosons, quarks, leptons


• by EW gauge symmetry breaking through Higgs



Higgs mechanism   (cf. Farhi & Susskind)

• Higgs potential : V=μ2 |φ|2 + λ|φ|4  with μ2<0: “wine bottle”


• rotating:  m=0 mode


• radial:     m≠0: Higgs particle


• weak doublet: 4 fields: 1 massive Σ, 3 massless


• massless:  Π±, Π0    :  Nambu-Goldstone boson  (rotational symm. br.)


• have coupling to weak current:〈0|Jμ±|Π±〉= F pμ;       F =〈0|φ|0〉= 246 GeV


• make a massless pole in the vacuum polarization 


• cancels massless pole of original W± propagator → massive gauge boson



〈0|Jμ±|Π±〉= F pμ

• Isn’t it familiar ?   :〈0|Jμ±|Π±〉= F pμ  with massless boson Π±


• pion decay:          〈0|Aμ±|π±〉= f pμ   


• π± π0 Nambu-Goldstone boson made of u, q quarks due to 


• SU(2)LxSU(2)R → SU(2)V : spontaneous chiral symmetry breaking


• f=93 MeV  ⇔  F=246 GeV


• axial current Aμ± is a part of weak current Jμ±:  (V-A)


• Even if there is no Higgs, weak boson gets mass due to chiral br. in QCD



Technicolor (TC)

• 〈0|Jμ±|Π±〉= F pμ


• realize this with a new set of


• massless quarks (techni-quarks)


• which have coupling to weak bosons,


• and interact with techni-gluons


• which breaks the chiral symmetry in the techni-sector,


• produces techni-pions which have decay constant


➡F = 246 /√N GeV:   scale up version of QCD  (N:  # weak doublet from new techni-sector)



Technicolor ⇔ SM Higgs

• success of technicolor


• explaining the origin of EW symmetry breaking


• dynamics of gauge theory  ⇔  μ2 < 0


• evading the gauge hierarchy problem: naturalness problem


• due to logarithmic UV divergence ⇔  power divergence


• fermion masses ?


• ETC effective 4 Fermi interaction   ⇔   fermion-Higgs Yukawa coupling


• produced by introducing interaction: techni-quarks and SM fermions



Extended Technicolor (ETC) for SM fermion mass

• New strong interaction of SU(NETC): NETC>NTC, TETC=( T, f ):  T∈TC, f∈SM


• SSB: SU(NETC)→SU(NTC) x SM  @ ΛETC (≫ΛTC)


• an ECT interaction ↔ TC interaction


➡         4 fermi        →     mass for f 


• ya ETC interaction → 4 fermi → FCNC
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SM fermion mass ↔ FCNC tension

• ETC interaction decouples at ΛETC


• neglecting QCD logarithmic running


• 　


•                               FCNC


• FCNC should be small  ⇔ top or bottom quark mass should be produced


➡ walking TC:  for ΛTC < μ < ΛETC   (ΛETC≫ΛTC)


• coupling does not run  →


• γ~1                               →

1
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Walking Technicolor

• key: to realize suppressed FCNC and appropriate size of fermion masses


[Holdom, Yamawaki-Bando-Matsumoto]


!

• renormalized gauge coupling


• to run very slowly (walking)


• eventually grows at low energies → to produce techni-pions


• mass anomalous dimension 


• large: γm~1

Is it possible to construct such a theory ?

µ
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after July 4, 2012

• Some people think technicolor is dead   (how many times it should die ?)


• mH=125 GeV is too light for technicolor (typical composite mass ~ TeV)


• Some think walking technicolor is still OK


• who ?


• the authors of PRD 82 014510 (2010) 


• and people well aware the results


• Yamawaki, Bando, Matumoto, 	PRL 56 1335 (1986) 


• and who believed that



Higgs as a techni dilaton 
[Yamawaki, Bando, Matumoto, 	 PRL 1986]

• approximate scale invariance in the walking technicolor theory


• spontaneously broken due to chiral symmetry breaking → dynamical mass


• composite Higgs particle behave like pseudo Nambu-Goldstone boson


➡light!


!

• We can test this using lattice QCD tools !


• I will review the progress in this direction and related works in (near) 
conformal theories on the lattice
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Asymptotic non-free

Conformal window

Walking Technicolor

conformal window and walking gauge coupling 
 - non-Abelian gauge theory with Nf massless fermions -

• Walking Techinicolor could be realized just below the conformal window


• crucial information: Nfcrit and...


•   mass anomalous dimension γ & the composite mass spectrum around Nfcrit

chiral symmetry 
(QCD-like)



models being studied:

• SU(3)


• fundamental: Nf=6, 8, 10, 12, 16


• sextet: Nf=2


• SU(2)


• adjoint: Nf=2


• fundamental: Nf=8


• SU(4)


• decuplet: Nf=2
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Conformal window Luigi Del Debbio

conformal window: SU(3) with n f = 16,12,10,9,8,6 flavors in the fundamental representation,
SU(2) with n f = 6 flavors in the fundamental, SU(2) with n f = 2 flavors in the adjoint represen-
tation, and SU(3) with n f = 2 flavors in the two-index symmetric (sextet) representation. At these
early stages of the nonperturbative studies of the conformal window it is important to try to identify
a paradigm to guide the numerical investigations, rather than trying to get exhaustive results on one
specific theory.

Fund

2A

2S Adj

Ladder

� = 1 � = 2

Ryttov & Sannino 07

SU(N) Phase Diagram

Dietrich & Sannino 07

Sannino & Tuominen 04

Figure 3: Boundaries of the conformal window for SU(N) gauge theories with n f species of Dirac fermions.
The four bands represent respectively fermions in the fundamental (Fund), adjoint (A) and two-index sym-
metric and antisymmetric (2S,2A) representations. The upper limit of each band corresponds to the number
of flavors where asymptotic freedom is lost, as obtained from one-loop perturbative computations. The
lower limit of each band yields the number of flavors above which the theories develop an IR fixed point.
The location of these lower limits relies upon assumptions about the nonperturbative dynamics of the theo-
ries. Lattice simulations can provide first-principle evidence in favour (or against) this picture, and compute
the critical exponents that characterize the fixed points. Figure courtesy of F. Sannino.

2. Tools

Numerical tools that were originally designed for investigating lattice QCD have been used in
order to identify the existence of IRFPs. We describe briefly the main ideas, the observables that
are used in the different approaches, and their expected behaviour in the presence of an IRFP. For
each case we try to emphasize the sources of systematic errors that need to be kept under control
in order to draw robust conclusions from numerical data.

2.1 Phase structure of the lattice theories.

Lattice simulations are performed by discretizing the action of a given theory on a Euclidean
space-time lattice. At weak coupling the RG flow can be computed perturbatively, and the relevant
parameters are easily identified. For an asymptotically-free gauge theory, g = 0 is an UV fixed
point that defines the usual continuum limit of the lattice theory. The IRFP that we are seeking is
a fixed point on the massless renormalized trajectory that originates from the continuum limit. As

7

F.Sannino



LatKMI publications

• LatKMI, PRD 85 (2012), “Study of the conformal hyperscaling relation through 
the Schwinger-Dyson equation” [non-lattice]


• LatKMI, PRD 86 (2012), “Lattice study of conformality in twelve-flavor QCD”


• LatKMI, PRD 87 (2013), “Walking signals in Nf=8 QCD on the lattice”


• LatKMI, PRL 111 (2013), “Light composite scalar in twelve-flavor QCD on the 
lattice”


• LatKMI, PRD89 (2014), “Light composite scalar in eight-flavor QCD on the 
lattice"



Simulation

• Fermion Formulation: HISQ (Highly Improved Staggered Quarks)


• being used for state-of-the-art QCD calculations / MILC,..


