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Sakata and Compositeness

Shoichi Sakata and his Nagoya group emphasized role of compositeness and “layers” of
structure in the early 1960s; this general idea was confirmed in composite structure of
hadrons as color-singlet bound states of quarks and gluons.

Ziro Maki, Masami Nakagawa, and Shoichi Sakata were also the first to propose (with
the two generations of leptons then known) that the neutrino weak eigenstates are
linear combinations of neutrino mass eigenstates:

|νe〉 = cos θ |ν1〉 + sin θ |ν2〉

|νµ〉 = − sin θ |ν1〉 + cos θ |ν2〉

in Maki, Nakagawa, Sakata, “Remarks on the Unified Model of Elementary Particles”,
Prog. Theor. Phys. 28, 243-246 (1962); and Nakagawa, Okonogi, Sakata, Toyoda,
“Possible Existence of a Neutrino with Mass and Partial Conservation of Muon
Charge”, Prog. Theor. Phys. 30, 727-729 (1963).

All of these papers were written here at Nagoya University.



Later experiments (Davis 37Cl solar neutrino deficiency, SAGE, GALLEX, IMB,
Kamiokande, SuperKamiokande, SNO, KamLAND, K2K...) have shown neutrino
oscillations and hence neutrino masses and mixing; SuperK 1998 data especially decisive.

Sakata (1911-1970); Maki (1929-2005); Nakagawa (1932-2001)

Also fitting that the Kobayashi Maskawa Institute here celebrates the successful
Kobayashi-Maskawa picture of CP violation with three Standard-Model (SM) quark
generations (1974), made before the discovery of any 3rd-generation quarks.

2012: great discovery by ATLAS and CMS exps. at the CERN LHC of a Higgs-like
scalar boson with mass 125.7 ± 0.4 GeV. From current data, this is is consistent with
being the pointlike Higgs boson of the SM, and the next LHC run at 13-14 TeV will
test this consistency further.

The hierarchy problem of the Higgs sector in the SM motivated extensions of the SM
that could solve or avoid this problem: supersymmetry and technicolor, as well as others.



So far, LHC has not seen evidence for either supersymmetry or technicolor or other
beyond-SM physics, but naturalness arguments still motivate consideration of extensions
of the SM that remove the hierarchy problem. Perhaps a new discovery might be made
in the next LHC run about to begin.

One possibility is the subject of these SCGT conferences, namely strongly coupled gauge
(SCG) interaction(s). These are of interest in their own right and might be relevant for
the observed Higgs-like boson, which would thus be composite rather than pointlike.

Koichi Yamawaki’s group at Nagoya has made pioneering contributions to this area for
many years.



Higher-Loop Corrections to UV → IR Evolution of Gauge
Theories

Consider an asymptotically free, vectorial gauge theory with gauge group G and Nf

massless fermions in representation R of G.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV).

The question of how this theory flows from large µ in the UV to small µ in the infrared
(IR) is of fundamental field-theoretic interest (and possibly some relevance to
electroweak symmetry breaking).

For some fermion contents, the (perturbatively calculated) beta function of the theory
may have an exact or approximate IR fixed point (zero of β).

Notation: g = g(µ); α(µ) = g(µ)2/(4π);
a(µ) = g(µ)2/(16π2) = α(µ)/(4π).



Dependence of α(µ) on µ described by renormalization group (RG) β function

βα ≡
dα

dt
= −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓα
ℓ

where dt = d lnµ, ℓ = loop order of the coeff. bℓ, and b̄ℓ = bℓ/(4π)
ℓ.

Coeffs. b1 and b2 in β are indep. of regularization/renormalization scheme, while bℓ for
ℓ ≥ 3 are scheme-dependent.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0. With b1 = (11CA − 4NfTf)/3, this requires
Nf < Nf,b1z = 11CA/(4Tf).

As the scale µ decreases from large values, α(µ) increases. Denote αcr as minimum
value for formation of bilinear fermion condensates and resultant spontaneous chiral
symmetry breaking (SχSB).



Two generic possibilities for β and resultant UV to IR flow:

• β has no IR zero, so as µ decreases, α(µ) increases beyond the perturbatively
calculable region (as in QCD).

• β has a IR zero, αIR, so as µ decreases, α → αIR; then two possibilities:
αIR < αcr or αIR > αcr.

If αIR < αcr, the zero of β at αIR is an exact IR fixed point (IRFP) of the renorm.
group (RG) as µ → 0 and α → αIR, β → β(αIR) = 0, and the theory becomes
exactly scale-invariant with nontrivial anomalous dimensions (Caswell, Banks-Zaks).

If β has no IR zero, or an IR zero at αIR > αcr, then as µ decreases through a scale
Λ, α(µ) exceeds αcr and SχSB occurs, so fermions gain dynamical masses ∼ Λ.

If SχSB occurs, then in low-energy effective field theory applicable for µ < Λ, one
integrates these fermions out, and β fn. becomes that of a pure gauge theory, with no
IR zero. Hence, if β has a zero at αIR > αcr, this is only an approx. IRFP of RG.



If αIR is only slightly greater than αcr, then, as α(µ) approaches αIR,
β = dα/dt → 0, so α(µ) runs very slowly as a function of the scale µ, i.e., there is
approximately scale-invariant (= dilatation-invariant, walking) behavior.

SχSB at Λ also breaks the approx. dilatation symmetry, leads to a resultant approx.
NGB, the dilaton (Yamawaki et al., 1986; Bardeen et al..). This is not massless, since
β is nonzero at α = αcr where SχSB occurs.

Denote the n-loop β fn. as βnℓ and the IR zero of βnℓ as αIR,nℓ. At the n = 2 loop
level,

αIR,2ℓ = −
4πb1

b2

which is physical for b2 < 0; this condition is met in the interval

I : Nf,b2z < Nf < Nf,b1z

where

Nf,b2z =
34C2

A

4Tf(5CA + 3Cf)



Take G = SU(Nc); e.g., with fermions in fund. rep.

• for SU(2), I: 5.55 < Nf < 11;

• for SU(3), I: 8.05 < Nf < 16.5;

• As Nc → ∞ with r = Nf/Nc fixed, I: 2.62 < r < 5.5.

Denote Nf = Nf,cr where αIR = αcr; Nf,cr separates chirally symmetric IR phase
at larger Nf and chirally broken IR phase at smaller Nf .

