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§ Introduction
Numerical simulations of the static quark potential
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Figure 1: The static quark–antiquark potential V (R) as a function of the distance R in SU(N)

Yang-Mills theory. (from above to below): The full potential Vfull(R), restricted (or “Abelian”) part

Vrest(R) and magnetic–monopole part Vmono(R).

(Left) SU(2) at β = 2.5 on 244 lattice, (Right) SU(3) at β = 6.0 on 244 lattice.

Static quark-antiquark potential Vqq̄(r)= Coulomb+Linear:

Vqq̄(r) = −
α

r
+ σr + c→∞ (r →∞) =⇒ quark confinement,

with the parameters, σ: string tension [mass2], α: dimensionless [mass0], c: [mass1].
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Dual superconductor hypothesis for quark confinement [Nambu (1974), ’t Hooft
(1975), Mandelstam (1976), Polyakov (1975,1977) ...]
The key ingredients for the dual superconductivity are as follows.
* dual Meissner effect

In the dual superconductor, the chromoelectric flux must be squeezed into tubes.
[← In the ordinary superconductor (of the type II), the magnetic flux is squeezed into
tubes.]

← dual →
QCD vacuum=dual superconductor superconductor

* condensation of chromomagnetic monopoles
The dual superconductivity will be caused by condensation of magnetic monopoles.
[← The ordinary superconductivity is cased by condensation of electric charges into
Cooper pairs. ]
In order to establish the dual superconductivity, we must answer the following questions:
* How to introduce magnetic monopoles in the Yang-Mills theory without scalar fields?
cf. ’t Hooft-Polyakov magnetic monopole
* How to define the electric-magnetic duality in the non-Abelian gauge theory?
* How to preserve the original non-Abelian gauge symmetry?
* How to extract the infrared dominant mode V for confinement?
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In this talk,

• We give a gauge-invariant definition of (chromo)magnetic monopoles in the
SU(N) Yang-Mills theory (in the absence of the scalar fields) from the non-Abelian
Wilson loop operator. This is achieved by using a non-Abelian Stokes theorem for
the Wilson loop operator. This leads to the non-Abelian magnetic monopoles.

This definition is independent of the gauge fixing. One does not need to use
the conventional prescription called the Abelian projection proposed by [’t Hooft
(1981)] which realizes magnetic monopoles by a partial gauge fixing as gauge-fixing
defects.

In fact, we have confirmed by numerical simulations on a lattice the following facts.

• The magnetic monopole reproduces the linear potential with almost the same string
tension σmono as the original one σfull: 85% for SU(2), 80% for SU(3). This is
called the magnetic monopole dominance in the string tension.

• The dual Meissner effect occur in SU(N) Yang–Mills theory as signaled by
the simultaneous formation of the chromoelectric flux tube and the associated
magnetic-monopole current induced around it.
See Shibata’s talk.

4



Only the component Ez of the chromoelectric field (Ex, Ey, Ez) = (F14, F24, F34)
connecting q and q̄ has non-zero value. The other components are zero consistently
within the numerical errors. Therefore, the chromomagnetic field (Bx, By, Bz) =
(F23, F31, F12) connecting q and q̄ does not exist.

The magnitude of the chromoelectric field Ez decreases quickly as the distance y in
the direction perpendicular to the line increases. Therefore, we have confirmed the
formation of the chromoelectric flux in Yang–Mills theory on a lattice.
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Figure 2: The chromoelectric and chromomagnetic fields obtained from the full field U on 244 lattice

at β = 2.5. (Left panel) y dependence of the chromoelectric field Ei(y) = F4i(y) (i = x, y, z)

at fixed z = 4 (mid-point of qq̄). (Right panel) The distribution of Ez(y, z) obtained for the 8 × 8

Wilson loop with q̄ at (y, z) = (0, 0) and q at (y, z) = (0, 8).
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We have also shown that the restricted field V reproduces the dual Meissner effect
in the SU(N) Yang–Mills theory on a lattice.
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Figure 3: The magnetic-monopole current k induced around the chromoelectric flux along the z

axis connecting a pair of quark and antiquark. (Center panel) The positional relationship between the

chromoelectric field Ez and the magnetic current k. (Left panel) The magnitude of the chromoelectric

field Ez and the magnetic current Jm = |k| as functions of the distance y from the z axis calculated

from the original full variables. (Right panel) The counterparts of the left graph calculated from the

restricted variables.

The superconductor is characterized by δ: the penetration depth, ξ: the coherence
length, and κ: the Ginzburg-Landau (GL) parameter defined by

κ :=
δ

ξ
<

1√
2
(type I), =

1√
2
(BPS), >

1√
2
(type II).
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However, the numerical simulations show that the dual superconductivity of the
Yang-Mills vacuum is type I, in contrast to the preceding studies which claim the
border between type I and type II, i.e., BPS limit. κc = 1/

√
2 ≃ 0.707

For SU(2), [Kato et al.(2014)], the GL parameter, the penetration depth, the coherence
length:

κ = 0.48± 0.07, δ = 0.12fm, ξ = 0.25fm.

