Holography and the conformal window in the Veneziano limit

Matti Järvinen

ENS, Paris

SCGT15 – Nagoya – 5 March 2015
1. Brief introduction and motivation

2. Basic properties of V-QCD
 ▶ Definition of the model
 ▶ Conformal transition in V-QCD

3. Results and applications
 ▶ Miransky scaling
 ▶ Hyperscaling
 ▶ Light scalars
 ▶ The S-parameter
 ▶ Four fermion deformations
1. Introduction
Veneziano limit: large N_f, N_c with $x = N_f/N_c$ fixed

In the Veneziano limit (discrete) N_f replaced by (continuous) $x = N_f/N_c$

- Transition expected at some $x = x_c$

Computations near the transition difficult

- Schwinger-Dyson approach, ...
- Lattice QCD
- Holography (?) → This talk
A holographic bottom-up model for QCD in the Veneziano limit

- Bottom-up, but trying to follow principles from string theory as closely as possible

More precisely:

- Derive the model from five dimensional noncritical string theory with certain brane configuration
 ⇒ some things do not work (at small coupling)
- Fix model by hand and generalize → arbitrary potentials
- Tune model to match QCD physics and data
- Effective description of QCD

Last steps so far incomplete: model not yet tuned to match any QCD data!
2. V-QCD
Holographic V-QCD: the fusion

The fusion:

1. IHQCD: model for glue inspired by string theory (dilaton gravity)
 [Gursoy, Kiritsis, Nitti; Gubser, Nellore]

2. Adding flavor and chiral symmetry breaking via tachyon brane actions
 [Klebanov, Maldacena; Bigazzi, Casero, Cotrone, Iatrakis, Kiritsis, Paredes]

Consider 1. + 2. in the Veneziano limit with full backreaction
⇒ V-QCD models

Defining V-QCD

Degrees of freedom

- The tachyon τ, and the dilaton λ
- $\lambda = e^\phi$ is identified as the 't Hooft coupling $g^2 N_c$
- τ is dual to the $\bar{q}q$ operator

$$S_{V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right]$$

$$- N_f N_c M^3 \int d^5 x V_f(\lambda, \tau) \sqrt{- \det(g_{ab} + \kappa(\lambda) \partial_a \tau \partial_b \tau)}$$

$$V_f(\lambda, \tau) = V_{f0}(\lambda) \exp(-a(\lambda)\tau^2)$$

$$ds^2 = e^{2A(r)}(dr^2 + \eta_{\mu\nu} x^\mu x^\nu)$$

Need to choose V_{f0}, a, and κ . . .

A simple strategy works (!):

- Match to perturbative QCD in the UV (asymptotic AdS$_5$)
- Logarithmically modified string theory predictions in the IR
Choose reasonable potentials
Ansatz $\tau(r), \lambda(r), A(r)$ in equations of motion
Construct numerically all vacua (various IR geometries)

Desired phase diagram obtained:

- Matching to QCD perturbation theory \rightarrow Banks-Zaks
- Conformal transition (BKT) at $x = x_c \approx 4$

(With tuned potentials, the phase diagram may change)
How does the phase structure arise?

Turning on a tiny tachyon in the conformal window

\[\tau(r) \sim m_q r^{\gamma_* + 1} + \sigma r^{3-\gamma_*} \quad (IR, \; r \to \infty) \]

Breitenlohner-Freedman (BF) bound for \(\gamma_* \) at the IRFP

\[(\gamma_* + 1)(3 - \gamma_*) = \Delta_* (4 - \Delta_*) = -m_\tau^2 \ell_*^2 \leq 4 \]

Violation of BF bound \(\Rightarrow \) instability \(\Rightarrow \) tachyon/chiral condensate

- \(\Rightarrow \) bound saturated at the conformal phase transition \((x = x_c)\)
- \(\gamma_* = 1 \) at the transition
- BF bound violation leads to a BKT transition quite in general
- Predictions near the transition to large extent independent of model details
3. Results
Energy scales (at zero quark mass)

V-QCD reproduces the picture with Miransky scaling:

1. **QCD regime**: single energy scale Λ

2. **Walking regime** ($x_c - x \ll 1$): two scales related by Miransky/BKT scaling law

$$\frac{\Lambda_{UV}}{\Lambda_{IR}} \sim \exp\left(\frac{\kappa}{\sqrt{x_c - x}}\right)$$

