Topological insights in many flavor QCD on the lattice

Kei-ichi NAGAI for LatKMI Collaboration

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe **(KMI)**,

Nagoya University

SCGT15, 03 March 2015

LatKMI Collaboration:

Y. Aoki T. Aoyama M. Kurachi T. Maskawa K. Miura K.-i. Nagai H. Ohki

E. Bennett

E. Rinaldi

A. Shibata

(FK

K. Yamawaki

Plan of Talk:

1. Introduction

- 2. Topological charge and susceptibility Mainly, in Nf=8
 § Nf=8 is a candidate for the walking.
- 3. Eigenvalues and Anomalous dimension
- 4. Summary, Discussion

1. Introduction

Walking technicolor

 N_f massless fermions + SU(N_{TC}) gauge at O(1) TeV

Model requirement:

Spontaneous chiral symmetry breaking

Slow running (walking) coupling in wide scale range

• Large anomalous mass dimension $\gamma^* \sim 1$ in walking region

 $\begin{array}{l} \bullet \mbox{ Higgs} \approx \mbox{ Light composite scalar} \\ \mbox{ pNGB (technidilaton)} \\ \mbox{ of scale symmetry breaking} \end{array}$

$$m_{\rm Higgs}/v_{\rm EW} \sim 0.5 = m_\sigma/(\sqrt{N_d}F)$$

 F : decay constant, N_d : number of weak doublets
usual QCD $m_\sigma/F \sim 4-5$

In the topological nature,

What happens in the walking/conformal phase?

In hadron phase:

 \star Index theorem

fermionic chiral zero mode \Leftrightarrow gluonic $F_{\mu\nu}\widetilde{F}_{\mu\nu}$

★ Banks-Casher relation

fermionic zero mode

$$\langle \bar{\psi}\psi \rangle = \lim_{m \to 0} \lim_{V \to \infty} \int d\lambda \rho(\lambda) \frac{2m}{\lambda^2 + m^2} = \pi \rho(\lambda = 0)$$

 $\rho(\lambda) \,$ in p- and ٤-regime,

 $\nu(\lambda) = \int_{-\infty}^{\lambda} \rho(\lambda) d\lambda$

★ Leutwyler-Smilga relation

$$\langle Q_{top}^2 \rangle / V = \Sigma m_f / N_f$$

 \bigstar Flavor singlet Pseudo-scalar meson \Leftarrow (famous) U(1) problem

Witten-Veneziano formula

$$m_{\eta'}^2 = \lim_{N_c \to \infty} \frac{2N_f}{F_\pi^2} \chi|_{quenched} ,$$

$$m_{\eta'}^2 + m_{\eta}^2 - 2m_K^2 = \mu_0^2 = \frac{4N_f\chi_T}{f_\pi^2}$$

In Veneziano limit: O(I/Nc) expansion, because of $f_{\pi} \simeq \sqrt{N_c}$ $\frac{N_f}{N_c} \ll 1$

2. Topological charge and susceptibility

Mainly, in Nf=8

 \clubsuit Nf=8 is a candidate for the walking.

Gradient flow (Wilson flow, Symanzik flow) M. Luscher, (2009, 2010)

$$\partial_t V(x,\mu) = -g_0^2 \{ \partial_{x,\mu} S_g(V_t) \} V_t(x,\mu), \quad V_t(x,\mu)|_{t=0} = U(x,\mu),$$

Example) In the continuum QED,

$$\begin{aligned} \dot{B}_{\mu} &= D_{\nu} G_{\nu \mu}, \qquad B_{\mu} \Big|_{t=0} = A_{\mu}, \\ B_{\mu}(t,x) &= \int d^4 y K_t(x-y) A_{\mu}(y) + \text{gauge terms}, \end{aligned}$$

In QCD and BSM,

Key technology in the lattice studies, nowadays.

$$\dot{V}_t = Z(V_t)V_t,$$

4th order Runge-Kutta method

$$\begin{split} W_0 &= V_t, \\ W_1 &= \exp\{\frac{1}{4}Z_0\}W_0, \\ W_2 &= \exp\{\frac{8}{9}Z_1 - \frac{17}{36}Z_0\}W_1, \\ V_{t+\epsilon} &= \exp\{\frac{3}{4}Z_2 - \frac{8}{9}Z_1 + \frac{17}{36}Z_0\}W_2, \end{split}$$

where

$$Z_i = \epsilon Z(W_i), \qquad i = 0, 1, 2.$$

Our case:

Wilson flow (S_{Wilson}) \rightarrow Symanzik flow (S_{Symanzik}) $\varepsilon = 0.03$

(If $\varepsilon = 0.1$ for instance, RK doesn't solve correctly or 5th order RK is needed.

We re-use LatKMI configurations generated for the flavor-singlet scalar meson.