As Nf decreases and αIR increases toward αcr ∼ O(1), theory becomes moderately
strongly coupled, motivating higher-loop calculations of αIR, and γm evaluated at
αIR, where γm is anomalous dimension for ψ̄ψ (early work by Gardi, Grunberg,
Karliner).

Calculations up to 4-loop level for general fermion rep. R in Ryttov and RS, PRD83,
056011 (2011) [arXiv:1011.4542] and Pica and Sannino, PRD83, 035013 (2011)
[arXiv:1011.5917]. These use calculations of b3 and b4 by Vermaseren, Larin, and van
Ritbergen in MS scheme.

Further studies in RS, PRD 87, 105005 (2013) [arXiv:1301.3209]; RS, PRD 87, 116007
(2013) [arXiv:1302.5434] and on effects of scheme transformations (discussed below).
Analytic results in papers; examples of numerical results:



Numerical values of αIR,nℓ at the n = 2, 3, 4 loop level for SU(2), SU(3) and
fermions in fundamental representation:

Nc Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ
2 6 11.42 1.645 2.395
2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398

(Perturbative calculation not applicable if αIR,nℓ too large.)



Some general features of these results:

• Value of IR zero of β, αIR,nℓ, decreases substantially going from n = 2 loop order
to n = 3 loop order (generalizes beyond MS scheme).

• Value of αIR,nℓ increases slightly going from 3-loop to 4-loop order, but the
fractional change is smaller, so

• 4-loop value, αIR,4ℓ, is smaller than 2-loop value, αIR,2ℓ.

• Hence, with Nf,cr determined by αIR = αcr and αIR,nℓ increasing with
decreasing Nf , these higher-loop results suggest that Nf,cr may be smaller than
the early estimate Nf,cr ≃ 4Nc in agreement with many lattice results.

• The smaller fractional change in value of IR zero of β at higher-loop order agrees
with expectation that calculation to higher-loop order should give more stable result
if perturbation theory is reliable.
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Figure 1: βnℓ for SU(3), Nf = 12, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.



An important quantity is the anomalous dimension γm ≡ γ for the fermion bilinear
ψ̄ψ. As with the IR zero of βnℓ, it is useful to calculate this to higher-loop order.

Series expansion for γm:

γ =
∞
∑

ℓ=1

cℓa
ℓ =

∞
∑

ℓ=1

c̄ℓα
ℓ

where c̄ℓ = cℓ/(4π)
ℓ is the ℓ-loop coefficient.

The 1-loop coeff. c1 is scheme-independent; the cℓ with ℓ ≥ 2 are scheme-dependent
and have been calculated up to 4-loop level in MS scheme (Vermaseren, Larin, and van
Ritbergen): c1 = 6Cf , etc. for higher-loop coeffs.

Denote γ calculated to n-loop (nℓ) level as γnℓ and, evaluated at the n-loop value of
the IR zero of β, as

γIR,nℓ ≡ γnℓ(α = αIR,nℓ)



In the IR chirally symmetric phase, an all-order calculation of γ evaluated at an
all-order calculation of αIR would be an exact property of the theory.

In the chirally broken phase, just as the IR zero of β is only an approx. IRFP, so also,
the γ is only approx., describing the running of ψ̄ψ and the dynamically generated
running fermion mass near the zero of β having large-momentum (large k) behavior

Σ(k) ∼ Λ

(

Λ

k

)2−γ

(γ bounded above as γ < 2 in general). Analytic results given in our papers; numerical
results:



Illustrative numerical values of γIR,nℓ for SU(2) and SU(3) at the n = 2, 3, 4 loop
level and fermions in the fundamental representation with Nf ∈ I:

Nc Nf γIR,2ℓ γIR,3ℓ γIR,4ℓ
2 7 (2.67) 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259

Plot of γ as function of Nf for SU(3):



Figure 2: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(3) with Nf fermions in fund. rep: (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



We find that the 3-loop and 4-loop results are closer to each other for a larger range of
Nf than the 2-loop and 3-loop results.

So our higher-loop calcs. of αIR,nℓ and γIR,nℓ allow us to probe the theory reliably
down to smaller values of Nf and thus stronger couplings.

Comparison with Lattice Measurements:

One of the most heavily studied cases on the lattice is for the gauge group SU(3) with
Nf = 12 fermions in the fundamental representation.

For this theory, Appelquist et al. (LSD); Deuzeman, Lombardo, and Pallante;
Hasenfratz et al.; DeGrand et al.; Aoki et al. (LatKMI) find that the IR behavior is
chirally symmetric (Jin and Mawhinney, and Kuti et al. found it is chirally broken).



For this SU(3) theory with Nf = 12, we get

γIR,2ℓ = 0.77, γIR,3ℓ = 0.31, γIR,4ℓ = 0.25

some lattice results (error estimates do not include all systematic uncertainties):

γ = 0.414 ± 0.016 (Appelquist et al. (LSD Collab.), PRD 84, 054501 (2011).

γ ∼ 0.35 (DeGrand, PRD 84, 116901 (2011).

0.2 <∼ γ <∼ 0.4 (Kuti et al. (method-dep.) arXiv:1205.1878, arXiv:1211.3548,
1211.6164, PTP, finding SχSB).

γ ≃ 0.4 (Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-I. Nagai, H. Ohki, A.
Shibata, K. Yamawaki, and T.Yamazaki (LatKMI Collab.) PRD 86, 054506 (2012)
[arXiv:1207.3060]);

γ = 0.27(3) (Hasenfratz et al., arXiv:1207.7162; γ ≃ 0.25; Hasenfratz et al.,
arXiv:1310.1124).

γ = 0.235(46) (Lombardo, Miura, Nunes, Pallante (LMNP), arXiv:1410.0298).

So 2-loop value is larger than, and the 3-loop and 4-loop values closer to, lattice data.

Thus, our higher-loop calculations of γ yield better agreement with these lattice
measurements than two-loop calculations.



The LatKMI value is consistent with the LMNP value; different types of data analysis
accounts for different values (explained by LatKMI group).

Schwinger-Dyson estimates suggest γ could be ≃ 1 in walking regime with SχSB
(Yamawaki et al., Appelquist et al..,Holdom; Cohen-Georgi..). In technicolor theories,
γ ∼ 1 enhances SM fermion mass generation.

