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Studies in LatKMI for strong coupling gauge theory

• Lattice study of the SU(3) gauge theory with Nf fundamental fermions  

• all calculations are done with same set-up: Highly Improved Staggered Quark 
(HISQ) type action with Nf=4*n 

• Nf=(4),8,(12), generic hadron spectrum properties → Y. Aoki (talk, yesterday) 

• Nf=8  spectrum of Dirac operator and topology → K. Nagai (talk, yesterday) 

• Nf=8  scalar and baryon for Dark Matter → this talk



Outline

•Introduction 
•Scalar  analysis 
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•Summary



Introduction



“Discovery+of+Higgs+boson”

• Higgs like particle (125 GeV) has been found at LHC. 

• Consistent with the Standard Model Higgs. But true nature is so far unknown. 

• Many candidates for beyond the SM 

    one interesting possibility 
– (walking) technicolor  
• “Higgs” = dilaton (pNGB) due to breaking of the approximate scale invariance

Nf=8 QCD could be a candidate of walking gauge theory. 
We find the flavor singlet scalar (σ) is as light as pion. 
It may be identified a techni-dilaton (Higgs in the SM), which is a 
pseudo-Nambu Goldstone boson. 
(LatKMI, Phys. Rev. D 89, 111502(R), arXiv: 1403.5000[hep-lat].)



It is important to investigate the decay constant of the 
flavor singlet scalar as well as mass, which is useful to 
study LHC phenomena; the techni-dilaton decay constant 
governs all the scale of couplings between Higgs and 
other SM particles.

Dilaton decay constant

Dilaton effective theory analysis [S. Matsuzaki, K. Yamawaki, PRD86, 039525(2012)]
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Lattice calculation 
of 

flavor-singlet scalar mass



OS(t) � �̄i�i(t), D(t) = �OS(t)OS(0)� � �OS(t)��OS(0)�

Flavor singlet scalar from fermion bilinear operator

Staggered fermion case  
• Scalar interpolating operator can couple to two states of  
!
!
!
!
!
• Flavor singlet scalar can be evaluated with disconnected diagram.
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Λ3

LMρ

mf < mref
f < mf

mref
f < mf

α = 1

Cσ(t) = ⟨
∑Nf

i ψ̄iψi(t)
∑Nf

j ψ̄jψj(0)⟩ = Nf (−C(t) + NfD(t))

OF (t) ≡ ψ̄iψi(t), D(t) = ⟨OF (t)OF (0)⟩ − ⟨OF (t)⟩⟨OF (0)⟩

C±(2t) ≡ 2C(2t)±C(2t + 1)±C(2t − 1)

C+(2t) = 2C(2t) + C(2t + 1) + C(2t − 1)

(1 ⊗ 1) & (γ4γ5 ⊗ ξ4ξ5)

OF (t) =

Nf∑

i

ψ̄iψi(t)

C(2t)+ → a0 (continuum limit)
C(2t)− → scPion (continuum limit)

D(t) = ⟨ψ̄ψ(t)ψ̄ψ(0)⟩ − ⟨ψ̄ψ(t)⟩⟨ψ̄ψ(0)⟩

Cσ(2t) = −C+(2t) + 2D+(2t)
dfdf

0+(a0) :C+(2t) = 2C(2t) + C(2t + 1) + C(2t − 1) (18)

0−(scPion) :C−(2t) = 2C(2t) − C(2t + 1) − C(2t − 1) (19)

0+(σ) :Cσ(2t) = −C+(2t) + 3D+(2t) (20)

0+ :3D+(2t) (21)

0+(a0) : C+(2t)
0−(scPion) : C−(2t)
0+(σ) : Cσ(2t) = −C+(2t) + 3D+(2t)
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(8 flavor) = 2 × (one staggered fermion)

(1 ⊗ 1) & (γ4γ5 ⊗ ξ4ξ5)

OF (t) =

Nf∑

i

ψ̄iψi(t)

Dφ(x) = η(x0), ⟨η(x)η†(y)⟩ = δx,y

C(2t)+ → a0 (continuum limit)
C(2t)− → scPion (continuum limit)