- Tree-level Symanzik gauge + HISQ fermions L^3 x (4L/3)
 - Periodic boundary condition in spatial-dir. Anti-PBC in time-dir.
 - L=12, 18, 24, 30, 36, 42, (48)

In Nf=8 at mf=0.06 on L=24

 $N_{\rm f} = 8, m = 0.04, L = 30$

 $N_{\rm f} = 8, m = 0.012, L = 42$

 $N_{\rm f} = 8, m = 0.012, L = 42$

$$N_{\rm f} = 4, m = 0.01, L = 20$$

$$N_{\rm f} = 12, \, \beta = 3.7, \, m = 0.16, \, L = 18$$

Nf=8 Finite volume study of χ_{top}

At small mf on small Vol., Qtop is almost frozen.

Analysis of χ_{top} -(1)

Analysis of χ_{top} -(2)

Summary-(1): Q_{top} and χ _{top}

From Q_{top} and χ_{top} ,

it is difficult with current data to determine whether Nf=8 is confining/walking/conformal.

 $\gamma = 1.04(4)$

However,

```
\chi_{\text{top}} in Nf=8 is just between Nf=4 and 12.
```

If χ_{top} in Nf=4 is regarded as in the hadron phase If χ_{top} in Nf=12 is regarded as in the conformal phase γ (Nf=12)=0.43(5)

⇒ Nf=8 is in the near-conformal/walking phase. (near the conformal edge)

We have to confirm this conjecture.

3. Eigenvalues and Anomalous dimension

★ Contribution of $\lambda \sim 0$ region (IR)

 $\langle \bar{\psi}\psi \rangle = \lim_{m \to 0} \lim_{V \to \infty} \int d\lambda \rho(\lambda) \frac{2m}{\lambda^2 + m^2} = \pi \rho(\lambda = 0)$ Banks-Casher relation

 $\rho(\lambda)$ is measured in the dynamical gauge background.

$$\Rightarrow \rho_{m_f}(\lambda) = \langle \rho(\lambda) \rangle_{m_f} \qquad \langle \mathcal{O} \rangle_{m_f} = \int dU \mathcal{O}(U) \det(i\lambda(U) + m_f) \exp(-S_g(U)) \\ \nu(\lambda, m_f) = \int_0^\lambda \rho_{m_f}(\omega) d\omega \qquad , \lambda = \sqrt{\mathsf{EV}(\mathsf{D}^\dagger_{\mathsf{HISQ}}\mathsf{D}_{\mathsf{HISQ}}), \text{ for } \mathsf{D}^\dagger_{\mathsf{HISQ}}\mathsf{D}_{\mathsf{HISQ}} + \mathsf{mf}^2)$$

If the system is in the conformal,

$$\nu(\lambda, m_f) = d_1 \lambda^{\alpha+1}$$
$$\alpha + 1 = \frac{4}{1+\gamma}$$

 \Rightarrow local γ (γ_{eff})

 γ is a function of λ and m_f; $\gamma = \gamma (\lambda, m_f)$

$$\alpha + 1 = \frac{\ln \nu_2 - \ln \nu_1}{\ln \lambda_2 - \ln \lambda_1} \quad \text{where} \quad \lambda_2 = \lambda_1 + \Delta$$

Nf=8, mf=0.04, spectral density, $\rho_{mf}(\lambda)$

log-log plot

Effective γ eff from $\rho(\lambda)$ and $\nu(\lambda)$

 $\gamma_{eff} = 0.5 \sim 0.7$ for $\lambda > 0.1 \sim 0.2$ (>>m_f) This value is smaller than γ from the spectroscopy.

Behavior and Care in $\lambda \sim 0$ region:

At $\lambda \sim 0$, $\rho(\lambda)$ has the strong dependence of $\Delta \lambda$ (=bin size of histogram). For finer $\Delta \lambda$, $\rho(\lambda \sim 0)$ has a peak. \rightarrow mass deformed effect? $\rho_{m_f}(\lambda) = \underbrace{c_0}_{0} + c_1 \lambda^{\alpha}$ is not valid. $\nu(\lambda, m_f) = \int_0^{\lambda} \rho_{m_f}(\omega) d\omega$ $\nu(\lambda, m_f) = d_0 \lambda + d_1 \lambda^{\alpha+1}$ doesn't describe exactly this behavior.

Behavior and Care in $\lambda \sim 0$ region:

At $\lambda \sim 0$, $\rho(\lambda)$ has the strong dependence of $\Delta \lambda$ (=bin size of histogram). For finer $\Delta \lambda$, $\rho(\lambda \sim 0)$ has a peak. \rightarrow mass deformed effect?

Is it similar to the ε-regime ChPT? c.f. H.Fukaya et al., PRL104(2010)122002

Furthermore; to consider $\lambda \sim 0$ (IR) region

 $\Rightarrow \gamma$ obtained from $\lambda > 0.1 \sim 0.2 \equiv$ the anomalous dimension?