• Gauge Field Formulation:tree level Symanzik gauge


• all of LatKMI simulations are done in this set-up


!

• using MILC code v7, with modification: HMC and speed up in MD



Parameters: fermion mass mf and volume L3xT (L/T=3/4)

m 48 42 36 30 24 18

0.009

0.012 ◎

0.015 ◎ 〇

0.020 〇 〇 ✓

0.030 〇 〇 〇

0.040 〇 〇 ✓

0.050 ✓ ✓ ✓

0.060 ✓ 〇 ✓

0.070 ✓ ✓ ✓

0.080 〇 ✓

0.100 ✓ ✓

m 48 42 36 30 24 18

0.009

0.012

0.015 ✓

0.020 ✓ ✓ ✓

0.030 ✓ ✓ ✓

0.040 ✓ ✓ ✓

0.050 ✓ ✓ ✓

0.060 ✓ ✓ ✓

0.070 ✓ ✓ ✓

0.080 ✓ ✓

0.100 ✓ ✓

LatKMI, PRD 87 (2013), “Walking signals in Nf=8 QCD…”!
✓:  stat. ~ 1,000 HMC trajectories

LatKMI, UPDATED!
〇:  increased stat. ≳ 10,000 HMC trajectories (typically)!

◎:  new points

OLD NEW



All NEW results are preliminary



Finite Size Effect

• For analysis assuming infinite volume


• use data which does not have SIGNIFICANT finite size effect


• use statistically superior ensemble among them 


• For the finite size scaling analysis, use all



Finite Size Data (NEW): Mπ, Fπ, Mρ
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Finite Size Effect: Mπ

• with same LMπ, FSF is smaller for smaller mf


• L < Lmax; second largest seems OK for all  mf≥0.03 and mf=0.015, otherwise


• mf=0.02: largest L=36 → region of insignificant finite V effect


• mf=0.012: only one L=42 → region of insignificant finite V effect
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III. ANALYSIS FOR (Mπ, Fπ,Mρ, AND STRING TENSION)

A. Analysis of string tension

Miura and Enrico

1. Calculation methods (toleron mass and potential)

B. Analysis of hadron spectrum

Yamazaki and Kurachi

1. Finite volume effect

Results for Mπ, Fπ, and Mρ are presented in Fig. 1 as a function of L in each mf , except

in mf = 0.012. We will express Mρ of PV as Mρ, unless explicitly stated otherwise. For

all the quantities, the data on the largest two volumes are reasonably consistent with each

other in all mf except mf = 0.02, where some deviation is seen in the two volumes.

To estimate finite volume effect on the largest volume in mf = 0.02, we investigate

relative differences from the value on the largest volume for Mπ and Fπ,

δMπ(L) =
Mπ(L)−Mπ(Lmax)

Mπ(Lmax)
and δFπ(L) =

Fπ(L)− Fπ(Lmax)

Fπ(Lmax)
, (1)

where Lmax is the largest spatial extent, in each mf as shown in Fig. 2 in a function of

LMπ(L). The value of LMπ(L) on the largst volume in mf = 0.02, as expressed by solid,

vertical line in the figure, is comparable to the ones in a region, where δMπ(L) and δFπ(L) are

consistent with zero in mf similar to 0.02 (mf = 0.03 and 0.04). Note that at LMπ(L) ∼ 7,

δMπ(L) increases as mf , which is consistent behavior of finite volume effect expected by

NLO ChPT [1].

Furthermore, the data for Mπ(L) and Fπ(L) in mf = 0.02 are fitted by the following

functions, which are inspired by ChPT [1, 2], as in Ref. [3],

Mπ(L) = Mπ + cMπ

e−LMπ

(LMπ)3/2
, (2)

Fπ(L) = Fπ + cFπ

e−LMπ

(LMπ)3/2
, (3)

4
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staggered flavor (taste) symmetry for Nf=8 HISQ

• comparing masses with different staggered operators for π & ρ for β=3.8


!

!

!

!

!

!

• excellent staggered flavor symmetry, thanks to HISQ
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Hadron spectrum:  
         mf-response in mass deformed theory

• IR conformal phase:


• coupling runs for μ<mf:   like nf=0 QCD with ΛQCD~mf


• multi particle state :  MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)    (criticality @ IRFP)


!

• SχSB phase:


• ChPT


• at leading:  Mπ2 ∝ mf,  ;   Fπ = F + c mf



a crude study using ratios

• conformal scenario:


• MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)   for small mf


★  Fπ/Mπ → const.                          for small mf


★  Mρ/Mπ → const.                         for small mf


• chiral symmetry breaking scenario:


• Mπ2 ∝ mf,  ;   Fπ = F + c’ Mπ2      for small mf


★  Fπ/Mπ → ∞                                 for   mf → 0



a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)


• spontaneous chiral symmetry breaking

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}

0 0.1 0.2 0.3 0.4 0.5
a M

π

0.3

0.35
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F π
/Μ

π

16^3 x 24

FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,

11
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a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)


• spontaneous chiral symmetry breaking, likely
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a crude analysis: Fπ/Mπ vs Mπ

• β=3.7: small mass: consistent with conformal scenario


• β=4.0: volume likely to small to discuss the scaling
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a crude analysis: Fπ/Mπ vs Mπ 
 leads to a likely scenario
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• chiral symmetry• conformality

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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walking coupling and hyperscaling

• conformal type scaling expected for mD<mf<ΛQCD 


• but not for further smaller mass:  mf<mD


• finding such transition would be a smoking gun of the walking dynamics

sharp contrast to the usual QCD wheremD ¼ Oð!QCDÞ, so
that the approximate conformality !ð"Þ ’ !$ still remains
in the wide infrared region mD <"<!QCD as an impact
of the would-be IRFP. Such a ‘‘remnant of conformality’’
should appear in low energy quantities. This is the case for
the WTC, with the intrinsic scale !QCD being identified
with the ‘‘ultraviolet’’ cutoff ! of the WTC usually taken
as the extended technicolor (ETC) scale !ETC, and will be
the focus of our interest in this paper.