D(t) = ⟨ψ̄ψ(t)ψ̄ψ(0)⟩ − ⟨ψ̄ψ(t)⟩⟨ψ̄ψ(0)⟩

a
D−1(x, y) = ⟨η†(x)φ(y)⟩
D−1(x, y) = ⟨mfφ(x)φ†(y)⟩

Cσ(2t) = −C+(2t) + 2D+(2t)
dfdf

0+(a0) :C+(2t) = 2C(2t) + C(2t + 1) + C(2t − 1) (18)

0−(scPion) :C−(2t) = 2C(2t) − C(2t + 1) − C(2t − 1) (19)

0+(σ) :Cσ(2t) = −C+(2t) + 2D+(2t) (20)

0+ :2D+(2t) (21)

dfdf

0+(a0) :C+(2t) = 2C(2t) + C(2t + 1) + C(2t − 1) (22)

0−(scPion) :C−(2t) = 2C(2t) − C(2t + 1) − C(2t − 1) (23)

0+(σ) :Cσ(2t) = −C+(2t) + 3D+(2t) (24)

0+ :3D+(2t) (25)

0+(a0) : C+(2t)
0−(scPion) : C−(2t)
0+(σ) : Cσ(2t) = −C+(2t) + 3D+(2t)
0+ : 3D+(2t)
C−(2t) = C−(2t)
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Nf=8 Result   �
�

Same data as [LatKMI PRD2014] 
and   

Some  updates



Simulation setup
!

• SU(3), Nf=8  

!
• HISQ (staggered) fermion 
and tree level Symanzik gauge action 
!
Volume (= L^3 x T) 
• L =24, T=32 
• L =30, T=40 
• L =36, T=48 
• L =42, T=56 
Bare coupling constant (                 ) 
• beta=3.8 
!

bare quark mass 
• mf= 0.012-0.06,  
     (5 masses) 
!
•  high statistics (more than 2,000 configurations) 
!

• We use a noise reduction technique for disconnected correlator. 
(use of Ward-Takahashi identity[Kilcup-Sharpe, ’87, Venkataraman-Kilcup ’97] ) 

mf L3 × T Ncf [Nst] mσ Lmσ

0.012 423×56 2300[2] 0.151(15)( 0
25) 6.3(6)( 0

1.1)

0.015 363×48 5400[2] 0.162(23)( 0
73) 5.8(8)( 0

2.6)

0.02 363×48 5000[1] 0.190(17)(39
0) 6.8(6)(1.4

0)

0.02 303×40 8000[1] 0.201(21)( 0
60) 6.0(6)( 0

1.8)

0.03 303×40 16500[1] 0.282(27)(24
0) 8.5(8)(70)

0.03 243×32 36000[2] 0.276(15)(60) 6.6(4)(10)

0.04 303×40 12900[3] 0.365(43)(17
0) 11.0(1.3)(0.5

0)

0.04 243×32 50000[2] 0.322(19)(80) 7.7(5)(20)

0.04 183×24 9000[1] 0.228(30)( 0
16) 4.1(5)(03)

0.06 243×32 18000[1] 0.46(7)(12
0) 11.0(1.7)(2.8

0)

0.06 183×24 9000[1] 0.386(77)(12
0) 7.0(1.4)(20)

TABLE II. Simulation parameters for Nf = 8 QCD at β = 3.8. Ncf(Nst) is the total number

of gauge configurations (Markov chain streams). The second error of mσ is a systematic error

coming from the fit range. The data with (†) and (∗) indicate a new result, and an update from

the previous result [LatKMI, PRD(R), 2014], respectively.
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mσ for Nf=8, beta=3.8 
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σ is as light as π  
and clearly lighter than ρ

(same figure as talk by Y. Aoki, yesterday)



Scalar decay constant

Preliminary



Two possible decay constants for σ (Fσ and Fs)

1. Fσ: Dilaton decay constant  

Dµ : dilatation current can couple to the state of σ.