Lattice studies of SU(3) with Nf = 8 report γ ∼ 1 and hence are consistent with
this: Y. Aoki et al. (LatKMI), PRD 87, 094511 (2013) [arXiv:1302.6859]; and Y. Aoki,
T. Aoyama, M. Kurachi, T. Maskawa, K. Miura, K.-I. Nagai, H. Ohki, Rinaldi, A.
Shibata, K. Yamawaki, and T.Yamazaki (LatKMI), PRD 89, 111502 (2014)
[arXiv:1403.5000]; Appelquist et al. (LSD) PRD 90, 114502 (2014) [arXiv:1405.4752].

The IR behavior for SU(3) with Nf = 8 involves too strong a coupling for our
perturbative calculations to be applied.

As with our results for αIR,nℓ the decrease that we find in γIR,nℓ at higher loop order
n, combined with the expectation that γIR ∼ 1 for Nf = Nf,cr suggests that Nf,cr

may be smaller than the early estimate Nf,cr ≃ 4Nc, again in agreement with many
lattice results.



We find same trend for supersymmetric vectorial SU(Nc) gauge theory with chiral
superfields in fund. rep. (SQCD), where Nf,cr = (3/2)Nc is known, i.e., reductions
in αIR,nℓ and γIR,nℓ at higher-loop order (Ryttov and RS, PRD85, 076009 (2012)
[arXiv:1202.1297]).

Also useful to study theories with fermions in higher-dimensional reps. of gauge group
(Sannino...).

e.g. SU(3) with Nf = 2 fermions in symmetric rank-2 tensor rep. (sextet rep.); here
we calculate γIR,3ℓ = 1.28 and γIR,4ℓ = 1.12.

These values are consistent with γIR ∼ 1.5 obtained from lattice study by Kuti group,
arXiv:1205.1878; update with scalar mass: arXiv:1502.00028 finding SχSB for this
theory.

N.B.: γIR <∼ 0.5 obtained for this theory by Degrand, Shamir, Svetitsky, PRD88,
054505 (2013) [arXiv:1307.2425], finding χ sym.



Interesting property: for R = fund. rep., αIR,nℓNc and γIR,nℓ are similar in theories
with different values of Nc and Nf if they have equal or similar values of r = Nf/Nc.

This motivates a study of the UV to IR evolution of an SU(Nc) gauge theory with Nf

fermions in the fundamental rep. in the ’t Hooft-Veneziano (HV) limit Nc → ∞,
Nf → ∞ with

r ≡
Nf

Nc

and α(µ)Nc ≡ ξ(µ) finite

(RS, Phys. Rev. D87, 116007 (2013) [arXiv:1302.5434]).

Define a rescaled beta function that is finite in the this limit:

βξ ≡
dξ

dt
= lim

HV
βαNc

Interval of r where βξ,2ℓ has an IR zero is

Ir :
34

13
< r <

11

2
, i.e., 2.615 < r < 5.500



2-loop IR zero of βξ,2ℓ is at

ξIR,2ℓ =
4π(11 − 2r)

13r − 34

Value of n-loop γ evaluated at n-loop ξIR,nℓ: γIR,nℓ ≡ γnℓ
∣

∣

ξ=ξIR,nℓ
;

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

We find that corrections to the HV limiting forms go like 1/N 2
c and hence this limit is

approached rather rapidly as Nc and Nf increase. For example,

αIR,2ℓNc =
4π(11 − 2r)

13r − 34
+

12πr(11 − 2r)

(34 − 13r)2N 2
c

+ O
( 1

N 4
c

)

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

+
(11 − 2r)(18836 − 5331r + 648r2 − 140r3)

(13r − 34)3N 2
c

+ O
( 1

N 4
c

)



Results for γIR,nℓ up to 4-loop level in this limit:

r γ
IR,2ℓ

γ
IR,3ℓ

γ
IR,4ℓ

3.6 1.853 0.5201 0.3083
3.8 1.178 0.4197 0.3061
4.0 0.7847 0.3414 0.2877
4.2 0.5366 0.2771 0.2664
4.4 0.3707 0.2221 0.2173
4.6 0.2543 0.1735 0.1745
4.8 0.1696 0.1294 0.1313
5.0 0.1057 0.08886 0.08999
5.2 0.05620 0.05123 0.05156
5.4 0.01682 0.01637 0.01638

These results provide an understanding of similarities in αIR,nℓ and γIR,nℓ in theories
having different values of Nc and Nf with similar or identical values of r.



Study of Scheme Dependence in Calculation of IR Fixed
Point

Since coeffs. bn in βnℓ, and hence also αIR,nℓ, are scheme-dependent for n ≥ 3, it is
important to assess the effects of this scheme dependence (RS, PRD 88, 036003 (2013)
[arXiv:1305.6524]; RS, PRD 90, 045011 (2014) [arXiv:1405.6244]; Choi and RS, PRD
90, 125029 (2014) [arXiv:1411.6645]; Ryttov and RS, PRD 86, 065032 (2012)
[arXiv:1206.2366] and PRD 86, 085005 (2012) [arXiv:1206.6895]).

A scheme transformation (ST) is a map between α and α′ or equivalently, a and a′,
where a = α/(4π) of the form

a = a′f(a′)

with f(0) = 1 since ST has no effect in limit of zero coupling.

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s

where k̄s = ks/(4π)
s, and smax may be finite or infinite.

The Jacobian J = da/da′ = dα/dα′ = 1 +
∑smax

s=1 (s+ 1)ks(a
′)s, satisfying

J = 1 at a = a′ = 0.



After the scheme transformation is applied, the beta function in the new scheme is
given by

βα′ ≡
dα′

dt
=
dα′

dα

dα

dt
= J−1 βα

with the expansion

βα′ = −2α′
∞
∑

ℓ=1

b′ℓ(a
′)ℓ = −2α′

∞
∑

ℓ=1

b̄′ℓ(α
′)ℓ

where b̄′ℓ = b′ℓ/(4π)
ℓ.

We calculate the b′ℓ as functions of the bℓ and ks. At 1-loop and 2-loop, this yields the
well-known results

b′1 = b1 , b′2 = b2

We find
b′3 = b3 + k1b2 + (k21 − k2)b1 ,

b′4 = b4 + 2k1b3 + k21b2 + (−2k31 + 4k1k2 − 2k3)b1



b′5 = b5 + 3k1b4 + (2k21 + k2)b3 + (−k31 + 3k1k2 − k3)b2

+(4k41 − 11k21k2 + 6k1k3 + 4k22 − 3k4)b1

etc. at higher-loop order.

A physically acceptable ST must satisfy several conditions:

•C1: the ST must map a (real positive) α to a real positive α′, since a map taking
α > 0 to α′ = 0 would be singular, and a map taking α > 0 to a negative or
complex α′ would violate the unitarity of the theory.