Although the above results from the two-loop perturba-
tion combined with the ladder approximation are very
suggestive, the relevant dynamics is obviously of nonper-
turbative nature, we would need fully nonperturbative
studies. Among others the lattice simulations developed
in the lattice QCD would be the most powerful tool to
investigate the walking behavior of the large Nf QCD.
Actually, there were some pioneering works on the large
Nf QCD in somewhat different contexts [10–13], and more

recently there have been many lattice studies towards the
above problem [14]. The immediate issues are: What is the
critical number Ncr

f ? What is the signature of the walking

theory on the lattice? In particular, the above two-loop/
ladder studies would suggest that the walking theory if
existed might be in between Nf ¼ 8 and Nf ¼ 12. As to
Nf ¼ 12 there have been many analyses including those of

ourselves which are consistent with the theory being inside
the conformal window [10,11,15–24], although some
works prefer the S#SB phase [25,26]. There were also
simulations on Nf ¼ 10 [27] consistent with the infrared

conformality. We thus are interested in Nf ¼ 8 as a can-

didate for the walking theory.
Actually, the Nf ¼ 8 is particularly interesting from

the model-building point of view [28]: A typical techni-
color model is the so-called one-family model (Farhi-
Susskind model [29]) which has a one-family of colored
and uncolored weak-doublet technifermions (techniquarks
and technileptons) corresponding to each family of the SM
quarks and leptons. It can embed the technicolor gauge and
the gauged three generations of the SM fermions into
a single gauge group (ETC) and thus is the most straight-
forward way to accommodate the technifermions and
the SM fermions into a simple scheme to give mass to
the SM fermions. Thus, if the Nf ¼ 8 turns out to be a

walking theory, it would be a great message for the phe-
nomenology, which is to be tested by the on-going LHC.
Actually, the technidilaton [1,5] in the WTC for the one-
family model is consistent with the present LHC data for
125 GeV boson in a ladder analysis [6] and in holographic
estimate [6].2

If Nf ¼ 8 is a walking theory desired for the WTC, it
should be inside the S#SB phase Nf ¼ 8<Ncr

f (mD ! 0)

and at the same time be close to the phase boundary with
the conformal window Nf > Ncr

f (mD ¼ 0) such that

mD % !QCD. Now the lattice simulations we are making
contain several scale-symmetry breaking parameters, the
fermion bare mass mf as well as a finite box L

3 and lattice
spacing a, which do not exist in the continuum theory we
are interested in. Among others the fermion bare mass mf

obviously distorts the ideal behavior of the breaking of the
scale symmetry in a way similar to the continuum theory.
Then, disregarding the effects of the lattice parameters L
and a for the moment,3 we may imagine possible effects of
the fermion bare mass on the walking coupling of our
target of study as in Fig. 1, which is suggested by the
two-loop/ladder analysis.
Case 1. mf % mD % !QCD (red dotted line in

Fig. 1): The chiral perturbation theory should
hold in a way similar to the real-life QCDwith
light quarks.

Case 2. mD % mf % !QCD (blue dotted line in
Fig. 1): The conformal hyperscaling relation
should hold approximately with a large
anomalous dimension $m ’ 1.

Actually, the S#SB order parameter to be measured on the
lattice is not mD but would be the decay constant F% of the
Nambu-Goldstone boson% extrapolated to the chiral limit:
F ¼ F%ðmf ¼ 0Þ which would be expected roughly the
same as mD: mD ¼ OðFÞ.
There is a caveat about the approximate hyperscaling

relation to be expected in case 2 (mD % mf % !QCD):

QCDf

α(µ)

µ

α*

mf mD Λm

FIG. 1 (color online). Schematic two-loop/ladder picture of
the gauge coupling of the massless large Nf QCD as a walking
gauge theory in the S#SB phase near the conformal window. mD

is the dynamical mass of the fermion generated by the S#SB.
The effects of the bare mass of the fermion mf would be
qualitatively different depending on the cases: Case 1: mf %
mD (red dotted line) well described by ChPT, and case 2: mf &
mD (blue dotted line) well described by the hyper scaling.

2As to the immediate questions about the problem with the S,
T parameters, see, for example, discussions in Ref. [30].

3In our simulation we use the parameter region where the
effect of the system size is subdominant compared to the mass
effect. This strategy is different from the one which is advocated
by the authors of Refs. [23,24].
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hyperscaling test with various mf range (OLD)

• conformal type scaling


• good for 0.04<mf


• NG for mf<0.04


• getting worse as mf→0


• successful ChPT fit for mf<0.04


• seems like a smoking gun!

B. FSHS fits with the correction term

Since Nf ¼ 8 theory is in S!SB phase, FSHS cannot
become accurate by approaching to the chiral limit, which
is in contrast to the Nf ¼ 12 where FSHS does [21].
Therefore FSHS is only expected for the larger mass
region, where mass corrections may not be negligible. In
fact, in the last subsection the decreasing tendency of the
"ðM#Þ depending on the fit range is seen, which might
suggest that there are corrections in the simple FSHS form
in Eq. (27), To include mass corrections we assume the
same fitting forms as in the Nf ¼ 12 case [21] as

$H ¼ CH
0 þ CH

1 Xþ CH
2 Lm

%
f : (28)

Since it is hard to determine the exponent % of the correc-
tion term when the fit is performed for each observable
individually, we fix it in our analysis. Among various
choices of the %, we take two values: % ¼ 1 and 2. The
first choice % ¼ 1 is regarded as an mf correction in the

heavy region, and the second one % ¼ 2 may be identified
as a Oða2Þ discretization effect.
Using the fit assumptions we fit each observable with the

same data region as in the last subsection, mf % 0:05 and

$# % 8. The results are tabulated in Table VIII. The fit
results with both% ¼ 1 and 2 of the $# show the correction
term actually takes effect (C#

2 ! 0), with reasonable
!2=dof. Because of the large correction, the " of the $#

is largely changed from the one without the correction term
in Table VI, especially in the % ¼ 1 case, and the value
becomes closer to the ones from the other observables. On
the other hand, for the $F and $& fits, it is found that the

correction is negligible, and the resulting "’s are consistent
with the ones without the correction, presented in Table VI,
as expected in the analyses in the last subsection. While in
the % ¼ 1 case, we obtain reasonable consistency of the "
from the three observables within less than 2 standard
deviations, we cannot exclude the % ¼ 2 fit. Thus, the
above analyses would suggest " ¼ 0:62–0:97 depending
on the observables and also the form of the correction
term.
Since we observed that the values of " with Eq. (28) for

all the observables become closer to each other than those
without the correction terms, it might be possible to obtain
a common value of the " from all the observables using the
fit including the correction. Thus, we perform a simulta-
neous fit using all the observables M#, F#, and M& with a

common ". For simplicity, we assume the absence of the
statistical correlations between each data of M#, F#, and
M&. In the fit we do not fix the value of the %, and treat it as
a free parameter. It is expected that the corrections are
small in the $F and $&, so that we first carry out a fit
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FIG. 14 (color online). ! and h "c c i (left panel) as a function ofmf. The small region, 0 & mf & 0:045 and 0 & !, h "c c i & 0:0006,
in the left panel is enlarged to the right panel. The quadratic fit curves by using the data in 0:015 & mf & 0:04 are shown. The green
symbol is the value in Eq. (20).

TABLE V. Power fit results of F# for various fit ranges, using

F# ¼ C1m
1=ð1þ"Þ
f . The top part of the table shows the results for

the ranges with minimum mass set to the lightest, mf ¼ 0:015,
while the bottom does those with maximum mass being the
heaviest mf ¼ 0:16.