Partially conserved dilatation current relation (PCDC): 

�0|Dµ(x)|�; p� = iF�pµe�ipx

�0|�µDµ(0)|�; 0� = F�m2
�

2.  Fs :scalar decay constant 

O(x) =
NF�

i=1

�̄i�i(x)We use scalar density operator   
!
which can also couple to the state of σ. 
We denote this matrix element as scalar decay constant 
!
!
!
(Fs : RG-invariant quantity) 

We study Fs. 
We also discuss a relation between Fσ and Fs later.

difficult to calculate

not so difficult



scalar decay constant from 2pt flavor singlet scalar correlator

Insert the complete set (|n><n|)

Asymptotic behavior (large t) of the scalar 2pt correlator Cσ(t)

NF: number of flavors  
V: L^3 
A: amplitude



What is relation between Fs and Fσ?



A relation between Fs and Fσ through the WT id.  
(in the continuum theory)

the (integrated) WT-identity for dilatation transformation

Useful relations

(trace anomaly relation) 

(scale transformation)

Taking the zero momentum limit (q →0), (LHS) is zero. 
the WT-identity gives 



Insert the complete set                                      
!

into       
!

and use a scalar density operator

(in the dilaton pole dominance approximation)

We obtain

[Ref: Technidilaton (Bando, Matumoto, Yamawaki, PLB 178, 308-312)]

Recall 

��̄� = 3� �m

F� = �
��̄�NF mf ��̄��

�
2V Am�

O = mf

NF�

i

�̄�



(in the dilaton pole dominance approximation)

��̄� = 3� �m

The (integrated) chiral WT-identity tells us that

c.f. PCAC relation

using PCAC relation, this leads to

(in the pion pole dominance approximation)

(GMOR relation)m2
�F 2

� = �4mf ��̄��

F� = �
��̄�NF mf ��̄��

�
2V Am�



Nf=8 Result   
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Preliminary
chiral limit

F� = c0 + c1mf

in the chiral limit  
F�

F�
� 1.5��̄� � 3

with assumption of � � 1, (��̄� = 3� � � 2)

c.f. Another estimate via the scalar mass in the dilaton ChPT (DChPT). 

DChPT: m2
� � d0 + d1m

2
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F�
�

�
NF = 2

�
2

d1 =
(1 + �)��̄�

4
NF F 2

�
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Technibaryon Dark Matter 



Technibaryon  

• The lightest baryon is stable due to the technibaryon 
number conservation  
!

• Good candidate of the dark matter (DM) 
!

• Boson or fermion? (depend on the #TC) 
      our case: DM is fermion (#TC=3). 

!

• Direct detection of the dark matter is possible. 



DM effective theory

Technibaryon(B) interacts with quark(q), gluon in standard model

One of the dominant contributions in spin-independent interactions 
comes from the microscopic Higgs (technidilaton σ) mediated process  
(below diagram)

Technibaryon-scalar effective 
coupling

nucleon-scalar effective coupling

Leff = cB̄Bq̄q + cB̄BGa
µ�Gaµ� + 1

M B̄i�µ��BOµ� + · · ·

Nucleon Nucleon 

�

B : DMB : DM

yB̄B�

yn̄n�



(Techni)baryon Chiral perturbation theory 

leading order of BChPT 
Construction of the meson–baryon Lagrangian (3)

• chiral vielbein (axial vector)

uµ = i
(

u†(∂µ − i rµ)u − u(∂µ − i lµ)u†)

transforms according to

uµ "−→ KuµK†

• finally, rewrite quark mass term χ = 2B(s + i p) = 2BM + . . .

χ+ = u†χu† + uχ†u

such that
χ+ "−→ Kχ+K†

⇒ everything transforms in the same way
• power counting: Γµ, uµ = O(p) , χ+ = O(p2)

Baryon Chiral Perturbation Theory – p. 9

L = B̄(i�µ�µ �mB + gA

2 �5�µuµ)B

U = u2 = e2�i/F�

L = B̄(i�µ�µ � e�/F�mB + gA

2 �5�µuµ)B

� = e�/F�

with dilaton

The dilaton-baryon effective coupling (leading order) is uniquely determined as 

yB̄B� = mB/F�



�SI(�, N) = M2
R

� (Zfp + (A� Z)fn)2

DM Direct detection 

�

Table 1: Mass fractions. These values are based on the lattice QCD simulations [12, 13].