For SU(3), [Shibata et al.(2013)] reports

κ = 0.45± 0.01, δ = 0.12fm, ξ = 0.27fm, (mA = 1.64GeV, mϕ = 1.0GeV)

κ: Ginzburg-Landau (GL) parameter δ: penetration depth, ξ: coherence length,

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  2  4  6  8  10  12

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

E
z/

ε2

y/ε

y [fm]

Ez: Yang-Mills   
Ez: Restrict U(2)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  1  2  3  4  5  6  7  8  9
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.1  0.2  0.3  0.4  0.5  0.6

E
z 

ε2

 φ
 ε

y/ε

y [fm]

λ

ξ

Ez YM
φ YM
Ez restricted
φ  restricted 

Figure 4: (Left panel) The plot of the chromoelectric field Ez versus the distance y in units of the

lattice spacing ϵ and the fitting as a function Ez(y) of y according to (15). The red cross for the original

SU(3) field and the green square symbol for the restricted field. (Right panel) The order parameter ϕ

reproduced as a function ϕ(y) of y according to (15), together with the chromoelectric field Ez(y).
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In the type-I superconductor, the attractive force acts between two flux tubes,
while the repulsive force in the type-II superconductor. There is no interaction at
κ = 1√

2
≃ 0.707.

The type I dual superconductivity for the Yang-Mills vacuum yields the attractive
force between two non-Abelian vortices. How this result is consistent with the above
considerations?
This is a motivation to discuss how the magnetic monopole condensation picture
are compatible with the vortex condensation picture as another promising scenario
for quark confinement.
The crucial point is that the non-Abelian vortices have internal degrees of freedom,
i.e., orientational moduli, in addition to the degrees of freedom related to the positions
in space. This has a possibility for preventing the vortices from collapse due to the
attractive force.
While the Abelian vortices have only the positions and the collapse of the lattice
structure for the Abelian vortices in the type I superconductor will not be avoidable.
We must examine the interaction among vortices depending on the orientational moduli
in more detail.
This analysis gives an estimate of the string tension based on the vortex condensation
picture, and possible interactions between two non-Abelian vortices.

8



§ Wilson loop operator and magnetic monopole
The non-Abelian Wilson loop operator WC[A ] (in the representation R) is written

WC[A ] := trR

{
P exp

[
−ig

YM

∮
C

A

]}
/trR(1). (1)

The path ordering P is defined by dividing the path C into N infinitesimal segments: 0 1 2

n
n+1

N-1

...

...

C

WC[A ] = lim
N→∞,ϵ→0

trR

{
P

N−1∏
n=0

exp

[
−ig

YM

∫ xn+1

xn

A

]}
/trR(1). (2)

The troublesome path ordering in the non-Abelian Wilson loop operator can be removed as first shown

for G = SU(2) by [Diakonov and Petrov (1989)], which is the non-Abelian Stokes theorem (NAST).

Moreover, the NAST for the Lie group G can be obtained as the path-integral representation of the

Wilson loop operator using the coherent state of the Lie group G in an unified way. [Kondo (1998),

Kondo and Taira (2000), Kondo (2008)].

We follow the standard steps for the path integral: We insert a complete set of states at each partition

point:

1 =

∫
dµ(g(xn)) |g(xn),Λ⟩ ⟨g(xn),Λ| (n = 1, · · · , N − 1). (3)

where dµ(g) is an invariant measure on G and the state is normalized ⟨g(xn),Λ|g(xn),Λ⟩ = 1.

Here the coherent state |g,Λ⟩ is constructed by operating a group element g ∈ G to a reference
state |Λ⟩ (e.g., the highest- or lowest-weight state) for a given representation R of the Wilson loop we

consider:

|g,Λ⟩ = g |Λ⟩ , g ∈ G. (4)
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Finally, we obtain the NAST: the SU(N) Wilson loop operator in the fundamental representation
can be rewritten into the surface integral form:

WC[A ] =

∫
[dµ(g)]Σ exp

[
− ig

YM

1

2

√
2(N − 1)

N

∫
Σ:∂Σ=C

f
]
, (5)

where [dµ(g)]Σ is the invariant integration measure on the surface Σ bounded by the loop C:

[dµ(g)]Σ :=
∏

x∈Σ:∂Σ=C

dµ(g(x)), (6)

the field strength fµν is given by

fµν =∂µtr{n(x)Aν(x)} − ∂νtr{n(x)Aµ(x)}

+
2(N − 1)

N
ig

−1

YM
tr{n(x)[∂µn(x), ∂νn(x)]}, (7)

with the normalized and traceless Lie algebra G valued field n(x) called the color direction field:

n(x) =

√
N

2(N − 1)
g(x)

[
ρ −

1

tr(1)

]
g
†
(x) ∈ G , g(x) ∈ G. (8)

Here the matrix ρ with the matrix element ρab is defined for the highest- or lowest-weight state
|Λ⟩ = (λa) of a representation R of a group G by

ρ := |Λ⟩ ⟨Λ| . (9)
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Non-Abelian magnetic monopoles in Yang-Mills theory Using the Hodge decomposition, the

SU(N) Wilson loop operator in the fundamental representation is cast into the volume-integral form:

WC[A ] =

∫
[dµ(g)] exp

−ig
YM

1

2

√
2(N − 1)

N
[(NΣ, j) + (ωΣ, k)]

 , (1)

where we have defined the gauge-invariant (D − 3)-form k and one-form j by

k := δ
∗
f, j := δf, f := 2tr{nF [V ]}, (2)

and the (D − 3)-form ωΣ and one-form NΣ by (ωΣ is the D-dim. solid angle)

ωΣ :=
∗
d∆

−1
ΘΣ = δ∆

−1∗
ΘΣ, NΣ := δ∆

−1
ΘΣ, (3)

with the inner product for the two forms defined by

(ωΣ, k) =
1

(D − 3)!