Fit range (mf) C1 " !2=dof

0.015–0.04 0.415(7) 0.988(19) 14.8
0.015–0.05 0.414(5) 0.991(15) 9.84
0.015–0.06 0.418(4) 0.979(12) 7.88
0.015–0.07 0.424(3) 0.963(9) 7.35
0.015–0.08 0.425(3) 0.961(8) 6.15
0.015–0.10 0.426(2) 0.958(7) 5.31
0.015–0.16 0.428(1) 0.952(4) 3.98

0.02–0.16 0.429(1) 0.947(4) 2.22
0.03–0.16 0.431(1) 0.942(5) 1.94
0.04–0.16 0.429(2) 0.950(10) 1.23
0.05–0.16 0.431(2) 0.941(7) 0.66
0.06–0.16 0.429(2) 0.948(9) 0.44
0.07–0.16 0.429(3) 0.950(10) 0.52
0.08–0.16 0.431(3) 0.939(14) 0.20
0.10–0.16 0.432(4) 0.934(19) 0.23
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summary for Nf=8 (OLD), 12 spectrum study

• careful finite size analysis for various observables:


• test with finite size hyper scaling (conformal scenario)


• test with ChPT


• Nf=12:


• likely conformal [γ~0.4-0.5]


• Nf=8


• consistent with Ch symm. br.                  @ mf→0


• as well as conformal property [γ~0.6-1]  @ intermediate mf (not so small)


• candidate of walking technicolor theory


[LatKMI, PRD 86 (2012)  for 12 flavor, PRD 87 (2013) for 8 flavor]



summary for Nf=8 (NEW), 12 spectrum study

• careful finite size analysis


• finite size hyper scaling (conformal scenario)


• ChPT


• Nf=12:


• likely conformal [γ~0.4-0.5]


• Nf=8


• consistent with Ch symm. br.                  @ mf→0


• as well as conformal property [γ~0.7-1]  @ intermediate to small mf


• candidate of walking technicolor theory


[LatKMI, PRD 86 (2012)  for 12 flavor, PRD 87 (2013) for 8 flavor, & update]



New data compared against old: Fπ
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ratio towards the chiral limit (NEW)

• tends to diverge in the chiral limit → indicating Ch symm. br.


• NEW results unchanged from OLD
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Hyperscaling (infinite volume) (NEW)

• no transition point observed, hyperscaling fit is good for whole range


• but difference of γ with different observables


• different kinds of fits with different types of corrections



Hyperscaling: finite size

• O*L = c0 + c1 L mf1/(1+γm*) + c2 L mfα


• c2 = 0


• α = 1


• α = 2


• α = (3-2γ)/(1+γ)    Schwinger-Dyson


• α = 1 & 2 works equally well 


• γ~0.7-1


• O*L = (1 + c3 mfω) (c0 + c1 L mf1/(1+γm*))   →   end up almost same as α=1



Obs. correction type γ χ2/dof 1/(1+γ)  {no error}
Fπ 0 1.000(4) 2.66 0.500

1 1.078(26) 2.31 0.481

2 1.028(10) 2.29 0.493

SD 1.000(30) 2.79 0.500

Mπ 0 0.622(2) 15.97 0.617

1 0.843(15) 3.21 0.543

2 0.685(4) 3.24 0.593

SD 0.755(13) 8.29 0.570

Mρ 0 0.890(10) 1.47 0.529

1 1.002(73) 1.40 0.500

2 0.930(24) 1.36 0.518

SD 0.932(62) 1.53 0.518

N 0 0.810(11) 2.58 0.552

1 0.917(81) 2.64 0.522

2 0.845(28) 2.64 0.542

SD 0.882(80) 2.76 0.531

N* 0 0.945(50) 1.49 0.514

1 0.794(383) 1.60 0.557

2 0.897(124) 1.61 0.527

SD 0.743(186) 1.60 0.574

L*Mh=C0+C1*L*mf^{1/(1+γ)}+C2*L*mf^α, where naive and α=1, 2, (3-2γ)/(1+γ)

3



Hyperscaling: finite size and global 

• with common γ


• on-going project…



ChPT: Fπ

• consistent with Ch symm. br.
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FIG. 7. Fπ.

fit range (mf ) F X (mmin
f = 0.012) X (mf = mmax) χ2/dof dof

0.012-0.02∗ 0.02612(55) 3.978(17) 7.22(31) 0.43 1

0.012-0.03∗ 0.02953(24) 3.111(53) 9.19(15) 23.8 2

0.012-0.03 0.0212(12) 6.01(70) 17.8(2.1) 0.31 1

0.012-0.04 0.02368(54) 4.84(22) 20.29(92) 2.58 2

0.012-0.05 0.02435(41) 4.57(16) 25.10(85) 3.00 3

0.012-0.06 0.02633(30) 3.911(90) 27.02(61) 14.4 4

TABLE III. Results of chial fit of Fπ with Fπ = F+C1mf+C2m2
f for various fit ranges. Asterisk (∗)

denotes linear fit.

The above analyses for Fπ and M2
π/mf shows that our data can be explained by polyno-

mial functions of mf , which would be regarded as ChPT formula without log terms, in the

smaller mf region. Thus, our data is reasonably consistent with mf dependences expected

from ChPT.

While in our previous work [4] we took the fit results with 0.015 ≤ mf ≤ 0.04 data for

our central values, after accumurating more statistics and including the smallest mf data,

we choose the quadratic fit results with 0.012 ≤ mf ≤ 0.03 data, whose values of χ2/dof

are reasonable, as the central values in this work. In analyses for other physical quantities

as shown in the following subsections, we evaluate their central values from the fit with the

same mf range.
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ChPT: Mπ2/mf → Low Energy Constant: 2B

• consistent with Ch symm. br.


• B=C0/2
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FIG. 8. M2
π/mf .

fit range (mf ) C0 χ2/dof dof

0.012-0.02∗ 1.933(26) 0.23 1

0.012-0.03∗ 1.981(12) 2.13 2

0.012-0.04∗ 2.0282(83) 12.2 3

0.012-0.03 1.866(57) 0.04 1

0.012-0.04 1.890(24) 0.12 2

0.012-0.05 1.896(18) 0.12 3

0.012-0.06 1.934(13) 2.57 4

TABLE IV. Results of chial fit of M2
π/mf with M2

π/mf = C0+C1mf +C2m2
f for various fit ranges.

Asterisk (∗) denotes linear fit.
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ChPT: chiral condensate

• direct measurement & GMOR @ chiral limit give consistent results

is that Fπ and M2
π/mf are well fitted by the quadratic functions of mf in the smaller mf

region. Thus, to reproduce the curve estimated from the fit results for Fπ and M2
π/mf , as

shown in Fig. 10, Σ requires a function including O(m6
f ) term. Including higher order terms

in the fit, the consistency between the results from Σ and the others becomes better in the

smaller mf region, as shown in Table VI and Fig. 10, although the error becomes larger.