Proton Neutron

f
(p)
Tu

0.019(5) f
(n)
Tu

0.013(3)

f
(p)
Td

0.027(6) f
(n)
Td

0.040(9)

f
(p)
Ts

0.009(22) f
(n)
Ts

0.009(22)

or lighter than the top mass, one should integrate top quark as well so that the e↵ective
theoretical approach is appropriate.2

Note that we include ↵s/⇡ to the definition of the gluon scalar-type operator Og
S. We

discuss the meaning in the next subsection.

2.2 Nucleon matrix elements

As discussed in Introduction, we need the nucleon matrix elements of the e↵ective opera-
tors to evaluate the WIMP-nucleon e↵ective coupling. These operators are classified into
three types in terms of the Lorentz transformation properties of the quark bilinear parts
in the operators; the scalar-type operators (Oq

S, Og
S), the axial-vector operator (Oq

AV ), and
the twist-2-type operators (Oq

Ti
, Og

Ti
). Since these operators do not mix with each other

under the renormalization group (RG) flow, we are allowed to consider them separately.
As for the scalar-type quark operators Oq

S, we use the results from the lattice QCD
simulations. The expectation values of the scalar bilinear operators of light quarks be-
tween the nucleon states at rest, |Ni (N = p, n), are parametrized as

f
(N)
Tq

⌘ hN |mq q̄q|Ni/mN , (4)

which are called the mass fractions. These values are shown in Table 1. Here, mN is the
nucleon mass. They are taken from Ref. [11], in which the mass fractions are computed
by using the results from Refs. [12, 13].

The nucleon matrix element of Og
S is, on the other hand, evaluated with the trace

anomaly of the energy-momentum tensor [14]. For Nf = 3 quark flavors, the trace of the
energy-momentum tensor in QCD is given as

⇥µ
µ = �9

8

↵s

⇡
GA

µ⌫G
Aµ⌫ +

X

q=u,d,s

mqqq , (5)

up to the leading order in ↵s. The relation beyond the leading order in ↵s is also readily
obtained from the trace-anomaly formula. By evaluating the operator (5) in the nucleon

2In Ref. [10], such a situation is discussed where the exchanged particle has a similar mass to the
b-quark mass. In this case, of course, b-quark (also top quark) should be simultaneously integrated out
when the e↵ective theory is formulated.

4

Lattice calculation for both nucleon and technibaryon interactions 

g�ff

ghSM ff
=

(3� ��)vEW

F�
Note: Yukawa coupling is different from the SM : 

Nucleon matrix element non-perturbatively determined by lattice QCD calculation

Nucleon sigma term in QCD

B B 

Nucleon Nucleon

Spin-independent cross section with nucleus
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2In Ref. [10], such a situation is discussed where the exchanged particle has a similar mass to the
b-quark mass. In this case, of course, b-quark (also top quark) should be simultaneously integrated out
when the e↵ective theory is formulated.

4

Lattice calculation of the nucleon sigma term (fTq)  
Ref [R.D. Young, and A. W. Thomas,’10, HO et al. JLQCD ’13, ]
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Baryon mass in Nf=8 QCD

C. Polynomial fit for other hadron masses
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Summary



Scalar channel  
•Using the flavor singlet scalar correlator, we calculated decay 
constant as well as mass. 
•Signal of Fs is as good as mσ.  
•Fσ is related Fs through the WT id. 
•Accuracy of the data is not enough to take the chiral limit in Nf=8.  
•Very rough estimate suggests Fσ/Fπ ~1.5 Δ , in rough agreement 
with other measurement  (LatKMI, Phys. Rev. D 89, 111502(R) 
(2014), arXiv:1403.5000) 

Baryon channel 
•Baryon mass is calculated in Nf=8 QCD 
•Combining the result of the dilaton decay constant, we can 
estimate the dark matter cross section. 
•Allowed region for the technibaryon dark matter is severely 
constrained by current dark matter direct detection.



Thank you 