∫
d
D
xk

µ1···µD−3(x)ω
µ1···µD−3
Σ (x), (NΣ, j) =

∫
d
D
xj

µ
(x)N

µ
Σ(x). (4)

Thus the Wilson loop operator can be expressed by the electric current j and the magnetic current k.

The magnetic monopole described by the current k is a topological object of co-dimension 3:

• D = 3: 0-dimensional point defect → point-like magnetic monopole (cf. Wu-Yang type)

• D = 4: 1-dimensional line defect → magnetic monopole loop (closed loop) due to δk = 0
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⊙ SU(2) case:[Kondo (1998)]

For SU(2), the gauge-invariant magnetic-monopole current (D − 3)-form k is obtained

k = δ
∗
f, fµν = 2tr{nFµν[V ]} = ∂µ2tr{nAν} − ∂ν2tr{nAµ} + ig

−1

YM
2tr{n[∂µn, ∂νn]}.

(5)

For the fundamental representation of SU(2), the highest-weight state |Λ⟩ yields the color field:

|Λ⟩ =

(
1

0

)
=⇒ ρ := |Λ⟩⟨Λ| =

(
1

0

)
(1, 0) =

(
1 0

0 0

)
=⇒ ρ −

1

2
1 =

σ3

2
,

=⇒ n(x) = g(x)
σ3

2
g(x)

† ∈ SU(2)/U(1) ≃ S
2 ≃ CP 1

. (6)

The magnetic charge qm obeys the quantization condition a la Dirac:

qm :=

∫
d
3
xk

0
= 4πg

−1

YM
ℓ, ℓ ∈ Z. (7)

This is suggested from a nontrivial Homotopy group of the map n : S2 → SU(2)/U(1):

π2(SU(2)/U(1)) = π1(U(1)) = Z. (8)

cf. the Abelian magnetic monopole due to ’t Hooft-Polyakov associated with the spontaneous breaking

G = SU(2) → H = U(1):

n
A ↔ ϕ̂

A
(x)/|ϕ̂(x)|. (9)
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⊙ SU(3) case:[Kondo (2008)]

For SU(3), the gauge-invariant magnetic-monopole current (D − 3)-form k is given by

k = δ
∗
f, fµν := ∂µ2tr{nAν} − ∂ν2tr{nAµ} +

4

3
ig

−1

YM
2tr{n[∂µn, ∂νn]}. (10)

For the fundamental representation of SU(3), the highest-weight state |Λ⟩ yields the color field:

|Λ⟩ =

1

0

0

 =⇒ ρ := |Λ⟩⟨Λ| =

1 0 0

0 0 0

0 0 0

 =⇒ ρ −
1

3
1 =

−1

3

−2 0 0

0 1 0

0 0 1

 , (11)

=⇒ n(x) = g(x)
−1

2
√
3

−2 0 0

0 1 0

0 0 1

 g(x)
† ∈ SU(3)/U(2) ≃ CP 2

. (12)

The matrix diag.(−2, 1, 1) is degenerate. Using the Weyl symmetry (global symmetry as a discrete

subgroup of color symmetry), it is changed into λ8. This color field describes a non-Abelian magnetic
monopole, which corresponds to the spontaneous symmetry breaking SU(3) → U(2) in the gauge-

Higgs model. The magnetic charge obeys the quantization condition:

q
′
m :=

∫
d
3
xk

0
= 2π

√
3g

−1

YM
n

′
, n

′ ∈ Z. (13)

This is suggested from a nontrivial Homotopy group of the map n : S2 → SU(3)/U(2)

π2(SU(3)/[SU(2) × U(1)]) = π1(SU(2) × U(1)) = π1(U(1)) = Z. (14)
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For a reference state |Λ⟩ of a given representation of a Lie group G, the maximal stability subgroup
H̃ is defined to be a subgroup leaving |Λ⟩ invariant (up to a phase ϕ(h)):

h ∈ H̃ ⇐⇒ h|Λ⟩ = |Λ⟩eiϕ(h). (15)

Then a group element g of G is decomposed as

g = ξh ∈ G, ξ ∈ G/H̃, h ∈ H̃ =⇒ |g,Λ⟩ = g|Λ⟩ = ξh|Λ⟩ = ξ|Λ⟩eiϕ(h) = |ξ,Λ⟩eiϕ(h).
(16)

Every representation R of SU(3) which is specified by the Dynkin index [m,n] belongs to (I) or (II):

(I) [Maximal case] m ̸= 0 and n ̸= 0 =⇒ H̃ = H = U(1) × U(1). maximal torus

e.g., adjoint rep.[1,1], {H1, H2} ∈ u(1) + u(1),

(II) [Minimal case] m = 0 or n = 0 =⇒ H̃ = U(2).

This case occurs when the weight vector Λ is orthogonal to some of the root vectors.

e.g., fundamental rep. [1,0], {H1, H2, Eβ, E−β} ∈ u(2), where Λ ⊥ β,−β.