•C2: the ST should not map a moderate value of α, where perturbation theory is
applicable, to a value of α′ so large that pert. theory is inapplicable.

•C3: J should not vanish (or diverge) or else there would be a pole in βα′

•C4: Existence of an IR zero of β is a scheme-independent property, so the ST
should satisfy the condition that βα has an IR zero if and only if βα′ has an IR zero.

These conditions can always be satisfied by an ST near the UVFP at α = α′ = 0, but
they are not automatic, and can be quite restrictive at an IRFP.



For example, consider the ST (dependent on a parameter r)

a =
tanh(ra′)

r
with inverse

a′ =
1

2r
ln

(

1 + ra

1 − ra

)

(e.g., for r = 4π, α = tanhα′). This is acceptable for small a, but if a > 1/r, i.e.,
α > 4π/r, it maps a real α to a complex α′ and hence is physically unacceptable.

We have constructed several STs that are acceptable at an IRFP and have studied
scheme dependence of the IR zero of βnℓ using these. For example, we have used a
sinh transformation (depending on a parameter r):

a =
sinh(ra′)

r
with inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2
]



Written in the form a = a′f(a′), this has the transformation function

f(a′) =
sinh(ra′)

ra′

This satisfies f(0) = 1 and also approaches the identity map as r → 0. With no loss
of generality, take r ≥ 0.

The Jacobian is J = cosh(ra′), which always satisfies C3, i.e., is nonsingular.

Taylor series expansion of f(a′) has coefficients ks = 0 for odd s and

k2 =
r2

6
, k4 =

r4

120
, k6 =

r6

5040
, k8 =

r8

362880
,

etc. for s ≥ 10. Thus, for small |r|a′,

a = a′
[

1 +
(ra′)2

6
+ O

(

(ra′)4
)]

so (for a 6= 0) a′ < a for |r| > 0.



Illustrative results with this sinh scheme transformation follow. We denote the IR zero
of βα′ at the n-loop level as α′

IR,nℓ ≡ α′
IR,nℓ,r.

For SU(3) gauge theory with Nf = 12, αIR,2ℓ = 0.754, and:

αIR,3ℓ,MS = 0.435, α′
IR,3ℓ,r=3 = 0.434, α′

IR,3ℓ,r=6 = 0.433,

αIR,4ℓ,MS = 0.470, α′
IR,4ℓ,r=3 = 0.470, α′

IR,4ℓ,r=6 = 0.467,

Thus, we find moderately small scheme dependence in the value of the IR zero at
3-loop and 4-loop level for moderate α and r.

Construction and application of two new scheme transformations in Choi and RS, PRD
90, 125029 (2014) [arXiv:1411.6645] confirms and extends these results:

SLr : a =
ln(1 + ra′)

r

SQr : a =
a′

1 − ra′

where again, r is a parameter (some details on supplementary slides at end).



Since the coefficients bℓ at loop order ℓ ≥ 3 in the beta function are
scheme-dependent, one might expect that it would be possible, at least in the vicinity
of zero coupling (UVFP in an asymp. free theory; IRFP in an IR-free theory) to
construct a scheme transformations that would set b′ℓ = 0 for some range of ℓ ≥ 3,
and, indeed a ST that would do this for all ℓ ≥ 3, so that βα′ would consist only of the
1-loop and 2-loop terms (’t Hooft scheme).

We have constructed an explicit scheme transformation that can do this in the vicinity
of zero coupling constant. However, we have also shown that it is much more difficult
to try to do this at a zero of β away from the origin (IR zero for an asymp. free theory;
UV zero for an IR-free theory).

Specifically, we construct a scheme transformation, denoted SR,m,k1, that removes the
terms in the beta function from loop order 3 up tom+ 1, inclusive, for small coupling.
In the limit m → ∞, this transforms to the ’t Hooft scheme.

To construct this ST, first, we take advantage of the property that in b′ℓ, the ST
coefficient kℓ−1 appears only linearly. For example, b′3 = b3 + k1b2 + (k21 − k2)b1,
etc. for higher-ℓ b′ℓ. So solve eq. b′3 = 0 for k2, obtaining

k2 =
b3

b1
+
b2

b1
k1 + k21



This determines SR,2,k1.

To get SR,3,k1, substitute this k2 into expression for b′4 and solve eq. b′4 = 0, obtaining

k3 =
b4

2b1
+

3b3

b1
k1 +

5b2

2b1
k21 + k31

This determines SR,3,k1. We continue this procedure iteratively to calculate SR,m,k1
for higher m. In general, the equation b′ℓ = 0 is a linear equation for kℓ−1, so one is
guaranteed a unique solution.

So the ST SR,m,k1 has nonzero ks, s = 1, ...,m and in the transformed beta
function, sets b′ℓ = 0 for ℓ = 3, ...,m+ 1. The coefficients ks for this ST depend on
the bn in the original beta function for n = 1, ...,m+ 1, and on the parameter k1.

In addition to the successful application near the origin, α = 0, we have shown that
this ST SR,m,k1 can be applied over part, but not all, of the interval I where the
2-loop beta function has an IR zero.



Some Results on Dynamical Electroweak Symmetry
Breaking and Strongly Coupled Chiral Gauge Theories

Although the Higgs-like scalar discovered at the LHC is consistent with being the SM
Higgs, naturalness arguments still motivate studies of extensions of the SM, including
possible dynamical electroweak symmetry breaking (EWSB) models with technicolor
(TC).

Recall that a TC theory features an asymptotically free vectorial TC gauge symmetry
and a set of TC-nonsinglet, SM-nonsinglet fermions, {F} (Weinberg, Susskind, 1979).

The TC theory becomes strongly coupled at the TeV scale, confining and producing
technifermion condensates 〈F̄ F 〉, with associated spontaneous chiral symmetry
breaking (SχSB) and dynamical EWSB.

A crucial property of viable TC theories is quasi-scale-invariant (i.e., walking) behavior
(Yamawaki et al., 1986; Holdom, 1986; Appelquist et al., 1986). The Higgs-like scalar
is then the technidilaton resulting from the SSB of the approximate scale invariance of
the WTC theory.



This is one major motivation for the intensive lattice studies of quasi-scale-invariant
gauge theories by many groups, with results on γIR and obtaining a light composite
scalar.