3. **Conformal window** ($x_c \leq x < 11/2$): again one scale Λ, but slow RG flow
Phase diagram: example at finite T

Phases on the (x, T)-plane

Loop effects may affect the order of the transition

In the conformal window all low lying masses obey the “hyperscaling” relations

\[m \sim m_q^{\frac{1}{1+\gamma_*}} \quad (m_q \to 0) \]

\[\langle \bar{q}q \rangle \sim m_q^{\frac{3-\gamma_*}{1+\gamma_*}} \quad (m_q \to 0) \]

- Appear independently of the details of the Lagrangian
- Also demonstrated in the “dynamic AdS/QCD” models

[Evans, Scott arXiv:1405.5373]
“Phase diagram” on the \((x, m_q)\)-plane:

Hyperscaling seen in “regime B”: extends to \(x < x_c\)
Example: masses for the walking case

\[x_c - x \ll 1, \] Masses in units of IR (glueball) scale

\[m/\Lambda_{IR} \]

- All masses have the same behavior at intermediate \(m_q \) (regime B)
- Meson masses enhanced wrt glueballs at large \(m_q \)
Meson mass ratios as a function of x

Lowest states of various sectors, normalized to m_ρ

All ratios tend to constants as $x \to x_c$: no technidilaton mode

Interpreting the absence of the dilaton

What have we shown?

▶ Violation of BF bound does not automatically yield a light dilaton..

▶ .. while Miransky scaling and hyperscaling relations are reproduced (GMOR and Witten-Veneziano relations also ok)

However . . .

▶ Analytic analysis: scalar fluctuations “critical” in the walking region, suggesting a light state

▶ But criticality not enough: presence of such a light state is sensitive to IR

Could this be a computational error or numerical issue?

▶ Scalar singlet fluctuations are a real mess ..

▶ .. but we did nontrivial checks and all results look reasonable

Notice: easy to obtain light (but not parametrically light) scalars
Discontinuity at $m_q = 0$ in the conformal window

Qualitative agreement with field theory expectations

[Sannino]
Scaling of the S-parameter

As $m_q \to 0$ in the conformal window,

$$S(m_q) \simeq S(0+) + c \left(\frac{m_q}{\Lambda_{\text{UV}}} \right)^{\frac{\Delta_{FF} - 4}{\gamma^* + 1}}$$

- Limiting value $S(0+) = \lim_{m_q \to 0^+} S(m_q)$ is finite and positive (while $S(0) = 0$)
- Δ_{FF} is the dimension of $\text{tr} F^2$ at the fixed point

\[
\frac{(S(m_q) - S(0+))}{N_c N_f}
\]
The dependence of $\sigma \propto \langle \bar{q}q \rangle$ on the quark mass

- For $x < x_c$ spiral structure

Dots: numerical data
Continuous line: (semi-)analytic prediction

Allows to study the effect of double-trace deformations
Four-fermion operators

Witten’s recipe: modified UV boundary conditions for the tachyon

For interaction term in field theory ($\mathcal{O} = \bar{q}q$)

$$W = -m_q \int d^4x \mathcal{O}(x) + \frac{g_2}{2} \int d^4x \mathcal{O}(x)^2$$

At zero m_q:

g_2

Chirally broken

Chirally symmetric

Chirally broken

x_c

x_{BZ}

x
> V-QCD agrees with field theory results for QCD at qualitative level
> Most results close to the conformal transition independent of details
> Next step: tuning the model to match quantitatively with experimental/lattice QCD data
Extra slides
V-QCD literature

An ongoing program for studying V-QCD

Exploring the model at qualitative level (good match with QCD!):

- Phase diagram at finite T and μ

- Fluctuation analysis: meson spectra, S-parameter, quasi normal modes...
 - [Iatrakis, Zahed arXiv:1410.8540]

- CP-odd terms: axial anomaly
 - [In progress with Arean, Iatrakis, Kiritsis]

- Phase diagram at finite quark mass

This talk: selected results relevant for technicolor

Also just started: quantitative fit to QCD data
The QCD string in the Veneziano limit

Quarks: \(N_f \)