Summary-(2): EV and γ

From EV distribution and the mode number counting,

 $\gamma = 0.5 \sim 0.7$ (Nf=8) for $\lambda > 0.1 \sim 0.2$ (>>mf)

smaller than that from spectroscopy ($\gamma = 0.7 \sim 1.0$)

Why? \Rightarrow We should make clear.

We estimate γ from large λ region. ($\lambda >> mf$)

 \Rightarrow near UV λ ? (very far from IR?)

At $\lambda \sim 0$, the peak in $\rho(\lambda)$ appears. Is this similar to the ε -regime ChPT? (Due to mass deformed, mf $\neq 0$ effect ?)

Our simulation is done in $mf \neq 0$ dynamical gauge background.

 \Rightarrow How to take mf \rightarrow 0 ?

 \Rightarrow How to treat $\lambda \sim 0$ region ?

Summary

◆ SU(3) gauge theories with 8 HISQ quarks.
 Preliminary (data updated: 2013→2014→2015)

- $F_{\mu\nu}\widetilde{F}_{\mu\nu}$ + Gradient flow
- Topological charge & susceptibility $\Rightarrow \gamma = 1.04(4)$ in Nf=8 it is difficult with current data to determine whether Nf=8 is confining/walking/conformal.
- Dirac Eigenvalue Distribution (Mode Number Counting)
 ⇒ Anomalous dimension ⇒ but, small value
 Care of λ=0 region and mf→0

We have a lot of issues to understand a large Nf QCD

Furthermore,

What we are doing, What we are planning.

Discussion:

In conformal/walking phase

- (0) In each Qtop sector
- (I) Index theorem
- (2) Banks-Casher relation
- (3) Leutwyler-Smilga relation
- (4) Flow \Rightarrow smearing (smoothing)
- (5) Glueball, String tension (Wilson loop), Polyakov loop
- (6) Flavor singlet scalar meson (re-calc.), Cross Corr. with G-ball
- (7) Flavor singlet Pseudo-scalar meson \Rightarrow probe of U(1)_A

Eigenvalue in gradient flow configuration t: flow time (t=0: original configuration)

After the flow,

it is possible to obtain the clear signal of EVs of staggered fermions.

Nf=8, L=24, mf=0.06

EV behavior after the flow = <a href="mailto:spectral-"s

The cases that zero mode exists.

The case of no zero mode

Chirality in the spectral-"flow"

 \Rightarrow After the flow, the (would-be) zero mode appears with definite chiralities=±1.

 \Rightarrow good application to the topological insights

Discussion:

In conformal/walking phase

- (0) In each Qtop sector
- (I) Index theorem
- (2) Banks-Casher relation
- (3) Leutwyler-Smilga relation
- (4) Flow \Rightarrow smearing (smoothing)
- (5) Glueball, String tension (Wilson loop), Polyakov loop
- (6) Flavor singlet scalar meson (re-calc.), Cross Corr. with G-ball
- (7) Flavor singlet Pseudo-scalar meson \Rightarrow probe of U(1)_A

Glueball mass (0++)

effective mass, $m_G = \log \frac{C_H(t)}{C_H(t+1)}$

t=0: no plateau \rightarrow cannot extract m_G t>0: plateau (?), better signal than t=0 case \rightarrow m_G or m_G $\sqrt{t_0}$

Discussion:

In conformal/walking phase

- (0) In each Qtop sector
- (I) Index theorem
- (2) Banks-Casher relation
- (3) Leutwyler-Smilga relation
- (4) Flow \Rightarrow smearing (smoothing)
- (5) Glueball, String tension (Wilson loop), Polyakov loop
- (6) Flavor singlet scalar meson (re-calc.), Cross Corr. with G-ball
- (7) Flavor singlet Pseudo-scalar meson \Rightarrow probe of U(I)_A

η' mass

$m_{\eta}^{,i}$ in N_c<N_f<N_f^{cr} and N_f>N_f^{cr}? In the region of N_f/N_c <<1 or >>1?

Witten-Veneziano formula, Veneziano limit?

U(1)_A in conformal phase ?

$$\langle \bar{\psi}\psi \rangle = \lim_{m \to 0} \lim_{V \to \infty} \int d\lambda \rho(\lambda) \frac{2m}{\lambda^2 + m^2} = \pi \rho(\lambda = 0) = \mathbf{0}$$
? Instanton, $\langle \partial_{\mu} j_{\mu}^5 \rangle$, Q_{top} , χtop , $\rho(\lambda)$

?

 $m_{\eta'}$?

In Progress & In the near future

- (0) In each Qtop sector
- (I) Index theorem
- (2) Banks-Casher relation
- (3) Leutwyler-Smilga relation
- (4) Flow \Rightarrow smearing (smoothing)
- (5) Glueball, String tension (Wilson loop), Polyakov loop
- (6) Flavor singlet scalar meson (re-calc.), Cross Corr. with G-ball
- (7) Flavor singlet Pseudo-scalar meson \Rightarrow probe of U(I)_A

Thank you