To give masses to SM fermions, one embeds the TC theory in a larger, extended
technicolor (ETC) theory. With an SU(NTC) TC gauge group, the SU(NETC) ETC
theory gauges the SM fermion generation index and combines it with the TC gauge
index, so

NETC = NTC +Ngen.

The ETC theory is an asymptotically free chiral gauge theory that becomes strongly
coupled and self-breaks in Ngen. stages down to TC via formation of various
condensates. Reasonably UV-complete ETC theories have been constructed that exhibit
the requisite self-breaking (e.g., Appelquist and RS, PLB 548, 204 (2002); PRL 90,
201801 (2003); Appelquist, Piai, RS, PRD 69, 015002 (2004)).

TC/ETC theories face many challenges, including precision EW constraints,
flavor-changing neutral current processes, t-b mass splitting, CKM mixing, ability to
produce a light, Higgs-like scalar, ability to produce very small neutrino masses, etc.



After the original 1986 papers on a technidilaton, there have been many studying how
its properties compare with those of the SM Higgs, e.g., Goldberger, Grinstein, Skiba,
PRL 100, 111802 (2008); Appelquist and Bai, PRD82, 071701 (2010); Hashimoto and
Yamawaki, PRD83, 015008 (2011)... (refs. in arXiv:1501.06454).

TC fit to Higgs as a technidilaton: Matsuzaki and Yamawaki, PRD 85, 095020 (2012);
PRD 86, 115004 (2012); PLB 719, 378 (2013), favoring NTC = 4 (discussed in
Matsuzaki’s talk).

Recent result on TC/ETC model-building: Kurachi, RS, Yamawaki, arXiv:1501.06454;
we construct an ETC theory in which we embed one-family TC. The SM-singlet part of
the ETC theory has a chiral fermion in the antisymmetric rank-2 tensor rep. of
SU(NETC), plus (NETC − 4) copies (“flavors”) of chiral fermions in the conjugate
fundamental rep. (an anomaly-free set):

ψijR = ψ
[ij]
R :

χi,s,R : , 1 ≤ s ≤ NETC − 4

where i, j = ETC gauge indices and s = flavor index.



The ETC gauge interaction is asymptotically free and, at a scale denoted Λ1, leads to
fermion condensation in the channel

× → ,

breaking SU(NETC) to SU(NETC − 1). The associated condensate is

〈

NETC
∑

j=2

ψ1j T
R C χj,1,R〉 ,

where, by notation convention, we take the ETC gauge index i = 1 in ψijR and the
flavor index s = 1 in χj,s,R.

The fermions ψ1j
R and χj,1,R with 2 ≤ j ≤ NETC involved in this condensate gain

dynamical masses of order Λ1 and are integrated out of the SU(NETC − 1)
low-energy effective theory (LEET) applicable at scales µ < Λ1.

This SU(NETC − 1) theory is again asymptotically free, with a gauge coupling that
continues to grow, and we infer that at a lower scale, Λ2, there is again condensation in
the × → channel, breaking SU(NETC − 1) to SU(NETC − 2).



The associated condensate is

〈

NETC
∑

j=3

ψ2j T
R Cχj,2,R〉,

where, by notation convention, we take the gauge index i = 2 in ψijR and the flavor

index s = 2 in χj,s,R. The fermions ψ
2j
R and χj,2,R with 3 ≤ j ≤ NETC involved in

this condensate gain dynamical masses of order Λ2 and are integrated out of the
SU(NETC − 2) LEET operative at µ < Λ2.

This sequential self-breaking of the SU(NETC) theory continues iteratively in
NETC − 4 stages, using the NETC − 4 flavors of χj,s,R fermions, reducing the
original SU(NETC) ETC gauge symmetry to the (vectorial) SU(NTC) subgroup
symmetry, with the broken indices being generation indices.

Hence,
Ngen. = NETC − 4

Substituting this in the eq. NETC = Ngen. +NTC, we get NTC = 4.

We have thus determined NTC from the structure of the specific ETC theory in which
our TC theory is embedded. (Note that Ngen. cancels out in the algebra.) Setting
Ngen. = 3, we thus get an SU(7) ETC gauge group.



Interestingly, this value NTC = 4 agrees with the preferred value obtained by
Matsuzaki and Yamawaki from their technidilaton fit to the Higgs-like scalar.

This ETC model naturally accounts for the mass hierarchy in the SM fermion
generations, since the SM fermion masses in the i’th generation result from exchange
of ETC vector bosons with mass Λi and, in the ETC boson propagators,

Λ−2
1 ≪ Λ−2

2 ≪ Λ−2
3

Resultant running fermion mass mfi(p) is constant up to Λi and has the power-law
decay mfi(p) ∝ (Λi/p)

2 for p ≫ Λi (Christensen, RS, PRL 94, 241801 (2005)).

The SU(4)TC theory has one SM family of technifermions and the (SM-singlet) ≡ A
fermion, which is self-conjugate in SU(4). At the ∼ TeV scale, the fermion forms a
condensate in the channel A×A → 1, which is invariant under TC and the SM.
Technifermion condensates 〈F̄ F 〉 cause EWSB in the usual way.

In general, a technidilaton-like composite scalar in this theory contains F̄ F , AA, and
techni-glue components.



In order for this model to be viable, it must exhibit walking behavior and must have
considerable suppression of the EW S parameter (e.g., Kurachi, RS, Yamawaki,
PRD76, 035003 (2007)). The 60 PNGBs and the techni-vector mesons should also gain

sufficiently large masses >∼ few TeV to agree with current LHC bounds (Matsuzaki and
Yamawaki; op. cit., Kurachi, Matsuzaki, Yamawaki, PRD90, 055028 (2014); PRD90,
095013 (2014)) (Matsuzaki’s talk; PDG LHC review: Chivukula, Narain, Womersley).

This model motivates lattice studies of SU(4) with Nf = 2(Nc + 1) = 8 Dirac
fermions in the fundamental rep.

Further ingredients are needed to account for actual SM fermion masses and mixings,
e.g., t-b mass splitting

The next run of the LHC should provide a stringent test of this model.

In addition to this phenomenological application, this model is of field-theoretic interest
for the insight that it provides on how the structure of a low-energy effective field
theory - here the TC theory - is determined by its embedding in an ultraviolet
completion, the ETC theory.



The sequential chiral gauge symmetry breaking via condensate formation in this model
is typical of strongly coupled chiral gauge theories, χGTs (early work: Georgi,
Dimopoulos, Raby, Susskind).