Gluons: \[
\begin{array}{c}
\text{leading diagrams in } \frac{1}{N_c}:\\
gluonic with quark boundaries
\end{array}
\]

\[\text{['t Hooft]}\]

Veneziano limit \(\Rightarrow \) boundaries not suppressed \(\Rightarrow \) open string loops!

\[= \mathcal{O} \left(\frac{N_f}{N_c} \right)\]
“Improved holographic QCD” (IHQCD): well-tested string-inspired bottom-up model for pure Yang-Mills

\[S_g = M^3 N_c^2 \int d^5x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right] \]

with the metric

\[ds^2 = e^{2A(r)} (dr^2 + \eta_{\mu\nu} x^\mu x^\nu) \]

- \(A \leftrightarrow \log \Lambda \) energy scale
- \(\lambda = e^\phi \leftrightarrow 't \ Hooft \ coupling \ g^2 N_c \)
- Modify \(V_g \) derived from string theory to match Yang-Mills \(\beta \)-function in the UV (\(\lambda \to 0 \))
Example of fit to lattice data: interaction measure of Yang-Mills

Trace of the energy-momentum tensor
Second building block: Adding flavor

A recipe for adding quarks (in the fundamental of $SU(N_c)$ and in the probe approximation)

- Space-filling probe $D4 - \bar{D}4$ branes in 5D →
 - Tachyon $T \leftrightarrow \bar{q}q$
 - Gauge fields $A_{L/R}^\mu \leftrightarrow \bar{q}\gamma^\mu(1 \pm \gamma_5)q$

- For the vacuum structure only the tachyon is relevant
- Sen-like tachyon DBI action with $V_T \sim \exp(-|T|^2)$
 - Confining IR asymptotics of the geometry triggers ChSB
 - Gell-Mann-Oakes-Renner relation
 - Linear Regge trajectories for mesons
 - A very good fit of the light meson masses

[Klebanov,Maldacena]
Vector correlators and S-parameter

1. Introduce bulk gauge fields dual to vector operators

\[A^{L/R}_\mu \leftrightarrow \bar{q}\gamma_\mu(1 \pm \gamma_5)q \]

2. Fluctuate full flavor action of V-QCD

\[S_f = -\frac{1}{2} M^3 N_c \text{Tr} \int d^4x \, dr \left(V_f(\lambda, T^\dagger T) \sqrt{-\det A_L + (L \to R)} \right) \]

\[A_{L/R \, MN} = g_{MN} + w(\lambda, T) F_{MN}^{(L/R)} + \]

\[\kappa(\lambda, T) \frac{1}{2} \left[(D_M T)^\dagger (D_N T) + (D_N T)^\dagger (D_M T) \right] \]

Here \(T \) and \(A^{(L/R)} \) matrices in flavor space.

3. Compute vector-vector correlators using standard recipes

\[-i \langle J^a_{\mu}(V) J^b_{\nu}(V) \rangle \propto \delta^{ab} \left(q^2 \eta_{\mu\nu} - q_{\mu} q_{\nu} \right) \Pi_V(q^2) \]

\[-i \langle J^a_{\mu}(A) J^b_{\nu}(A) \rangle \propto \delta^{ab} \left[(q^2 \eta_{\mu\nu} - q_{\mu} q_{\nu}) \Pi_A(q^2) + q_{\mu} q_{\nu} \Pi_L(q^2) \right] \]
Consequences of the BKT transition

\[\log(\sigma/\Lambda_{UV}^3) \]

\[\langle \bar{q}q \rangle \sim \sigma \sim \exp \left(-\frac{\kappa}{\sqrt{x_c - x}} \right) \]

1. Miransky/BKT scaling as \(x \to x_c \) from below
 - E.g., The chiral condensate \(\langle \bar{q}q \rangle \propto \sigma \)

2. Unstable Efimov vacua observed for \(x < x_c \)

3. Turning on the quark mass possible
Turning on finite m_q

Quark mass defined through the tachyon boundary conditions in the UV:

\[\tau(r) \approx m_q (-\log r)^{-\gamma_0/\beta_0} r + \sigma (-\log r)^{\gamma_0/\beta_0} r^3 \]

with $\sigma \sim \langle \bar{q}q \rangle$

- Finite (flavor independent) m_q implies nonzero tachyon and chiral symmetry breaking
- Conformal transition becomes a crossover
- Discontinuous change of IR geometry in the conformal window at $m_q = 0$
Analysis of the tachyon solution \Rightarrow separate different regimes:

Crossover between A and B: $m_q \sim \exp\left[-\frac{2K}{\sqrt{x_c - x}}\right] \sim \langle \bar{q}q \rangle$

- Regimes A and B “model independent”
$U(1)_A$ anomalously broken in QCD

However: axial anomaly is suppressed at large N_c (in the ’t Hooft limit)

- “Solved” in the Veneziano limit, where axial anomaly appears at LO
- η' meson (flavor-singlet pseudoscalar) is the corresponding “Goldstone mode”

[Witten, Veneziano]

$$m_{\eta'}^2 \simeq m_{\pi}^2 + x \frac{\chi}{f_{\pi}^2}$$

- χ is the topological susceptibility (constant term in $F \wedge F$ correlator)
- f_{π} is the pion decay constant with $N_{c,f}$ factors divided out
- Good agreement with experimental+lattice values for QCD
The CP-odd term in V-QCD

Bulk axion a

- dual to $\text{tr} F \wedge F$
- background value identified as θ/N_c, where θ is the theta angle of QCD

Tachyon Ansatz $T = \tau e^{i\xi} I$

String motivated CP-odd term added in the action

$$S_a = -\frac{M^3 N_c^2}{2} \int d^5x \sqrt{-\det g} Z(\lambda)$$
$$\times [da - x (2V_a(\lambda, \tau) A - \xi dV_a(\lambda, \tau))]^2$$

[Casero, Kiritsis, Paredes]

Symmetry

$$A_\mu \rightarrow A_\mu + \partial_\mu \epsilon, \quad \xi \rightarrow \xi - 2\epsilon, \quad a \rightarrow a + 2x V_a \epsilon$$

reflects the axial anomaly in QCD (with $\epsilon = \epsilon(x_\mu)$)
Analytic derivation by perturbative analysis of the coupled flavor singlet (pseudoscalar meson+glueball) fluctuation equations ⇒

The Witten-Veneziano relation: η' becomes light as $x \to 0$

$$m_{\eta'}^2 \simeq m_\pi^2 + x \frac{\chi}{f_\pi^2}$$

PS masses at $m_q = 0$

π and η' masses at $x = 0.0001$
Four-fermion operators at zero mass

Example: \(x < x_c \) and \(m_q = 0 \)

Efimov spiral: all sols from holography

Straight lines: boundary condition
\(\alpha = g / \beta \)

\[\Rightarrow \text{find all intersection points, check stability, …} \]

- Either an instability (typically when \(g < 0 \)) or a smooth deformation of the \(g = 0 \) solution
- Location of conformal window unchanged
Finite T and μ – definitions

Add gauge field

$$S_{V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right]$$

$$- N_f N_c M^3 \int d^5 x V_f(\lambda, \tau) \times \sqrt{- \det(g_{ab} + \kappa(\lambda) \partial_a \tau \partial_b \tau + w(\lambda) F_{ab})}$$

$$F_{r0} = \partial_r \Phi \quad \Phi = \mu - nr^2 + \cdots$$

A more general metric (A and f solved from EoMs)

$$ds^2 = e^{2A(r)} \left(\frac{dr^2}{f(r)} - f(r) dt^2 + dx^2 \right)$$

Nontrivial blackening factor f: black hole solutions possible
Various solutions

Two classes of IR geometries:

1. Black hole solutions \rightarrow temperature and entropy through BH thermodynamics

 $f'(r_h) = -4\pi T$; $s = 4\pi M^3 N_c^2 e^{3A(r_h)}$

2. Thermal gas solutions ($f \equiv 1$)

 Any T and μ, zero s

Two types of tachyon behavior ($\tau \leftrightarrow \bar{q}q$, quark mass and condensate from UV boundary behavior):

1. Vanishing tachyon – chirally symmetric
2. Nontrivial tachyon – chirally broken

\Rightarrow four possible types of background solutions
Computation of pressure

Three phases turn out to be relevant (at small x)

- Tachyonic Thermal gas (chirally broken)
- Tachyonic BH (chirally broken)
- Tachyonless BH (chirally symmetric)