To observe more clear consistency with Σ and the other results, it would be necessary to

calculate Σ at several, smaller mf used in the current work.
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>

quad 0.012-0.03

FIG. 9. ⟨ψψ⟩.

fit range (mf ) C0 χ2/dof dof BF 2/2

0.012-0.02∗ 0.000436(19) 0.92 1 0.000330(15)

0.012-0.03∗ 0.0005867(84) 37.4 2 0.0004319(74)

0.012-0.03 0.000221(43) 0.54 1 0.000211(25)

0.012-0.04 0.000255(18) 0.65 2 0.000265(12)

0.012-0.05 0.000263(15) 0.63 3 0.000281(10)

0.012-0.06 0.000313(10) 5.97 4 0.0003352(79)

TABLE V. Chiral fit result of ⟨ψ̄ψ⟩ with ⟨ψ̄ψ⟩ = C0 +C1mf +C2m2
f in various fit ranges. BF 2/2

is evaluated using the results in Tables VIII and III. Asterisk (∗) denotes linear fit.
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summary for Nf=8 (NEW), 12 spectrum study

• careful finite size analysis


• finite size hyper scaling (conformal scenario)


• ChPT


• Nf=12:


• likely conformal [γ~0.4-0.5]


• Nf=8


• consistent with Ch symm. br.                  @ mf→0


• as well as conformal property [γ~0.7-1]  @ intermediate to small mf


• candidate of walking technicolor theory


[LatKMI, PRD 86 (2012)  for 12 flavor, PRD 87 (2013) for 8 flavor, & update]



Nf=8 (NEW) discussion

• Nf=8


• consistent with Ch symm. br.                  @ mf→0


• as well as conformal property [γ~0.7-1]  @ intermediate to small mf


• candidate of walking technicolor theory


[LatKMI, PRD 86 (2012)  for 12 flavor, PRD 87 (2013) for 8 flavor, & update]


• no clear-cut evidence of conformal fit fails @ mf→0


➡no clear-cut evidence of chiral symm. br. (bad news for hunting WTC ?)


• needs more in depth study towards chiral, as well as with other approaches


• happy to hear what other groups do:  today and in next few days….


• Nf=8 might be a very good WTC with a wide walking range (good news !)

sharp contrast to the usual QCD wheremD ¼ Oð!QCDÞ, so
that the approximate conformality !ð"Þ ’ !$ still remains
in the wide infrared region mD <"<!QCD as an impact
of the would-be IRFP. Such a ‘‘remnant of conformality’’
should appear in low energy quantities. This is the case for
the WTC, with the intrinsic scale !QCD being identified
with the ‘‘ultraviolet’’ cutoff ! of the WTC usually taken
as the extended technicolor (ETC) scale !ETC, and will be
the focus of our interest in this paper.

Although the above results from the two-loop perturba-
tion combined with the ladder approximation are very
suggestive, the relevant dynamics is obviously of nonper-
turbative nature, we would need fully nonperturbative
studies. Among others the lattice simulations developed
in the lattice QCD would be the most powerful tool to
investigate the walking behavior of the large Nf QCD.
Actually, there were some pioneering works on the large
Nf QCD in somewhat different contexts [10–13], and more

recently there have been many lattice studies towards the
above problem [14]. The immediate issues are: What is the
critical number Ncr

f ? What is the signature of the walking

theory on the lattice? In particular, the above two-loop/
ladder studies would suggest that the walking theory if
existed might be in between Nf ¼ 8 and Nf ¼ 12. As to
Nf ¼ 12 there have been many analyses including those of

ourselves which are consistent with the theory being inside
the conformal window [10,11,15–24], although some
works prefer the S#SB phase [25,26]. There were also
simulations on Nf ¼ 10 [27] consistent with the infrared

conformality. We thus are interested in Nf ¼ 8 as a can-

didate for the walking theory.
Actually, the Nf ¼ 8 is particularly interesting from

the model-building point of view [28]: A typical techni-
color model is the so-called one-family model (Farhi-
Susskind model [29]) which has a one-family of colored
and uncolored weak-doublet technifermions (techniquarks
and technileptons) corresponding to each family of the SM
quarks and leptons. It can embed the technicolor gauge and
the gauged three generations of the SM fermions into
a single gauge group (ETC) and thus is the most straight-
forward way to accommodate the technifermions and
the SM fermions into a simple scheme to give mass to
the SM fermions. Thus, if the Nf ¼ 8 turns out to be a

walking theory, it would be a great message for the phe-
nomenology, which is to be tested by the on-going LHC.
Actually, the technidilaton [1,5] in the WTC for the one-
family model is consistent with the present LHC data for
125 GeV boson in a ladder analysis [6] and in holographic
estimate [6].2

If Nf ¼ 8 is a walking theory desired for the WTC, it
should be inside the S#SB phase Nf ¼ 8<Ncr

f (mD ! 0)

and at the same time be close to the phase boundary with
the conformal window Nf > Ncr

f (mD ¼ 0) such that

mD % !QCD. Now the lattice simulations we are making
contain several scale-symmetry breaking parameters, the
fermion bare mass mf as well as a finite box L

3 and lattice
spacing a, which do not exist in the continuum theory we
are interested in. Among others the fermion bare mass mf

obviously distorts the ideal behavior of the breaking of the
scale symmetry in a way similar to the continuum theory.
Then, disregarding the effects of the lattice parameters L
and a for the moment,3 we may imagine possible effects of
the fermion bare mass on the walking coupling of our
target of study as in Fig. 1, which is suggested by the
two-loop/ladder analysis.
Case 1. mf % mD % !QCD (red dotted line in

Fig. 1): The chiral perturbation theory should
hold in a way similar to the real-life QCDwith
light quarks.

Case 2. mD % mf % !QCD (blue dotted line in
Fig. 1): The conformal hyperscaling relation
should hold approximately with a large
anomalous dimension $m ’ 1.

Actually, the S#SB order parameter to be measured on the
lattice is not mD but would be the decay constant F% of the
Nambu-Goldstone boson% extrapolated to the chiral limit:
F ¼ F%ðmf ¼ 0Þ which would be expected roughly the
same as mD: mD ¼ OðFÞ.
There is a caveat about the approximate hyperscaling

relation to be expected in case 2 (mD % mf % !QCD):

QCDf

α(µ)

µ

α*

mf mD Λm

FIG. 1 (color online). Schematic two-loop/ladder picture of
the gauge coupling of the massless large Nf QCD as a walking
gauge theory in the S#SB phase near the conformal window. mD

is the dynamical mass of the fermion generated by the S#SB.
The effects of the bare mass of the fermion mf would be
qualitatively different depending on the cases: Case 1: mf %
mD (red dotted line) well described by ChPT, and case 2: mf &
mD (blue dotted line) well described by the hyper scaling.

2As to the immediate questions about the problem with the S,
T parameters, see, for example, discussions in Ref. [30].

3In our simulation we use the parameter region where the
effect of the system size is subdominant compared to the mass
effect. This strategy is different from the one which is advocated
by the authors of Refs. [23,24].
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nice to look at spectrum at chiral limit ↔ experiment



mesons: ρ, a0, a1, b1
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baryons: N, N*
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mass ratio compared with real-life QCD

• moving toward “parity doubling” from smaller Nf to Nf=8


• consistent with LSD collab. with domain-wall fermions 
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for predictions of composite spectrum

• chiral log effect on Fπ is estimated


• polynomial extrapolation is matched with NLO ChPT at 


• natural expansion param. 

D. Estimate of log correction

The logarithmic correction in the chiral fits are estimated in the same way in our previous

work [4]. The logarithmic mf dependence is predicted by the next leading order (NLO)

ChPT for both the M2
π/mf and Fπ [12], whose formulae are given by

M2
π

mf
= 2B

(

1 +
x

Nf
log(x) + c3x

)

(8)

Fπ = F

(

1−
Nf x

2
log(x) + c4x

)

, (9)

where x = 4Bmf/(4πF )2, and B,F, c3 and c4 are the low energy constants. Our data do not

have such logarithmic dependences even in the lightest mf region as shown in the previous

subsections.