Some recent studies of patterns of UV to IR evolution in asymptotically free χGTs:
Appelquist and RS, PRD 88, 105012 (2013) [arXiv:1310.6076]; Y. Shi and RS, PRD 91,
045004 (2015) [arXiv:1411.2042].

Analyze beta function for possible IR zero at weak or stronger coupling.

For strongly coupled χGT, use most attractive channel (MAC) guide: condensates form
preferentially in channel R1 ×R2 → Rcond. with largest
∆C2 = C2(R1) + C2(R2) − C2(Rcond.), (R = fermion rep., C2(R) = Casimir
invariant); also use vacuum alignment arguments.

If resultant IR theory is weakly coupled (e.g., massless NGBs, gauge-singlet fermions),
interesting to count perturbative degrees of freedom in fields, test conjecture that
fUV ≥ fIR, where f = 2Nv + (7/4)Nf +Ns (v, f , s refer to massless spin 1,
1/2, and 0 fields) (Appelquist, Cohen, Schmaltz, RS, 1999).

Ideally, one would use lattice for fully nonperturbative method, but fermion doubling
makes it difficult to put χGTs on lattice.



Studies of RG Flows in Infrared-Free Gauge Theories

If the β function of a theory is positive near zero coupling, then this theory is IR-free;
as µ increases from the IR to the UV, the coupling grows. It is of interest to
investigate whether an IR-free theory might have a UV fixed point (UV zero of β).

In addition to performing perturbative calculations of β to search for such a UVFP in
an IR-free theory, one can use large-N methods. An explicit example is the O(N )
nonlinear σ model in d = 2 + ǫ spacetime dimensions. From an exact solution of this
model in the limit N → ∞ in 1976, we found that (for small ǫ)

β(λ) =
dλ

dt
= ǫλ

(

1 −
λ

λc

)

, i.e., β(x) =
dx

dt
= ǫx

(

1 −
x

xc

)

where λ is the effective coupling, λc = 2πǫ/N ; x = limN→∞ λN , xc = 2πǫ
(Bardeen, B. W. Lee, and RS, PRD14, 985 (1976); Brézin and Zinn-Justin, PRB 14,
3110 (1976)). Thus this theory has a UVFP at xc, so that if initial value of x < xc,
then x ր xc as µ → ∞.

There has long been interest in RG properties of d = 4 QED and, more generally, U(1)
gauge theory (early work: Gell-Mann and Low; Johnson, Baker, and Willey; Adler;
Yamawaki, Miransky,..).



Consider a vectorial U(1) theory with Nf massless Dirac fermions of charge q. With no
loss of generality, set q = 1. Write β function as

βα = 2α

∞
∑

ℓ=1

bℓ a
ℓ

The 1-loop and 2-loop coefficients are

b1 =
4Nf

3
, b2 = 4Nf

These coefficients have the same sign, so the two-loop beta function, βα,2ℓ, does not
have a UV zero, and this is the maximal scheme-independent information about it. The
coefficients have been calculated up to five loops in the MS scheme.

The 3-loop coefficient (deRafael and Rosner) is negative:

b3 = −2Nf

(

1 +
22Nf

9

)

Hence, βα,3ℓ has a UV zero, namely,

α
UV,3ℓ

= 4πa
UV,3ℓ

=
4π[9 +

√

3(45 + 44Nf) ]

9 + 22Nf



The 4-loop coefficient (Gorishny et al.) is negative: numerically,

b4 = −Nf (46 + 82.97533Nf + 5.06996N 2
f)

Recently, b5 has been calculated (Kataev, Larin; Baikov et al., 2012, 2013).
Numerically,

b5 = Nf(846.6966 + 798.8919Nf − 148.7919N 2
f + 9.22127N 3

f)

which is positive for all Nf > 0.

In RS, PRD 89, 045019 (2014) [arXiv:1311.5268], we have investigated whether the
n-loop beta function for this U(1) gauge theory has a UV zero for n up to 5 loops, for
a large range of Nf . Our results are given in the table (dash means no UV zero).



Nf α
UV,2ℓ

α
UV,3ℓ

α
UV,4ℓ

α
UV,5ℓ

1 − 10.2720 3.0400 −
2 − 6.8700 2.4239 −
3 − 5.3689 2.0776 −
4 − 4.5017 1.8463 −
5 − 3.9279 1.67685 2.5570
10 − 2.5871 1.2135 1.3120
20 − 1.7262 0.8483 −
100 − 0.7081 0.33265 −
500 − 0.3038 0.1203 −
103 − 0.2127 0.07678 −
104 − 0.016614 0.016965 −

A necessary condition for the perturbatively calculated β function to yield evidence for
a stable UV zero is that it should remain present when one increases the loop order and
the fractional change in the value should decrease going from n to n+ 1 loops.

We find that the UV zeros that we have calculated at ℓ = 3, 4, 5 loop order for a
large range of Nf values do not satisfy this necessary condition. Hence, our results do
not give evidence for a UVFP in U(1) gauge theory for general Nf . We find similar
conclusions for an SU(N ) gauge theory with Nf larger than the asympt. free range.



RG Flows in the O(N) λ|~φ|4 Theory

We have carried out a similar study, again up to 5-loop order, of another IR-free theory,
namely O(N ) λ|~φ|4 theory (in d = 4) to search for a possible UV zero of the beta
function, in RS, Phys. Rev. D 90, 065023 (2014) [arXiv:1408.3141].

Interaction term: Lint = − λ
4!
(~φ 2)2

β function : βa =
da

dt
= a

∞
∑

ℓ=1

bℓ a
ℓ where a =

λ

16π2

Coefficients:

b1 =
1

3
(N + 8) , b2 = −

1

3
(3N + 14)

b3 =
11

72
N 2 +

(

461

108
+

20ζ(3)

9

)

N +
370

27
+

88ζ(3)

9
Numerically,

b3 = 0.15278N 2 + 6.93976N + 24.4571

and so forth for b4 and b5 (calculated in MS scheme)



Although the two-loop beta function has a UV zero, it occurs at too large a value of
the coupling for the perturbative calculation to be reliable, as shown by the fact that
when one calculates to higher-loop order, the 3-loop beta function has no UV zero, and
the 4-loop and 5-loop beta functions differ considerably from the 2-loop and 3-loop beta
functions where the 2-loop function has a zero.

We have studied this further with scheme transformations and Padé approximants.