Nontrivial numerical analysis:

1. T, μ not input parameters, they need to be calculated first
2. Integrate numerically for each phase
 \[dp = s \, dT + n \, d\mu \]
3. Phase with highest p dominates
Phase diagram at finite μ (example at fixed x)

First attempt: $x = N_f/N_c = 1$, Veneziano limit, zero quark mass

$\text{AdS}_2 \times \mathbb{R}^3$ IR geometry as $T \to 0$

Finite entropy at zero temperature \Rightarrow instability?
1. Meson spectra (at zero temperature and quark mass)
 ▶ Implement (left and right handed) gauge fields in \mathcal{S}_{V-QCD}
 ▶ Four towers: scalars, pseudoscalars, vectors, and axial vectors
 ▶ Flavor singlet and nonsinglet ($SU(N_f)$) states

In the region relevant for “walking” technicolor ($x \rightarrow x_c$ from below):
 ▶ Possibly a light “dilaton” (flavor singlet scalar): Goldstone mode due to almost unbroken conformal symmetry. Could the dilaton be the 125 GeV Higgs?
Meson masses

Flavor nonsinglet masses (Example: PotI)

Miransky scaling:

\[m_n \sim \exp\left(-\frac{\kappa}{\sqrt{x_c - x}} \right) \]

Radial trajectories \(m_n^2 \sim n \) or \(m_n^2 \sim n^2 \) depending on potentials
Scalar singlet masses

Scalar singlet (0^{++}) spectrum (PotI):

In log scale

Normalized to the lowest state

No light dilaton state as $x \rightarrow x_c$?
\[S \sim \frac{d}{dq^2} q^2 \left[\Pi_V(q^2) - \Pi_A(q^2) \right]_{q^2=0} \]

where (at zero quark mass)

\[\Pi_{V/A}(q^2) \left(q^2 g^{\mu\nu} - q^\mu q^\nu \right) \delta^{ab} \propto \langle J^\mu_{V/A} J^\nu_{V/A} \rangle \]

in terms of the vector-vector and axial-axial correlators

- The S-parameter might be reduced in the walking regime
Results:

PotI PotII

\[S/(N_c N_f) \]

The *S*-parameter increases with \(x \): expected suppression absent

Jumps discontinuously to zero at \(x = x_c \)
QCD at finite T (and x)

Expected phase structure at finite temperature (and x)

SU(N) gauge theory, massless fermions

χ symm.

χ broken

Conformal Window (χ symm.)
\[V_g(\lambda) = 12 + \frac{44}{9\pi^2} \lambda + \frac{4619}{3888\pi^4} \frac{\lambda^2}{(1 + \lambda/(8\pi^2))^{2/3}} \sqrt{1 + \log(1 + \lambda/(8\pi^2))} \]

\[V_f(\lambda, \tau) = V_{f0}(\lambda) e^{-a(\lambda)\tau^2} \]

\[V_{f0}(\lambda) = \frac{12}{11} + \frac{4(33 - 2x)}{99\pi^2} \lambda + \frac{23473 - 2726x + 92x^2}{42768\pi^4} \lambda^2 \]

\[a(\lambda) = \frac{3}{22} (11 - x) \]

\[\kappa(\lambda) = \frac{1}{\left(1 + \frac{115 - 16x}{288\pi^2} \lambda\right)^{4/3}} \]

In this case the tachyon diverges exponentially:

\[\tau(r) \sim \tau_0 \exp \left[\frac{81}{812944} \frac{3^{5/6} (115 - 16x)^{4/3} (11 - x)}{2^{1/6}} \frac{r}{R} \right] \]
Potentials II

\[V_g(\lambda) = 12 + \frac{44}{9\pi^2}\lambda + \frac{4619}{3888\pi^4}(1 + \lambda/(8\pi^2))^{2/3}\sqrt{1 + \log(1 + \lambda/(8\pi^2))} \]

\[V_f(\lambda, \tau) = V_{f0}(\lambda)e^{-a(\lambda)\tau^2} \]

\[V_{f0}(\lambda) = \frac{12}{11} + \frac{4(33 - 2x)}{99\pi^2}\lambda + \frac{23473 - 2726x + 92x^2}{42768\pi^4}\lambda^2 \]

\[a(\lambda) = \frac{3}{22}(11 - x)\frac{1 + \frac{115 - 16x}{216\pi^2}\lambda + \lambda^2/(8\pi^2)^2}{(1 + \lambda/(8\pi^2))^{4/3}} \]

\[\kappa(\lambda) = \frac{1}{(1 + \lambda/(8\pi^2))^{4/3}} \]