H1

H2

- α(1)

- α(2)

Λν1ν2

ν3

- α(3)- α(2)



H1

H2Λ

H1

H2

− α(3)

α(2)

- α(1)

- α(2)
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Magnetic monopole contribution to the Wilson loop

For D = 3, ωΣ is the (normalized) solid angle ΩΣ:

ωΣ(x) = ΩΣ(x)/(4π). (17)z

z

For an ensemble of point-like magnetic charges qam located at x = za (a = 1, · · · , n)

k(x) =

n∑
a=1

qamδ(3)(x− za), qam = 4πg−1
YM

ℓa, ℓa ∈ Z, (18)

the magnetic-monopole contribution to the SU(2) Wilson loop operator reads

Wm
C = exp

[
ig

YM
J

∫
d3xωΣ(x)k(x)

]
= exp

{
iJ

n∑
a=1

ΩΣ(za)ℓa

}
, ℓa ∈ Z. (19)

A magnetic monopole located on (or in the neighborhood of) the Wilson surface Σ
ΩΣ(z) = ±2π for z ∈ Σ. contribute to the Wilson loop for a half-integer or integer J :

Wm
C =

n∏
a=1

exp[±iJ(2π)ℓa] =

{∏n
a=1(−1)ℓa (J = 1

2,
3
2, · · · )

= 1 (J = 1, 2, · · · )
. (20)
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Here, exp[ig
YM

J(ωΣ, k)] gives a non-trivial contribution, i.e., a center element:

exp[±iJ(2π)] = (e±iπ)2J = (−1)2J = {1,−1} ∈ Z(2) = Center(SU(2)), (21)

This result does not depend on which surface bounding C is chosen in the non-Abelian
Stokes theorem. [This helps us to understand the N-ality dependence of the asymptotic
string tension.] Here the magnetic flux from a magnetic monopole is assumed to be
distributed isotropically in the space. The contribution of a magnetic monopole to the
Wilson loop average depends on the location of the monopole relative to the Wilson
loop.

The vortex condensation picture gives an easy way to understand the area law.
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§ Vortex from magnetic monopole
We want to find a (D − 1)-dimensional geometric object VD−1 such that
i) VD−1 has an intersection with the Wilson loop C as the one-dimensional object,
ii) VD−1 has relevance to the magnetic-monopole current as the (D − 3)-form k.
Suppose that k has the support on the closed (D − 3)-dimensional subspace CD−3′:

kµ1...µD−3
(x;C ′

D−3) := Φ

∮
C′
D−3

dD−3σµ1...µD−3
δD(x− x̄(σ)). (1)

First, we consider the dual field strength (∗f2)µ1...µD−2(x;SD−2) representing the
magnetic flux, which has the support on an open (D − 2)-dimensional surface SD−2

bounded by C ′
D−3, ∂SD−2 = C ′

D−3,

kD−3(x,C
′
D−3) = δ(∗f2)D−2(x, SD−2). (2)

k

+S

C’

*f

Next, we consider the ideal vortex field vµ(x;VD−1) which has the support only
on the (D − 1)-dimensional volume VD−1 whose boundary is SD−2: ∂VD−1 = SD−2

and gives the field strength fµν(x;SD−2):

f2(x, SD−2) = dv1(x, VD−1). (3)
k+

C’

_S S

V*f

v

17



Note that the ideal vortex field v must be singular or non-orientable. Otherwise, the
magnetic-monopole current becomes trivial k = 0, since k = δ∗f = δ∗dv = ∗ddv = 0.

C

D=4

C

I(C, V) L(C, S)

V

k

+
_

I(Σ, S)

Σ
+

z

x

y
t

S S
C’

Figure 5: In D = 4 dimensional spacetime, it is assumed that the magnetic flux emanating from

the magnetic-monopole current k is constrained on a surface to form the vortex surface S. A closed

vortex surface S consists of a number of connected pieces Sn (S = ∪nSn), and each piece Sn has the

magnetic-monopole current k at its boundary ∂Sn.

The ideal vortex field vµ(x;VD−1) is not unique, and it can be gauge transformed to
a thin vortex field sµ(x;SD−2) with the support only on the boundary SD−2 = ∂VD−1

of VD−1:

s(x;SD−2) = v(x;VD−1) + iU(x;VD−1)dU
†(x;VD−1), (SD−2 = ∂VD−1) (4)
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It is shown

U(x;VD−1) = exp [iΦΩ(x;VD−1)] , (5)

where Ω(x;VD−1) is the solid angle taken up by the volume VD−1 when viewed from x:

Ω(x;VD−1) :=
−1

AD−1

∫
VD−1

dD−1σ̃µ
xµ − x̄µ(σ)

[(xµ − x̄(σ))2]D/2
, AD−1 :=

2πD/2

Γ(D/2)
, (6)

with AD−1 being the area of the unit sphere SD−1 in D dimensions, e.g., A2 = 4π,
A3 = 2π2.
In other words, sµ and vµ are gauge equivalent.

Finally, we find that the surface integral of f(x;SD−2) over Σ bounded by the
Wilson loop C is equivalent to the line integral of s(x;SD−2) along the closed loop C:

∫
Σ

f(x;SD−2) =

∫
Σ

dv(x;VD−1) =

∫
Σ

ds(x;SD−2) =

∮
C

s(x;SD−2), (7)

since the contribution from the last term iU(x;VD−1)dU
†(x;VD−1) = ΦdΩ(x;VD−1)

vanishes for any closed loop C. The line integral
∮
C
s can be explicitly calculated.
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For D = 3, the explicit calculation leads to

∮
C

dxνsν(x;S1) =Φ

∫
Σ

d2σ̃ρ(x)

∫
S1=∂V2

dσρδ
3(x− x̄(σ)) = ΦI(Σ, S1), (8)

Here I is the intersection number between the Wilson surface Σ and the vortex loop
S1.