We thus conclude that in the range of λ where the perturbative calculation of the
n-loop beta function is reliable, the theory does not exhibit evidence of a UV zero up to
the level of n = 5 loops.
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Figure 3: Plot of the n-loop β function βa,nℓ as functions of a for N = 1 and (i) n = 2 (red), (ii) n = 3

(green), (iii) n = 4 (blue), and n = 5 (black). At a = 0.18, going from bottom to top, the curves are

for n = 4, n = 2, n = 3, and n = 5.



N a
UV,2ℓ

a
UV,3ℓ

a
UV,4ℓ

a
UV,5ℓ

1 0.5294 − 0.2333 −
2 0.5000 − 0.2217 −
3 0.4783 − 0.2123 −
4 0.4615 − 0.2044 −
5 0.4483 − 0.1978 −
6 0.4375 − 0.1920 −
7 0.4286 − 0.1869 −
8 0.42105 − 0.1823 −
9 0.4146 − 0.1783 −
10 0.4091 − 0.1746 −
100 0.3439 − 0.1012 −
1000 0.3344 − 0.07241 0.02276
3000 0.3337 − 0.5475 0.008850
104 0.3334 − − 0.003460



RG Flows in a Yukawa Theory

With E. Mølgaard, we have calculated RG flows for Yukawa theories in Mølgaard and
RS, PR D 89, 105007 (2014) [arXiv:1403.3058].

To study flows in simple context, use the (one-gen.) leptonic sector of the SM with the
gauge fields turned off . This has a global chiral symmetry group: SU(2)L ⊗ U(1)Y ,
forbidding bare fermion mass terms.

fermions: ψL: fund. rep. of SU(2)L with U(1)Y charge Yψ; χR: singlet of SU(2)L
with U(1)Y charge Yχ; scalar φ: fund. rep. of SU(2) with U(1)Y charge
Yφ = Yψ − Yχ so Yukawa term yψ̄LχRφ+ h.c. allowed by symmetry.

RG flows depend on y and the quartic scalar coupling λ. Beta functions (with
dt = d lnµ):

βy =
dy

dt
, βλ =

dλ

dt



Convenient variables: ay = y2/(4π)2 and aλ = λ/(4π)2. Corresponding beta
functions: βay = day/dt = (2y)(4π)−2 βy and βaλ = daλ/dt = (4π)−2 βλ.

As before compare calculations to different loop orders; calculate βy and βλ to loop
orders (1,1), (1,2), (2,1), (2,2), then integrate to get the RG flows.

For small ay and aλ, the RG flow is to the IR-free zero of both beta functions at
ay = aλ = 0, i.e., y = λ = 0.

For larger y and λ, the flows show further structure.

Comparison of these different loop-order RG flows yields info. on the extent of the
region in ay and aλ where the perturbative calculations agree with each other and
hence may be reliable.



Figure 4: RG flows obtained via integration of beta functions βay,ℓ and βaλ,ℓ′ for small ay and aλ, calculated

for loop orders (ℓ, ℓ′): (1,1) (upper left); (1,2) (upper right); (2,1) (lower left); and (2,2) (lower right).

Arrows are flows from UV to IR.



Figure 5: RG flows obtained via integration of beta functions βay,ℓ and βaλ,ℓ′ for moderate ay and aλ,

calculated for loop orders (ℓ, ℓ′): (1,1) (upper left); (1,2) (upper right); (2,1) (lower left); and (2,2) (lower

right). Arrows are flows from UV to IR.



Conclusions

• Understanding the UV to IR evolution of an asymptotically free gauge theory and
behavior associated with an exact or approximate IR fixed point of RG is of
fundamental field-theoretic interest and may have relevance to physics beyond the
Standard Model.

• Our higher-loop calcs. give info. on this UV to IR flow and on determination of
αIR,nℓ and γIR,nℓ; interesting comparison with γIR from lattice.

•We have investigated effects of scheme-dependence of IR zero in the beta function
in higher-loop calculations.

•We have discussed an SU(4) technicolor model in which NTC = 4 is derived from
embedding of technicolor in an extended technicolor model.

•We have carried out analyses of RG flows other theories: IR-free theories including
U(1) gauge theory, nonabelian gauge theory with Nf > Nf,b1z, λ|~φ|

4, Yukawa
models.
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Supplementary slides:
Values of b̄ℓ = bℓ/(4π)

ℓ for Nc = 3, where interval I is 8.05 < Nf < 16.5:

Nc Nf b̄1 b̄2 b̄3 b̄4
3 0 0.875 0.646 0.720 1.173
3 1 0.822 0.566 0.582 0.910
3 2 0.769 0.485 0.450 0.681
3 3 0.716 0.405 0.324 0.485
3 4 0.663 0.325 0.205 0.322
3 5 0.610 0.245 0.091 0.194
3 6 0.557 0.165 −0.016 0.099
3 7 0.504 0.084 −0.118 0.039
3 8 0.451 0.004 −0.213 0.015
3 9 0.398 −0.076 −0.303 0.025
3 10 0.345 −0.156 −0.386 0.072
3 11 0.292 −0.236 −0.463 0.154
3 12 0.239 −0.317 −0.534 0.273
3 13 0.186 −0.397 −0.599 0.429
3 14 0.133 −0.477 −0.658 0.622
3 15 0.080 −0.557 −0.711 0.852
3 16 0.0265 −0.637 −0.758 1.121



Remark on 3-loop analysis: since β3ℓ = −[α2/(2π)](b1 + b2a+ b3a
2), β3ℓ = 0

away from α = 0 formally at two values of α:

α =
2π

b3

(

− b2 ±
√

b22 − 4b1b3

)

Since b2 → 0 at lower end of interval I, and since b1 > 0, it is necessary that b3 < 0
for Nf ∈ I in order to have b22 − 4b1b3 > 0 and hence a physical IR zero of β3ℓ.

Since the existence of the IR zero in β at 2-loop level is scheme-independent, one may
require that a scheme should maintain this property to higher-loop order, and hence
that b3 < 0 for Nf ∈ I.

Since b2 < 0 and with b3 < 0, one can write

α =
2π

|b3|

(

− |b2| ∓
√

b22 + 4b1|b3|
)

soln. with + sqrt is αIR,3ℓ (soln. with − sqrt is unphysical).

Given that b3 < 0 for Nf ∈ I, a simple algebraic proof yields the result
αIR,3ℓ < αIR,2ℓ (RS, Phys. Rev. D 87, 105005 (2013) [arXiv:1301.3209]).