In this case the tachyon diverges as

\[\tau(r) \sim \frac{27}{\sqrt{4619}}\frac{2^{3/4}3^{1/4}}{R}\sqrt{r - r_1} \]
Effective potential

For solutions with $\tau = \tau_* = \text{const}$

$$S = M^3 N_c^2 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) - xV_f(\lambda, \tau_*) \right]$$

IHQCD with an effective potential

$$V_{\text{eff}}(\lambda) = V_g(\lambda) - xV_f(\lambda, \tau_*) = V_g(\lambda) - xV_{f0}(\lambda) \exp(-a(\lambda)\tau_*^2)$$

Minimizing for τ_* we obtain $\tau_* = 0$ and $\tau_* = \infty$

- $\tau_* = 0$: $V_{\text{eff}}(\lambda) = V_g(\lambda) - xV_{f0}(\lambda)$; fixed point with $V'_{\text{eff}}(\lambda_*) = 0$
- $\tau_* \to \infty$: $V_{\text{eff}}(\lambda) = V_g(\lambda)$ (like YM, no fixed points)
Black hole branches

Example: PotII at $x = 3$, $W_0 = 12/11$

Simple phase structure: 1st order transition at $T = T_h$ from thermal gas to (chirally symmetric) BH
More complicated cases:

PotII at $x = 3$, W_0 SB

PotI at $x = 3.5$, $W_0 = 12/11$

- Left: chiral symmetry restored at 2nd order transition with $T = T_{\text{end}} > T_h$
- Right: Additional first order transition between BH phases with broken chiral symmetry

Also other cases ...
Phase diagrams on the \((x, T)\)-plane

PotI \(W_0 \) SB

PotII \(W_0 \) SB

- No chiral symmetry breaking phase here

\[\frac{T}{\Lambda} \]

\[x_f \]
Backgrounds in the walking region

Backgrounds with zero quark mass, $x < x_c \simeq 3.9959 \ (\lambda, A, \tau)$

$x = 3$

$x = 3.5$

$x = 3.9$

$x = 3.97$
Beta functions along the RG flow (evaluated on the background), zero tachyon, YM

\[x_c \approx 3.9959 \]

\(\beta(\lambda) \) vs. \(\lambda \) for various values of \(x \):
- \(x = 2 \)
- \(x = 3 \)
- \(x = 3.5 \)
- \(x = 3.9 \)
Holographic beta functions

Generalization of the holographic RG flow of IHQCD

\[\beta(\lambda, \tau) \equiv \frac{d\lambda}{dA}; \quad \gamma(\lambda, \tau) \equiv \frac{d\tau}{dA} \]

linked to

\[\frac{dg_{QCD}}{d \log \mu}; \quad \frac{dm}{d \log \mu} \]

The full equations of motion boil down to two first order partial non-linear differential equations for β and γ
“Good” solutions numerically (unique)
As $x \to x_c$ from below: walking, dominant solution

- BF-bound for the tachyon violated at the IRFP
- x_c fixed by the BF bound:
 $\Delta = 2 & \gamma_* = 1$
 at the edge of the conformal window

- $\tau(r) \sim r^2 \sin(\kappa \sqrt{x_c - x} \log r + \phi)$ in the walking region
- “0.5 oscillations” \Rightarrow Miransky/BKT scaling,
 amount of walking $\Lambda_{UV}/\Lambda_{IR} \sim \exp(\pi/(\kappa \sqrt{x_c - x}))$
As $x \to x_c$
with known κ

\[
\langle \bar{q}q \rangle \sim \sigma \sim \exp\left(-\frac{2\pi}{\kappa \sqrt{x_c - x}}\right)
\]

\[
\Lambda_{UV}/\Lambda_{IR} \sim \exp\left(\frac{\pi}{\kappa \sqrt{x_c - x}}\right)
\]
\(\gamma^* \) in the conformal window