The size of the logarithmic correction in F and B is estimated by matching the quadratic

fit results to the NLO ChPT at mf such that X = 1, with X defined in Eq. (4), where F

should read the re-estimated one in this analysis. The details of the analysis is explained in

Appendix C. The correction reduces F by about 30% from the quadratic fit.

The results for F and and the chiral condensate at the chiral limit in this work are

F = 0.0212(12)(+49
−70), (10)

⟨ψψ⟩
∣

∣

mf→0
= 0.00022(4)(+22

−11), (11)

where the first and second errors are statistical and systematic ones, respectively. For

both the quantities, the central values come from the quadratic fit with the fit range of

0.012 ≤ mf ≤ 0.03, and the upper systematic error is estimated from the difference of the

central values between the quadratic fit and the linear fit with 0.012 ≤ mf ≤ 0.02. The

lower systematic errors come from the logarithmic correction in NLO ChPT.

It would be useful to estimate physical quantities in units of F , because in the technicolor

model the F is related to the weak scale,

√

NdF/
√
2 = 246 GeV, (12)

where Nd is the number of the fermion weak doublets as 1 ≤ Nd ≤ Nf/2. From our result,

the ratio Mρ/F in the chiral limit is given as

Mρ

F/
√
2
= 10.1(0.6)(+5.0

−2.5). (13)
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Appendix B: Tables for hadron masses

Appendix C: Chiral log correction
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IV. CHIRAL PERTURBATION THEORY ANALYSIS

In this section, we perform various polynomial fits with the large volume data set under

the assumption that Nf = 8 QCD is in the chiral broken phase. For this purpose, we focus

on the smaller mf data in 0.012 ≤ mf ≤ 0.06. From the analyses, we check the validity of

the assumption from the values of the physical quantities in the chiral limit, such as F , and

estimate their values, which would be helpful to predict hadron masses in the technicolor

model. In the last subsection, we estimate chiral log correction in ChPT.

A. Fπ and Mπ

Figure 7 presents themf dependence of Fπ in smallermf region. The linear and quadratic

fits are carried out with several fit ranges, as summarized in Table III. The fit functions are

regarded as ChPT prediction of Fπ without the chiral log terms. The linear fit function ofmf

work well for the three lighest data, while it does not work if one larger mf data is included

in the fit. The quadratic fit gives smaller χ2/dof, and it might work up to mf ≤ 0.04 with

acceptable χ2/dof. All the results of F in the reasonable fits are nonzero, as shown in Fig. 7.

The expansion parameter of ChPT in large Nf QCD [8–10] is defined as

X = Nf

(

Mπ

4πF/
√
2

)2

, (4)

and this quantity is required to satisfy X < 1. The values of X for the maximum and

minimum mf in the fit are evaluated in each fit result, which are shown in Table III. The

X of the minimum mf for the reasonable fits is O(1). Thus, our mf range is very close to

the region where ChPT is self-consistent, in contrast to the case of Nf = 12, X ≃ 40 [3].

The mf dependence of M2
π/mf is plotted in Fig. 8. Since the ratio approaches to a

constant towards the chiral limit, M2
π would vanish in the chiral limit. Better to see from

fit? The ratio has a visible slope even in the smaller mf region. This means that higher

order terms than the one in LO ChPT are necessary to explain our data in contrast to

Nf = 4 case, as shown in Fig. ??[Nf = 4 Fig]. The polynomial fits are carried out with

several fit ranges, as tabulated in Table VIII. The linear fits works in the smaller mf range,

0.012 ≤ mf ≤ 0.03. The quadratic fits give acceptable values of χ2/dof in wider mf range,

0.012 ≤ mf ≤ 0.06, than the one in the linear fit.
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Nf=8 composite spectrum

• Nd depends on the model


• e.g. one family model: Nd=4 → Mρ ~ 1.2 TeV

D. Estimate of log correction

The logarithmic correction in the chiral fits are estimated in the same way in our previous
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The ratios for all the hadron masses, tabulated in Table VII to F in the chiral limit are

summarized in Table X, where the systematic error comes from the one in F .

ρ a0 a1 b1 N N∗

10.1(0.6)(+5.0
−2.5) 10.8(1.1)(+5.3

−2.7) 14.4(1.7)(+7.1
−3.6) 13.3(2.1)(+6.6

−3.3) 14.3(0.9)(+7.0
−3.5) 18.1(1.6)(+8.9

−4.5)

TABLE X. Ratios of
√
2MH/F with H = ρ, a0, a1, b1, N, and N∗. The first and second errors are

statistical and systematic errors.
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Nf=8 spectrum

• Higgs mass ?


• 125 GeV (LHC) seems very light for technicolor ↔ light dilation idea


• 0++:  one of the difficult quantities on the lattice


• multi-faceted nature of Nf=8 adds another difficulty: delicate chiral extrapl.


➡ first analyze simpler Nf=12,  which shares “conformality” → techni dilaton


➡Is 0++ state light in (mass deformed) Nf=12 theory ?


➡ yes!  [LatKMI PRL 2013]


➡Nf=8 shares similar property [LatKMI PRD 2014] 

[Yamawaki-Bando-Matumoto ‘86]



flavor singlet scalar : Higgs channel

• update from PRD 2014 LatKMI


• σ as light as π


• clearly lighter than ρ


➡ far from heavy quark limit
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FIG. 15. Connected −C(t) and disconnected correlators 2D(t) for L=30, mf = 0.02.
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FIG. 16. Effective scalar mass mσ from correlators with the projection for L = 30, mf = 0.02.

even t. Another projection C−(t) ≡ 2C(t)− C(t+ 1)− C(t− 1) at even t is also defined to

maximize the opposite parity contribution πSC .

A typical result for D(t) and C(t) is shown in Fig. 15. In the figure, D(t) behaves as a

smooth function of t in contrast to C(t), which has a oscillating behavior. This result means

the taste symmetry breaking effect on AπSC
(t) and AπSC

is negligible in the parameter region

we simulate. The effective masses of 2D(t) − C(t), D(t), and C+(t) are shown in Fig. 16.

Since the correlator of 2D+(t)− C+(t) at large t is dominated by 2D(t), the effective mass

of the 2D(t) − C(t) at large t becomes consistent with the one obtained from D(t). It

turns out to become an advantage of using D(t) in extracting mσ, since the plateau of D(t)

appears at earlier t than that of the 2D+(t) − C+(t), which enables to determine mσ with

better accuracy. This earlier plateau happens to appear in the mass parameter we simulate,

which might be caused by a reasonable cancellation between the contributions of Aa0(t) and

excited state of σ. It is also shown that the effective masses of D(t) as well as 2D(t)−C(t)
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FIG. 17. Fermion mass dependence of the mass of the flavor-singlet scalarmσ. Other hadron masses

of NG pion mπ and vector meson mass are also shown. Outer error represents the statistical and

systematic uncertainties added in quadrature, while inner error is only statistical.

are smaller than that of mπ as plotted in the figure. Due to the smallness of mσ compared

to other hadron masses, the exponential damping of D(t) is milder than we expect in usual

QCD. It helps preventing the rapid degradation of the sigma-to-noise ratio.