So the inequality αIR,3ℓ < αIR,2ℓ holds more generally than just in MS scheme.



Construction and application of new scheme transformations, in Choi and RS, PRD 90,
125029 (2014) [arXiv:1411.6645]:

SLr scheme transformation:

SLr : a =
ln(1 + ra′)

r

where r is a (real) parameter; corresponding transformation function:

f(a′) =
ln(1 + ra′)

ra′

Inverse : a′ =
era − 1

r
, Jacobian : J =

1

1 + ra′
= e−ra

Here f(a′) has the Taylor series expansion

f(a′) = 1 +

∞
∑

s=1

(−ra′)s

s+ 1
,

i.e., coefficients are ks = (−r)s/(s+ 1).



So for small |r|a′,

a = a′
[

1 −
ra′

2
+ O

(

(ra′)2
) ]

so (for a 6= 0), a′ > a if r > 0 and a′ < a if r < 0.

Note that for a given s, these ks are much larger than those for the sinh ST, so for a
given value of r, the SLr ST is farther from the identity than the sinh ST.

Allowed range of r: condition C1 requires that the argument of the log must be
positive, which yields the lower bound r > −1/a′ (also required by condition C3 that
J > 0). If r > 0, this inequality is obviously satisfied, so consider negative r.

Substitute relation for a′ into r > −1/a′; get r > r/(1− era). Since r is assumed
negative, can rewrite this as −|r| > −|r|/(1 − e−|r|a), i.e., 1 < 1/(1 − e−|r|a),
which is always satisfied.

Thus, r may be positive or negative, and the actual range of r is determined by the
combination of the conditions Ci, i = 1, ..4.



Illustrative results with this SLr scheme transformation: We again denote the IR zero
of βα′ at the n-loop level as α′

IR,nℓ ≡ α′
IR,nℓ,r.

For SU(3) with Nf = 12, αIR,2ℓ = 0.754, and:

α′
IR,3ℓ,r=−2 = 0.429, α′

IR,3ℓ,r=−1 = 0.432, α′
IR,3ℓ,r=0 = αIR,3ℓ,MS = 0.435,

α′
IR,3ℓ,r=1 = 0.438, α′

IR,3ℓ,r=2 = 0.441,

α′
IR,4ℓ,r=−2 = 0.450, α′

IR,4ℓ,r=−1 = 0.460, α′
IR,4ℓ,r=0 = αIR,4ℓ,MS = 0.470,

α′
IR,4ℓ,r=1 = 0.482, α′

IR,4ℓ,r=2 = 0.496

Again, we find rather small scheme dependence in the value of the IR zero of beta at
n = 3 and n = 4 loop level with this scheme transformation for moderate α and r.



We have also considered scheme transformation involving rational transformation
functions; for example,

SQr : a =
a′

1 − ra′

where r is a (real) parameter; corresponding transformation function:

f(a′) =
1

1 − ra′

Inverse : a′ =
a

1 + ra
, Jacobian : J =

1

(1 − ra′)2
= (1 + ra)2

Here f(a′) has the Taylor series expansion

f(a′) = 1 +

∞
∑

s=1

(ra′)s ,

i.e., coefficients are ks = rs. So for small |r|a′,

a = a′
[

1 + ra′ + O
(

(ra′)2
) ]

.



Here, a′ < a if r > 0 and a′ > a if r < 0.

Allowed range of r: since a′ = a/(1 + ra), condition C1 requires that denom. be
positive, and hence that r > −1/a; and since a = a′/(1 − ra′), C1 requires
r < 1/a′. Substituting above relation for a′ yields r < a−1 + r, which is always
valid.

So, as with the SLr ST, actual range of r determined by combination of the conditions
Ci, i = 1, ..4.

For the SQr scheme transformation, as with the SLr ST, we find that the shift in the
IR zero of the beta function at 3-loop and 4-loop level is small for moderate α and r.

These results are in agreement with our previous ones for the sinh scheme
transformation.

Our studies provide a quantitative evaluation of scheme-dependent effects in
calculations of the IR zero in the beta function. We have constructed scheme
transformations that are physically acceptable over the required range of αIR values
and have found reasonably small scheme-dependence in the value of the IR zero of β
for moderate αIR and ST-parameter r.



RG Flows in U(1) Theory

In addition to our analysis of the beta function up to 5-loop order, we have carried out
an analysis in the limit

Nf → ∞ with finite y(µ) ≡ Nf a(µ) =
Nf α(µ)

4π

We denote this as the LNF (large-Nf) limit; analogous to N → ∞ limit in nonlinear
σ model.

We set b1 = b1,1Nf with b1,1 = 4/3. Further,

bℓ =

ℓ−1
∑

k=1

bℓ,kN
k
f for ℓ ≥ 2 ,

where the bℓ,k are independent of Nf .

Hence,
bℓ ∝ N ℓ−1

f for ℓ ≥ 2 as Nf → ∞

We thus define the finite quantities

b̌ℓ ≡
bℓ

N ℓ−1
f

for ℓ ≥ 2



so
lim

Nf→∞
b̌ℓ = bℓ,ℓ−1 for ℓ ≥ 2

We define a rescaled β function that is finite in the LNF limit as βy ≡ βαNf . Then

βy = 8πb1,1 y
2

[

1 +
1

b1,1Nf

∞
∑

ℓ=2

bℓ y
ℓ−1

]

The condition that the n-loop βy, βy,nℓ, has a zero at y 6= 0 is the equation

1 +
1

b1,1Nf

n
∑

ℓ=2

bℓ y
ℓ−1 = 0

In the LNF limit, of the n− 1 roots of this equation, the relevant one has the
approximate form

y
UV,nℓ

∼

(

−
b1,1Nf

bn,n−1

)
1

n−1

Hence, βy,nℓ has a zero for y 6= 0 in the LNF limit if and only if bn,n−1 < 0, which is
not, in general true. Further, even if it were true for a given loop order n, in the LNF
limit, limNf→∞ yUV,nℓ = ∞.



One can reexpress βy as a series in powers of ν ≡ 1/Nf :

βy = 8πb1,1 y
2
[

1 +

∞
∑

s=1

Fs(y)ν
s
]

An exact integral representation of F1(y) is known (cf. Holdom, 2010). We have used
this representation to determine the signs of bn,n−1 up to n = 24 loops. We find that
these signs are scattered, and show no indication of an onset of negative signs.

Thus, we do not find evidence of a UVFP in a U(1) gauge theory with Nf massless
charged fermions for large Nf .