C

D=3

C

Σ
C’

m

m
_

m
_

m

V

I(C,V) L(C,S) I(Σ,S)

S S

z t

x

Figure 6: In D = 3 dimensional spacetime, it is assumed that the magnetic field emanating from a

magnetic monopole m or an antimonopole m̄ is squeezed into the flux tube to form the vortex line S.
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The intersection numbers and the linking number are integer valued:

I(Σ2, S1) = I(C1 = ∂Σ2, V2) = L(C1, S1) ∈ Z = {0,±1,±2, · · · }. (9)

For D = 3, the contribution to the SU(2) Wilson loop operator from the vortices is

W vor
C := exp

[
iJg

YM

∫
Σ

f(x, S)

]
= exp

[
iJg

YM
ΦI(Σ, S1)

]
. (10)

If the magnetic flux carries a unit of the magnetic flux according to the quantization
condition:

Φ = 2πg−1
YM

, (11)

then a vortex as the tube of the magnetic flux contributes the factor (an element of
the center group) to the SU(2) Wilson loop operator:

W vor
C = eiJ2πL = (−1)2JL ∈ Z(2), L = I(Σ2, S1) = I(C1 = ∂Σ2, V2) = L(C1, S1).

(12)

This is the most non-trivial contribution, which corresponds to the half of the total
magnetic flux emanating from a point magnetic charge.
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Vortex picture towards the area law
Let us assume that the vacuum is filled with percolating thin vortices. Suppose that
N random vortices intersect a plane of area L2. Each intersection multiplicatively
contributes a factor (−1)2J to the Wilson loop average and n intersections
within the loop take the value (−1)2Jn. Then the probability that n of the
intersections occur within an area S spanned by a Wilson loop is given by

(−1)2Jn
(

S
L2

)n
(+1)N−n

(
1− S

L2

)N−n
.

L

L

C

n
N

S

Summing over all possibilities with the proper binomial weight yields

WC =

N∑
n=0

(
N
n

)
(−1)2Jn

(
S

L2

)n

(+1)N−n

(
1− S

L2

)N−n

=

(
1− S

L2
+ (−1)2J S

L2

)N

=

(
1− [1− (−1)2J ]ρS

N

)N

→ exp {−σJS} (N →∞), ρ :=
N

L2
,

σJ = [1− (−1)2J ]ρ =

{
σF = 2ρ (J = 1

2,
3
2, · · · )

0 (J = 1, 2, · · · )
, (13)
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where L has been eliminated in favor of the planar vortex density ρ := N/L2.

The limit of a large N →∞ is taken with a constant ρ. Thus one obtains an area
law for the Wilson loop average with the string tension σJ determined by the vortex
density ρ.
The crucial assumption in this argument is the independence of the intersection points.
The asymptotic string tensions are zero for all integer-J representations (with N -
ality or “biality” equal to 0), while they are nonzero and equal for all half-integer J
representations (with N -ality being equal to 1).

We construct the vortex such that the vortex ends at the magnetic monopole, that
is to say, the non-Abelian orientational zero modes of the vortex endow the endpoint
magnetic monopole and antimonopole with same CPN−1 zero modes.

Such a vortex is obtained in the Higgs phase of a U(N) gauge theory with SU(N)
flavor symmetry where the vortices with non-Abelian CPN−1 orientational zero modes
exist. This is a candidate of the dual gauge theory for describing the magnetic flux tube
as a vortex. This is different from the dual Abelian-Higgs model with the magnetic
gauge symmetry U(1)N−1 suggested from the Abelian projection.
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§ Non-Abelian vortex in a gauge-Higgs model
We consider a U(N) non-Abelian gauge theory coupled to Nf flavors of the Higgs
fields in the fundamental representation of U(N):

L = −1
2
tr[BµνB

µν] + tr[(DµH)(DµH)†]− λ

4
tr[(HH† − v21Nc)

2], (1)

where Dµ := ∂µ − igBµ and Bµν := ∂µBν − ∂νBµ − ig[Bµ,Bν]. Here the gauge
field B is denoted by an N ×N matrix and the Higgs field H is an N ×Nf matrix.
This model has the U(N) gauge symmetry and SU(Nf) flavor symmetry,

H(x)→ U(x)H(x)Uf , U(x) ∈ U(N)local, Uf ∈ SU(Nf)
global,

Bµ(x)→ U(x)(Bµ(x) + ig−1∂µ)U(x)†. (2)

For Nf = N , we choose the vacuum at

H = v1Nc = diag(v, v, ..., v). (3)

Then the color-flavour symmetry is spontaneously broken down to the color-flavour
locked symmetry in the vacuum:

U(N)local × SU(N)global → SU(N)globalc+f . (4)
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Here the Higgs field transforms as

H(x)→ UH(x)Uf , Uf = U†, U ∈ SU(N)global, Uf ∈ SU(N)global. (5)

As the color-flavour symmetry U(N) × SU(N) is spontaneously broken down to the
color-flavor locked symmetry SU(N)c+f , theN

2 masslessNambu-Goldstone particles
associated with the spontaneous symmetry breaking U(N)local × SU(N)global →
SU(N)globalc+f are absorbed into the gauge bosons and the gauge bosons acquire the

mass mB = gv due to the Brout-Englert-Higgs mechanism, while the other N2

scalars are also massive mH =
√
λv.

This model can have the vortex solution. This is suggested from the fact that the
U(N) group is identified with

U(N) ∼=
SU(N)× U(1)

ZN
, (6)

and has the nontrivial first Homotopy group:

Π1 (U(N)) = Π1

(
SU(N)× U(1)

ZN

)
= Z. (7)
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This is contrast to the fact Π1 (SU(N)) = 0. The reason SU(N)× U(1) is divided by
ZN is to avoid the double counting, since ZN is contained in both SU(N) and U(1).
This is notified by e.g., [Auzzi et al. (2004)]In fact, this model has the vortex solution.

