SU(2) gauge theory with many flavors of domain-wall fermions

- Introduction
- Setup
- Result of simulation: Nf=2, 4, 6, 8
 - Static potential/meson masses/decay consstant
- Summary/outlook

In collaboration with Norikazu Yamada (KEK), Kei-Ichi Nagai (KMI, Nagoya U.)

SCGT15, 3–6 March 2015, KMI, Nagoya Univ.

Introduction

• SU(2) gauge theory

- Many works on confinement mechanism, finite temperature/density
- Beyond standard model: technicolor, conformal window, dark matter
 - F. Bursa et al. (2011), H.Ohki et al. (2010), Lewis, Pica, Sannino (2012)
 T. Karavirta et al. (2012), M. Hayakawa et al. (2013)
- Chiral dynamics depending on gauge group and fermion repr.
 - Different symmetry breaking pattern

Fundamental SU(2): SU(2Nf) \rightarrow Sp(2Nf) SU(N) N>2: SU(Nf)xSU(Nf) \rightarrow SU(Nf) Adjoint SU(N): SU(2Nf) \rightarrow SO(2Nf)

- Dependence on number of flavors
- Finite temperature/density
- Eigenvalue distribution comparison to random matrix theory

Strategy

• Chiral symmetric fermion is better device

- Overalp: best symmetry, high numerical cost, involved setup (Aoki phase, etc.)
 H.M., Kikukawa, Yamada, Nagai, Lattice 2010, 2009
- Domain-wall: good properties, numerically feasible
 - Approaches to overlap with large Ns
 - Residual mass probes explicit chiral symmetry violation

Present work

- Lattice actions:
 - Iwasaki gauge action
 - Standard domain-wall fermions: Nf=2, 4, 6, 8
- Survey of Nf-dependence with fixed setup
 - Applicability of domain-wall (and overlap) fermions
 - Confining/conformal feature ?
 - Static potential
 - Meson masses and decay consts/residual mass
 - Eigenmodes of domainwall/overlap fermion operators (underway)
- Fundamental setup: making basis for further studies
 - Finite T/µ, adjoint fermions
 - Comparion with improved domain-wall, dynamicsal overlap
 - Condition to access the ε-regime

Setup

- Lattice size: 16³x32, Ns=16
- Configuration generation: Hybrid Monte Carlo
 - Domain-wall/Pauli-Villars
 - Omelyan integrator + multi-time step (2-level)
 - About 1000 tranjectories at each parameter set

Nf	beta	m
2	0.85	0.20, 0.10, 0.05
	0.90	0.20, 0.10, 0.05
4	0.85	0.20, 0.10, 0.05, 0.03
	0.90	0.20, 0.10, 0.05
6	0.80	0.20, 0.10, 0.05
	0.85	0.20, 0.10, 0.05
	0.90	0.20, 0.10, 0.05
8	0.80	0.20, 0.10, 0.05
	0.85	0.20, 0.10, 0.05

Resources/environment

Machines

- Hitachi SR16000, IBM Blue Gene/Q at KEK
- φ at KMI, Nagoya Univ.

Code:

- Bridge++ (C++)
 - Cf. S.Ueda's poster
- Fortran code
- JLDG (Japan Lattice Data Grid)
 - for fast data transfer

Standard domain-wall fermion action

$$S_{DW} = \sum_{x,s} \bar{\psi}(x,s) D_W(x,y;-M_0) \psi(y,s) -\frac{1}{2} \sum_{x,s} \bar{\psi}(x,s) \left[(1-\gamma_5) \psi(x,s+1) + (1+\gamma_5) \psi(x,s-1) - 2\psi(x,s) \right] + m \left[\bar{\psi}(x,1) P_R \psi(x,L_s) + \bar{\psi}(x,L_s) P_L \psi(x,1) \right] D_W(x,y;M) = M \delta_{x,y} - \frac{1}{2} \sum_{\mu=1}^4 \left\{ (1-\gamma_\mu) U_\mu(x) \delta_{x+\hat{\mu},y} + (1+\gamma_\mu) U_\mu^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu},y} - 4\delta_{x,y} \right\}$$

- M₀: domain-wall height, m: fermion mass
- Ls: extent of 5-th direction
- Boundary conditions: $P_R\psi(s=0) = P_L\psi(s=L_s+1) = 0$
- 4D fermion field:

$$q(x) = P_L \psi(x, s = 1) + P_R \psi(x, s = L_s)$$

$$\bar{q}(x) = \bar{\psi}(x, s = 1)P_R + \bar{\psi}(x, s = L_s)P_L$$

Residual mass

 $R(t) = \frac{\sum_{\vec{x}} \langle J_{5q}(\vec{x}, t) P(0) \rangle}{\sum_{\vec{x}} \langle P(\vec{x}, t) P(0) \rangle},$