We fit D(t) with assumption of a single scalar propagating. The fit range is [tmin, tmax] =

[6, 11] for all the simulation parameters, where we find a effective mass plateau. As a

systematic study, we take the fixed fit range for all the simulation parameters. In order to

estimate a systematic uncertainty coming from the fixed fitting range effect, we also fit with

later t region, with the same number of the data points, as shown in Fig.16. We quote the fit

result with fixed t range as a central value, and estimate a systematic error as the difference

of two values obtained by two fit ranges. All the results are tabulated in Table.XI. It should

be noted that, in somewhat smaller mass region, an additional effective mass plateau seems

to appear at later t region, whose mass is below the one obtained in the region at small t.

In later time region, however the effective masses are not stable with larger error in D(t),

so that it requires more accurate data for better identification of the ground state mass.

We find that the results with two different fit ranges are consistent each other except for

L = 36,mf = 0.015, where it has a second plateau. All results for the effective mass and

fits in other parameters are summarized in Appendix.XX.
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trial chiral extrapolation for Nf=8 SU(3) mσ 
[LatKMI: PRD2014]

• though it is too far, so far


• 2 ways:


• naive linear     mσ=c0+c1mf


• dilaton ChPT  mσ2=d0+d1mπ2                     
(Matsuzaki-Yamawaki 2013) 


• differ only at higher order


• possibility to have ~125GeV Higgs


• F/√2=123 GeV one-family model


• lighter mass data needed!

c.f. mσ⋍F/√2 → c0⋍0.014 || d0⋍0.0002
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FIG. 3: Mass squared of the flavor-singlet scalar m2
σ as func-

tion of m2
π. Outer error represents the statistical and system-

atic uncertainties added in quadrature, while inner error is
only statistical. Open square symbols are slightly shifted for
clarity. Result of a chiral extrapolation by the DChPT fit in
Eq. (5) is plotted by the solid line and full circle. Linear fit
result, mσ = c0 + c1mf , is also plotted by dashed curve and
full square. Dotted line denotes m2

σ = m2
π.

which is updated from the previous paper [10] using more
statistics and a new smaller mf data. (If this scalar
is to be identified with a composite Higgs, we expect
d0 ∼ F 2/2 ∼ 0.0002).
From the value of d1, we can read Fσ, because the

factor (3 − γm)(1 + γm)/4 is close to unity when we use
γm = 0.6–1.0 [10]. The value of Fσ is important to make
a prediction of the couplings of the Higgs boson from the
walking technicolor theory. The obtained slope is d1 =
1.18(24)(357 ). From d1 we estimate Fσ as Fσ ∼

√

NfF , in
curious coincidence with the holographic estimate [7] and
the linear sigma model. Note that the property d1 ∼ 1 is
another feature different from usual QCD, where a much
larger slope was observed for mπ > 670 MeV [28].
With our statistics we can also fit the data with an

empirical form, mσ = c0 + c1mf , consistent with Eq. (5)
up to higher order corrections, where we obtain c0 =
0.029(39)( 8

72) and the ratio mσ/(F/
√
2) = 2.0(2.7)( 8

5.1).
The fit result is plotted in Fig. 3 as a function of m2

π

using a quadratic mf fit result for m2
π. Several other fits,

such as a linear m2
π fit of m2

σ/F
2
π , are carried out, and

they give reasonably consistent ratios with the one from
c0. All the fit results suggest a possibility to reproduce
the Higgs boson mass within the large errors.
Note that due to the sizable error the σ spectrum could

also be consistent with the hyperscaling for the conformal
theory. Different, more precisely measurable quantities
are required to study if the theory is conformal or near-

conformal [10, 30].
We found that Nf = 8 QCD behaves consistently with

a walking theory in the previous study [10]. If our σ is
a candidate for the composite Higgs, mσ should be non-
zero in the chiral limit, and hence become larger than mπ

at mf smaller than the ones used in the current work.
Note that it is predicted in Ref. [31] that chiral log ef-
fect of π loops makes the m2

π dependence of m2
σ milder.

Therefore, observing mσ > mπ is an important future
direction and is necessary to determine a precise value of
mσ in the chiral limit, though it requires more accurate
data with a much smaller fermion mass. Furthermore, in
such a small mf region, decay of σ to two pions should
be taken into account to extract mσ using a variational
method, while σ in this work cannot decay due to the
heavy fermion mass where mσ < 2mπ. To check consis-
tency of the ground state mass, it is also important to
calculate mσ from gluonic operators as in our Nf = 12
QCD study [11, 16, 32].
In summary, using the same calculation techniques as

in the study of Nf = 12 QCD [11], we have observed
clear signals of a flavor-singlet scalar as light as the pion
in Nf = 8 QCD, which was shown to be a candidate
for walking technicolor [10]. Our simple chiral extrapo-
lations suggest the possibility of the existence of a very
light flavor-singlet scalar to be identified with a compos-
ite Higgs, which may be the technidilaton, with mass 125
GeV, although the errors on the extrapolated values are
large.
Obviously, an important future direction is to obtain

a more precise value of mσ in the chiral limit to clarify
whether this theory can really reproduce the Higgs boson
mass of 125 GeV, and is really a candidate of theory be-
yond the standard model. To do this, we should observe
mσ > mπ discussed above, which could be regarded as
another signal of walking behavior.
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trial chiral extrapolation for Nf=8 SU(3) mσ 
[LatKMI: NEW]

• though it is too far, so far


• 2 ways:


• naive linear     mσ=c0+c1mf


• dilaton ChPT  mσ2=d0+d1mπ2                     
(Matsuzaki-Yamawaki 2013) 


• differ only at higher order


• possibility to have ~125GeV Higgs


• F/√2=123 GeV one-family model


• lighter mass data needed!

c.f. mσ⋍F/√2 → c0⋍0.014 || d0⋍0.0002

c0 =   0.063(30)(+4-142)
d0 =  −0.0028(98)(+36-313 )!

d1 =    0.89(26)(+75-12 )!
c.f. d1~1 (holographic: Fσ~√NfF)!
       [Matsuzaki & Yamawaki 2012] 
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FIG. 18. Pion mass dependence of the mass of the flavor-singlet scalar mσ. Other hadron masses

of NG pion mπ and vector meson mass are also shown. Outer error represents the statistical and

systematic uncertainties added in quadrature, while inner error is only statistical. Results of the

chiral extrapolation by the DChPT are plotted by the solid line and full circle. Linear fit in mf is

also plotted by the dashed curve and full square.

mσ = c0m
1/(1+γ)
f , also works in the smaller mass region due to sizable error. The conformal

fit gives a χ2/dof = 0.60, and γ = 0.47(33)( 9
80). Accordingly, an interesting property that

both the fits of the (D)ChPT and hyperscaling with a large mass anomalous dimension

work in an appropriate mass region can be seen in mσ as well as other hadron spectra. It is

quite different from the usual QCD and could be a signal of the walking gauge theory. An

important future direction is to obtain a precise value of mσ in the chiral limit which will be

useful to study if this theory really possesses a desired walking behavior, and reproduce the

Higgs boson with 125 GeV mass. For this purpose, we need more and more data at lighter

fermion mass region with larger volumes.
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Summary and Outlook

• LatKMI collaboration is investigating the physics near the conformal phase 
boundary in SU(3) gauge theory; we focus here for Nf=8 QCD


• data taken so far is consistent with both Ch. br. and conformal scenario 


• Nf=8 QCD is very close to the conformal ↔ Ch. symm. br. boundary


• now it is not a toy model of WTC, but, really serious candidate


➡difficult to study.   But, study towards the chiral limit is necessary!