In the Abelian case N = Nf = 1, the vortex is called the Abrikosov-Nielsen-Olesen
(ANO) vortex. The characteristic size of the ANO vortex is estimated to be of the
order (gv)−1. The gauge symmetry U(1) is completely broken in this model.

In the non-Abelian case N = Nf ≥ 2, a single vortex solution can be constructed
by embedding an ANO vortex solution (B∗,H∗) of the Abelian case into those of the
non-Abelian case:

H(x) = U(x)diag(H∗(x), v, ..., v)U(x)†, B(x) = U(x)diag(B∗(x), 0, ..., 0)U(x)†.
(8)

In the presence of vortices, the color-flavour locked symmetry is further broken:

SU(N)globalc+f → SU(N − 1)global × U(1)global = U(N − 1)global. (9)

Here U takes the value in a coset space, the projective space:

SU(N)c+f

SU(N − 1)× U(1)
=

SU(N)c+f

U(N − 1)
∼= CPN−1. (10)
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It parameterizes the orientation of the non-Abelian vortex in the internal space
whose moduli are called the orientational moduli (orientational zeromodes). The
orientational moduli space is CPN−1. The broken part is identified with the Nambu-
Goldstone modes localized in the non-Abelian vortex associated with the spontaneous
symmetry breaking SU(N)→ U(N − 1).
[Auzzi et al.(2003)] [Hanany & Tong(2003)] [Shifman & Yung(2004)] [Eto et al.(2006)]

m
n

n

m

Figure 7: Two vortices with a magnetic monopole m as the junction. Each vortex is
described by a different patch discriminated by an internal orientation vector ϕ⃗0. The
color direction field n = (n1, n2, n3) on each vortex has the opposite direction.

27



§ Conclusion and discussion

1. [Magnetic monopole picture] We have given a gauge-invariant definition of the
magnetic monopole in the SU(N) Yang-Mills theory in the absence of the scalar
field. This is achieved through a non-Abelian Stokes theorem for the Wilson loop
operator.
This enables one to estimate the magnetic monopole contribution to the Wilson loop
average, which confirms the magnetic monopole dominance in the string tension.
See Shibata’s talk for the numerical simulations on a lattice.

2. As a dual or complementary point of view, we can define a gauge-equivalent thin
vortex (non-orientable) which has the magnetic monopole and the anti-magnetic
monopole as the boundaries.

3. [Vortex picture] We have discussed the vortex solution in the Higgs phase of a
gauge-Higgs model with U(N) gauge fields and N Higgs fields. The model fulfills
the requirement that a non-Abelian vortex has the same CPN−1 moduli space as
those of the non-Abelian magnetic monopole. The non-Abelian magnetic monopole
is regarded as a kink making a junction with two non-Abelian vortices with different
internal orientation moduli.
The internal moduli will be important to understand the type I dual superconductivity.
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Thank you very much
for your attention.
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§ String tension and the vortex solution

We assume that the vortices are equally spaced and that the average distance
between two vortices is 2R. Therefore, the string tension σ is roughly related to R as

σ = 2ρ = 2
N

L2
∼= 2

1

πR2
. (11)

Therefore, R is estimated as

R−1 ∼=
√

π

2

√
σ = 1.25× 440(MeV) = 550(MeV) =⇒ R = 0.36(fm). (12)

The value of R is larger than the distance of the onset of the linear potential
r ∼= 0.2(fm). Therefore, this estimation is valid for a relatively large Wilson loop, i.e.,
the large interquark distancee r ≫ R.

In the Abelian-Higgs model, two vortices are attractive in the type I, repulsive for
the type II, and there are no force between two vortices in the BPS limit. In the Abelian
case, therefore, the ordinary superconductivity must be type II or BPS. Otherwise, the
initial configuration of the vortices will be eventually collapsed by the attractive force
among the vortices. In fact, this is consistent with a fact that the vortices of magnetic
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flux tube form the Abrikosov lattice (hexagonal lattice rather than forming a square
lattice) in the superconductor as stable configuration, which is verified experimentally.

In the non-Abelian case, recent numerical simulations show that the Yang-Mills
vacuum is type I, in contrast to the preceding results which claim the border between
type I and type II, i.e., BPS limit.

For SU(2), [Kato et al.(2014)] reports

κ = 0.48± 0.07, δ = 0.12fm, ξ = 0.25fm.

For SU(3), [Shibata et al.(2013)] reports

κ = 0.45± 0.01, δ = 0.12fm, ξ = 0.27fm.

The type I dual superconductivity for the Yang-Mills vacuum yields the attractive
force between two non-Abelian vortices. How this result is consistent with the above
considerations? The crucial point is that the non-Abelian vortices have internal degrees
of freedom, i.e., orientational moduli, in addition to the degrees of freedom related to
the positions in space. This has a possibility for preventing the vortices from collapse
due to the attractive force. while the Abelian vortices have only the positions and the
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collapse of the lattice structure for the Abelian vortices in the type I superconductor
will not be avoidable. We must examine the interaction among vortices depending on
the orientational moduli in more detail.
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§ Field decomposition a la Cho-Duan-Ge-Faddeev-Niemi

We look for the gauge covariant decomposition,

A ′
µ(x) = V ′

µ(x) + X ′
µ(x). (1)

For the condition (ii) to be gauge covariant, the transformation of the color field n given by

g(x) → U(x)g(x) =⇒ n(x) → n
′
(x) = U(x)n(x)U

†
(x). (2)

requires that Xµ(x) transforms as an adjoint (matter) field:

Xµ(x) → X ′
µ(x) = U(x)Xµ(x)U

†
(x). (3)

This immediately means that Vµ(x) must transform just like the original gauge field Aµ(x):

Vµ(x) → V ′
µ(x) = U(x)Vµ(x)U

†
(x) + ig

−1

YM
U(x)∂µU

†
(x), (4)

since Aµ(x) → A ′
µ(x) = U(x)Aµ(x)U

†(x) + ig−1

YM
U(x)∂µU

†(x).