 $J_{5q}(x) = -\bar{\psi}(x, L_s/2)P_L\psi(x, L_s/2 + 1) + \bar{\psi}(x, L_s/2 + 1)P_R\psi(x, L_s/2).$

- Averaged over large t
- Quantifies explicit chiral symmetry breaking of domain-wall formulation

Nf-dependence of residual mass

- General tendency: m_{res} decreases as lattice spacing increases
- To go below present residual mass, larger Ns or improved domainwall are necessary

Static potential: Nf=2

Nf	beta	m
2	0.85	0.20, 0.10, 0.05
	0.90	0.20, 0.10, 0.05

- Static potential
 - Fitted to V(r) = const A/r + σ r
 - Sommer scale r_0 (or string tension) \rightarrow "lattice spacing"

Static potential: Nf=8

Nf	beta	m
8	0.80	0.20, 0.10, 0.05
	0.85	0.20, 0.10, 0.05

- Static potential
 - Bare mass dependence is large
 - String tension seems to vanish as m goes to zero

Nf dependence of static potential

- "lattice spacing" (lattice scale) set by $r_0 = 0.49$ fm
- Nf-dependence grows as Nf increases.
- For Nf=8 (and 6), confining feature seem to disappear at m=0.

Nf dependence of static potential

- Lattice spacing vs fermion mass (residual + bare)
 - No renormalization for fermion mass
- Extrapolation to massless limit seems successful for Nf=2

while not for Nf=6, and 8 (next page)

Nf dependence of static potential

- Nf=8: massless limit is hardly taken
- Confining feature seams to disapper at massless limit
- Caution: at beta=0.85 and m=0.05, volume might be too small

Meson spectroscopy

- Partial quenched analysis
 - ← Large sea quark mass dependence for large Nf
 - Valence fermion mass dependence is obsevred on given config.
- Measurement
 - Meson correlators are measured in standard way → mass, decay const.
 - Solving linear equations only for one of color components is needed (thanks to pseudoreality of SU(2))

$$D_{DW}(x,s;y,s') = C^{-1}(-i\sigma_2)^{-1}RD_{DW}(y,s';x,s)^T RC(-i\sigma_2),$$

= $C^{-1}(-i\sigma_2)^{-1}\gamma_5 D_{DW}(x,s;y,s')^*\gamma_5 C(-i\sigma_2),$

 \rightarrow baryon and meson correlators are identical

Lewis, Pica and Sannino (2012)

- Currently only with local-local correlators

PS and V meson spectra: Nf=2

- Valence fermion mass dependence: similar behavior as SU(3) case
- Fermion mass: bare + residual masses

PS and V meson spectra: Nf=8

• Nf=8

- As sea fermion mass decreases, deviation from GMOR relation
- Finite size effect ?
- Caution:
 - Ground state plateau behavior is transient
 - \rightarrow to be comapred with smeared correlation functions

- Nf=4
 - Approaches to finite value as valence mass goes to zero
- Nf=6
 - Sea fermion mass dependence becomes larger

• Nf=8

- Sea fermion mass dependence is amplified
- At beta=0.85, no finite massless limit

- Scaled by Sommer's scale r₀ form static potential
 - Both F_{PS} and r_0 give lattice scales in QCD
 - Dimensionless combination
 - Nf=4, 6: Similar tendency as results in lattice units

• Nf=8 (scaled)

- Consistent with no finite massless limit

Summary/outlook

Summary

- SU(2) gauge theory with domainwall fermions of Nf=2,4,6,8
- Nf=8: confining feature tends to disappear at small m
- Nf=6 is similar, but no unusual behavior in PS and V meson spectra
- More detailed analyses are underway

• To do

- So far analysis based on confining/chral symmetry broken phase were applied
- Analysis to test conformality such as hyperscaling is planned
- Locality of domainwall/overlap fermion to be confirmed
- Method to improve signals needed for other channels
- Eigenmodes of domainwall/overlap fermion operators

Summary/outlook

Outlook

- Improvement of domain-wall fermion (to reduce residual mass)
- finite temperature/density
- Other gauge group, fermion repr. : adjoint fermions
- Dynamical overlap (fixed topology) in epsilon-regime