• prediction of spectrum in Fπ unit is made:


• ex. Mρ~1.2 (1) +0.6-0.3 TeV for one-family mode

D. Estimate of log correction

The logarithmic correction in the chiral fits are estimated in the same way in our previous

work [4]. The logarithmic mf dependence is predicted by the next leading order (NLO)

ChPT for both the M2
π/mf and Fπ [12], whose formulae are given by

M2
π

mf
= 2B

(

1 +
x

Nf
log(x) + c3x

)

(8)

Fπ = F

(

1−
Nf x

2
log(x) + c4x

)

, (9)

where x = 4Bmf/(4πF )2, and B,F, c3 and c4 are the low energy constants. Our data do not

have such logarithmic dependences even in the lightest mf region as shown in the previous

subsections.

The size of the logarithmic correction in F and B is estimated by matching the quadratic

fit results to the NLO ChPT at mf such that X = 1, with X defined in Eq. (4), where F

should read the re-estimated one in this analysis. The details of the analysis is explained in

Appendix C. The correction reduces F by about 30% from the quadratic fit.

The results for F and and the chiral condensate at the chiral limit in this work are

F = 0.0212(12)(+49
−70), (10)

⟨ψψ⟩
∣

∣

mf→0
= 0.00022(4)(+22

−11), (11)

where the first and second errors are statistical and systematic ones, respectively. For

both the quantities, the central values come from the quadratic fit with the fit range of

0.012 ≤ mf ≤ 0.03, and the upper systematic error is estimated from the difference of the

central values between the quadratic fit and the linear fit with 0.012 ≤ mf ≤ 0.02. The

lower systematic errors come from the logarithmic correction in NLO ChPT.

It would be useful to estimate physical quantities in units of F , because in the technicolor

model the F is related to the weak scale,

√

NdF/
√
2 = 246 GeV, (12)

where Nd is the number of the fermion weak doublets as 1 ≤ Nd ≤ Nf/2. From our result,

the ratio Mρ/F in the chiral limit is given as

Mρ

F/
√
2
= 10.1(0.6)(+5.0

−2.5). (13)
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Summary and Outlook

• Flavor Singlet scaler appears to be as light as pion !


• chance to have composite Higgs as light as 125GeV with this dynamics


• For more qualitative discussion


• lighter mass data needed and careful chiral limit needs to be taken



Other Studies in LatKMI

• all calculations are done with same set-up: HISQ, Nf=4*n


• Nf=8  spectrum of Dirac operator and topology → Nagai (talk)


• Nf=8  scalar and baryons for Dark Matter → Ohki (talk)


• Nf=8  at finite temperature → Miura (poster)


• Nf=4  for chiral symm. br.  → Kurachi (poster)


!

• Nf=8 S-parameter under investigation



Thank you so much for coming this workshop 
!

and thank you very much for listening.
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Finite Size Effect on Mπ & Fπ for mf=0.02

• ChPT inspired fits: results at L=36 is consistent with infinite volume.
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III. ANALYSIS FOR (Mπ, Fπ,Mρ, AND STRING TENSION)

A. Analysis of string tension

Miura and Enrico

1. Calculation methods (toleron mass and potential)

B. Analysis of hadron spectrum

Yamazaki and Kurachi

1. Finite volume effect

Results for Mπ, Fπ, and Mρ are presented in Fig. 1 as a function of L in each mf , except

in mf = 0.012. We will express Mρ of PV as Mρ, unless explicitly stated otherwise. For

all the quantities, the data on the largest two volumes are reasonably consistent with each

other in all mf except mf = 0.02, where some deviation is seen in the two volumes.

To estimate finite volume effect on the largest volume in mf = 0.02, we investigate

relative differences from the value on the largest volume for Mπ and Fπ,

δMπ(L) =
Mπ(L)−Mπ(Lmax)

Mπ(Lmax)
and δFπ(L) =

Fπ(L)− Fπ(Lmax)

Fπ(Lmax)
, (1)

where Lmax is the largest spatial extent, in each mf as shown in Fig. 2 in a function of

LMπ(L). The value of LMπ(L) on the largst volume in mf = 0.02, as expressed by solid,

vertical line in the figure, is comparable to the ones in a region, where δMπ(L) and δFπ(L) are

consistent with zero in mf similar to 0.02 (mf = 0.03 and 0.04). Note that at LMπ(L) ∼ 7,

δMπ(L) increases as mf , which is consistent behavior of finite volume effect expected by

NLO ChPT [1].

Furthermore, the data for Mπ(L) and Fπ(L) in mf = 0.02 are fitted by the following

functions, which are inspired by ChPT [1, 2], as in Ref. [3],

Mπ(L) = Mπ + cMπ

e−LMπ

(LMπ)3/2
, (2)

Fπ(L) = Fπ + cFπ

e−LMπ

(LMπ)3/2
, (3)

4

III. ANALYSIS FOR (Mπ, Fπ,Mρ, AND STRING TENSION)

A. Analysis of string tension

Miura and Enrico

1. Calculation methods (toleron mass and potential)

B. Analysis of hadron spectrum

Yamazaki and Kurachi

1. Finite volume effect

Results for Mπ, Fπ, and Mρ are presented in Fig. 1 as a function of L in each mf , except

in mf = 0.012. We will express Mρ of PV as Mρ, unless explicitly stated otherwise. For

all the quantities, the data on the largest two volumes are reasonably consistent with each

other in all mf except mf = 0.02, where some deviation is seen in the two volumes.

To estimate finite volume effect on the largest volume in mf = 0.02, we investigate

relative differences from the value on the largest volume for Mπ and Fπ,

δMπ(L) =
Mπ(L)−Mπ(Lmax)

Mπ(Lmax)
and δFπ(L) =

Fπ(L)− Fπ(Lmax)

Fπ(Lmax)
, (1)

where Lmax is the largest spatial extent, in each mf as shown in Fig. 2 in a function of

LMπ(L). The value of LMπ(L) on the largst volume in mf = 0.02, as expressed by solid,

vertical line in the figure, is comparable to the ones in a region, where δMπ(L) and δFπ(L) are

consistent with zero in mf similar to 0.02 (mf = 0.03 and 0.04). Note that at LMπ(L) ∼ 7,

δMπ(L) increases as mf , which is consistent behavior of finite volume effect expected by

NLO ChPT [1].

Furthermore, the data for Mπ(L) and Fπ(L) in mf = 0.02 are fitted by the following

functions, which are inspired by ChPT [1, 2], as in Ref. [3],

Mπ(L) = Mπ + cMπ

e−LMπ

(LMπ)3/2
, (2)

Fπ(L) = Fπ + cFπ

e−LMπ

(LMπ)3/2
, (3)

4