These transformation properties impose restrictions on the requirement to be imposed on the

restricted field Vµ(x). Such a candidate is [covariant constantness of the color field] [which we call the

first defining equation]:

(I) Dµ[V ]n = 0 (Dµ[V ] := ∂µ − ig
YM

[Vµ, ·]), (5)

since the covariant derivative transforms in the adjoint way: Dµ[V (x)] → U(x)(Dµ[V ](x))U†(x).
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For G = SU(2), it is shown that the two conditions (I) and (ii),[the defining equations for the

decomposition] are compatible and determine the decomposition uniquely:

Aµ(x) = Vµ(x)+Xµ(x),

Vµ(x) =cµ(x)n(x) + ig
−1

YM
[n(x), ∂µn(x)], cµ(x) := Aµ(x) · n(x),

Xµ(x) = − ig
−1

YM
[n(x),Dµ[A ]n(x)]. (6)

This is the same as the Cho–Duan-Ge (CDG) decomposition or Cho–Duan-Ge–Faddeev-Niemi
(CDGFN) decomposition [Cho(1980), Duan-Ge (1979), Faddeev-Niemi (1998)].

The condition (I) means that the field strength F [V ]
µν (x) of the field Vµ(x) and n(x) commute:

[F [V ]
µν (x),n(x)] = 0. (7)

This follows from the identity:

[F [V ]
µν ,n] = ig

−1

YM
[D [V ]

µ ,D [V ]
ν ]n, (8)

which is derived from

F [V ]
µν = ig

−1

YM
[D [V ]

µ ,D [V ]
ν ], D [V ]

µ := ∂µ − ig
YM

[Vµ, ·]. (9)

For SU(2), (7) means that F [V ]
µν (x) is proportional to n(x):

F [V ]
µν (x) = fµν(x)n(x) =⇒ fµν(x) = n(x) · F [V ]

µν (x) = 2tr[n(x)F [V ]
µν (x)], (10)
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§ Field decomposition for SU(N): new options
For G = SU(N) (N ≥ 3), (I) and (ii) are not sufficient to uniquely determine the decomposition. For

G = SU(N) (N ≥ 3), the condition (ii) must be modified: [Kondo, Shinohara & Murakami(2008)]

(II) X µ(x) does not have the H̃-commutative part, i.e., X µ(x)H̃ = 0:

(II) 0 = X µ
(x)H̃ := X µ

(x) −
2(N − 1)

N
[n(x), [n(x),X µ

(x)]]

⇐⇒ X µ
(x) =

2(N − 1)

N
[n(x), [n(x),X µ

(x)]]. (1)

This condition is also gauge covariant. Note that the condition (ii) follows from (II). For G = SU(2),

i.e., N = 2, the condition (II) reduces to (ii). By solving (I) and (II), Xµ(x) and Vµ(x) are determined

Xµ(x) = − ig
−1

YM

2(N − 1)

N
[n(x),Dµ[A ]n(x)] ∈ Lie(G/H̃) = su(N)/u(N − 1), (2)

Vµ(x) =Cµ(x) + Bµ(x) ∈ L ie(G) = su(N),

[Cµ(x),n(x)] = 0 ⇐⇒ Cµ(x) × n(x) = 0.

tr[Bµ(x)n(x)] = 0 ⇐⇒ Bµ(x) · n(x) = 0.

Cµ(x) = Aµ(x) −
2(N − 1)

N
[n(x), [n(x),Aµ(x)]] ∈ L ie(H̃) = u(N − 1),

Bµ(x) = ig
−1

YM

2(N − 1)

N
[n(x), ∂µn(x)] ∈ L ie(G/H̃) = su(N)/u(N − 1), (3)
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§ Reformulating Yang-Mills theory using new variables

We consider the change of variables from Aµ to new field variables Cµ, Xµ and n: (See [Kondo,

Murakami and Shinohara (2005)] for SU(2), and [Kondo, Shinohara and Murakami (2008)] for SU(N))

A A
µ =⇒ (n

β
,C k

µ ,X
b
µ ), (1)

• Aµ ∈ Lie(G) → #[A A
µ ] = D · dimG = D(N2 − 1)

• Cµ ∈ Lie(H̃) = u(N − 1) → #[C k
µ ] = D · dimH̃ = D(N − 1)2

• Xµ ∈ Lie(G/H̃) → #[X b
µ ] = D · dim(G/H̃) = D(2N − 2)

• n ∈ Lie(G/H̃) → #[nβ] = dim(G/H̃) = 2(N − 1) .

The new theory written in terms of new variables (nβ,C k
µ ,X

b
µ ) has the 2(N − 1) extra degrees of

freedom. Therefore, we must give a procedure for eliminating the 2(N − 1) extra degrees of freedom

to obtain the new theory which is equipollent to the original one.

For this purpose, we impose 2(N − 1) constraints χ = 0, which we call the reduction condition:

• χ ∈ Lie(G/H̃) → #[χa] = dim(G/H̃) = 2(N − 1) = #[nβ].
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H

Figure 8: The relationship between the original Yang-Mills (YM) theory and the reformulated Yang-Mills

(YM’) theory. A single color field n is introduced to enlarge the original Yang-Mills theory with a gauge

group G into the master Yang-Mills (M-YM) theory with the enlarged gauge symmetry G̃ = G×G/H̃.

The reduction conditions are imposed to reduce the master Yang-Mills theory to the reformulated

Yang-Mills theory with the equipollent gauge symmetry G′. In addition, we can impose any over-all

gauge fixing condition, e.g., Landau gauge to both the original YM theory and the reformulated YM’

theory.

• Enlarged gauge symmetry by introducing n and the reduction by imposing χ

G
n→ G × G/H̃

χ→ G. (2)
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A choice of the reduction condition in the minimal option is to minimize the functional Fred[A ,n]:

Fred[A ,n] =

∫
d
D
x
1

2
g
2Xµ · X µ

=
N − 1

N

∫
d
D
x(Dµ[A ]n)

2
,

with respect to the enlarged gauge transformation:

δAµ = Dµ[A ]ω (ω ∈ L ie(G)),

δn = ig[n, θ] = ig[n, θ⊥] (θ⊥ ∈ L ie(G/H̃)). (3)

In fact, the enlarged gauge transformation of the functional Fred[A ,n] is

δFred[A ,n] = δ

∫
d
D
x
1

2
(Dµ[A ]n)

2
= g

∫
d
D
x(θ⊥ − ω⊥) · i[n, D

µ
[A ]Dµ[A ]n], (4)

where ω⊥ denotes the component of ω in the direction L (G/H̃).

For ω⊥ = θ⊥ (diagonal part of G × G/H̃) δFred[A ,n] = 0 imposes no condition, while

for ω⊥ ̸= θ⊥ (off-diagonal part of G × G/H̃) it implies the constraint:

χ[A ,n] := [n, D
µ
[A ]Dµ[A ]n] ≡ 0. (5)

Note that the number of constraint is #[χ] = dim(G×G/H̃)−dim(G) = dim(G/H̃) as desired.

Finally, we have an equipollent Yang-Mills theory with the residual local gauge symmetry G′ :=

SU(N)local
ω′ with the gauge transformation parameter:

ω
′
(x) = (ω∥(x),ω⊥(x)) = (ω∥(x), θ⊥(x)), ω⊥(x) = θ⊥(x). (6)
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original YM =⇒ reformulated YM

field variables A A
µ ∈ L (G) =⇒ nβ,C k

ν ,X
b
ν

action SYM[A ] =⇒ S̃YM[n,C ,X ]

integration measure DA A
µ =⇒ DnβDC k

ν DX b
ν J̃δ(χ̃)∆red

FP[n,C ,X ]

At the same time, the color field

n(x) ∈ L ie(G/H̃)

must be obtained by solving the reduction condition χ = 0 for a given A , e.g.,

χ[A ,n] := [n, D
µ
[A ]Dµ[A ]n] ∈ L ie(G/H̃). (7)

Here χ̃ = 0 is the reduction condition written in terms of the new variables:

χ̃ := χ̃[n,C ,X ] := D
µ
[V ]Xµ, (8)

and ∆red
FP is the Faddeev-Popov determinant associated with the reduction condition:

∆
red
FP := det

(
δχ

δθ

)
χ=0

= det

(
δχ

δnθ

)
χ=0

. (9)

which is obtained by the BRST method as ∆red
FP[n, c,X ] = det{−Dµ[V + X ]Dµ[V − X ]}.

The Jacobian J̃ is very simple, irrespective of the choice of the reduction condition:

J̃ = 1. (10)

[Kondo, Shinohara & Murakami, Prog.Theor.Phys. 120, 1–50 (2008). arXiv:0803.0176]
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The Wilson loop average in the original theory:

W (C) := ⟨WC[A ]⟩YM = Z
−1
YM

∫
DA e

−SYM[A ]
WC[A ]. (11)

is defined in the reformulated Yang-Mills theory:

⟨WC[A ]⟩YM′ =Z
−1

YM′

∫
[dµ(g)]

∫
Dn

βDC k
ν DX b

ν J̃δ(χ̃)∆
red
FPe

−S̃YM[n,C ,X ]

× exp

ig
YM

√
2(N − 1)

N
[(j,NΣ) + (k, ωΣ)]

 ,

ZYM′ =

∫
Dn

βDC k
ν DX b

ν J̃δ(χ̃)∆
red
FPe

−SYM′[n,C ,X ]
. (12)

Remark:

1. For SU(2), when we fix the color field n(x) = (0, 0, 1) or n(x) = σ3/2, the reduction condition

Dµ[V ]Xµ = 0 reduces to the conventional Maximally Abelian gauge (MA gauge).

2. For SU(3), this is not the case: This reduction does not reduce to the conventional Maximally

Abelian gauge for SU(3), even if the color field is fixed to be uniform. Therefore, the results to be

obtained are nontrivial.

3. For Ωµ(x) := ig−1

YM
g(x)∂µg

†(x), ∂µn(x) = ig
YM

[Ωµ(x),n(x)], i.e., D[Ω]n(x) = 0.

It is shown Ωµ(x) = Bµ(x) + aµ(x) where [aµ(x),n(x)] = 0. Therefore, D[B]n(x) = 0. For

Vµ(x) = Bµ(x) + Cµ(x), thus, D[V ]n(x) = 0, since [Cµ(x),n(x)] = 0.
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