Comparison to other guesses

V-QCD (dashed: variation due to \(W_0 \))

Dyson-Schwinger

2-loop PQCD

All-orders \(\beta \)

[Pica, Sannino arXiv:1011.3832]
Understanding the solutions for generic quark masses requires discussing parameters

- YM or QCD with massless quarks: no parameters
- QCD with flavor-independent mass m: a single (dimensionless) parameter m/Λ_{QCD}
- In this model, after rescalings, this parameter can be mapped to a parameter (τ_0 or r_1) that controls the diverging tachyon in the IR
- x has become continuous in the Veneziano limit
Map of all solutions

All “good” solutions ($\tau \neq 0$) obtained varying x and τ_0 or r_1
Contouring: quark mass (zero mass is the red contour)
Mass dependence and Efimov vacua

Conformal window \((x > x_c)\)

- For \(m = 0\), unique solution with \(\tau \equiv 0\)
- For \(m > 0\), unique “standard” solution with \(\tau \neq 0\)

Low \(0 < x < x_c\): Efimov vacua

- Unstable solution with \(\tau \equiv 0\) and \(m = 0\)
- “Standard” stable solution, with \(\tau \neq 0\), for all \(m \geq 0\)
- Tower of unstable Efimov vacua (small \(|m|\))
Efimov solutions

- Tachyon oscillates over the walking regime
- $\Lambda_{\text{UV}}/\Lambda_{\text{IR}}$ increased wrt. "standard" solution

![Graph showing λ, log|$T|$ vs. r with marked $1/\Lambda_{\text{UV}}$ and $1/\Lambda_{\text{IR}}$.]
Effective potential: zero tachyon

Start from Banks-Zaks region, $\tau_* = 0$, chiral symmetry conserved ($\tau \leftrightarrow \bar{q}q$), $V_{\text{eff}}(\lambda) = V_g(\lambda) - xV_{f0}(\lambda)$

- V_{eff} defines a β-function as in IHQCD – Fixed point guaranteed in the BZ region, moves to higher λ with decreasing x
- Fixed point λ_* runs to ∞ either at finite $x(<x_c)$ or as $x \to 0$

Banks-Zaks $x \to 11/2$
Conformal Window $x > x_c$
$x < x_c$??
Effective potential: what actually happens

Banks-Zaks
\[x \rightarrow \frac{11}{2} \]

Conformal Window
\[x > x_c \]
\[x < x_c \]

\[\tau \equiv 0 \]
\[\tau \equiv 0 \]
\[\tau \neq 0 \]

- For \(x < x_c \) vacuum has nonzero tachyon (checked by calculating free energies)
- The tachyon screens the fixed point
- In the deep IR \(\tau \) diverges, \(V_{\text{eff}} \rightarrow V_g \) \(\Rightarrow \) dynamics is YM-like
Where is x_c?

How is the edge of the conformal window stabilized?
Tachyon IR mass at $\lambda = \lambda_* \leftrightarrow$ quark mass dimension

$$-m^2_{\text{IR}} \ell^2_{\text{IR}} = \Delta_{\text{IR}}(4 - \Delta_{\text{IR}}) = \frac{24a(\lambda_*)}{\kappa(\lambda_*)(V_g(\lambda_*) - xV_0(\lambda_*))}$$

$$\gamma_* = \Delta_{\text{IR}} - 1$$

Breitenlohner-Freedman (BF) bound (horizontal line)

$$-m^2_{\text{IR}} \ell^2_{\text{IR}} = 4 \iff \gamma_* = 1$$

defines x_c
No time to go into details . . . the question boils down to the linearized tachyon solution at the fixed point

- For $\Delta_{\text{IR}}(4 - \Delta_{\text{IR}}) < 4$ \quad ($x > x_c$):

 \[
 \tau(r) \sim m_q r^{\Delta_{\text{IR}}} + \sigma r^{4 - \Delta_{\text{IR}}}
 \]

- For $\Delta_{\text{IR}}(4 - \Delta_{\text{IR}}) > 4$ \quad ($x < x_c$):

 \[
 \tau(r) \sim C r^2 \sin [(\text{Im}\Delta_{\text{IR}}) \log r + \phi]
 \]

Rough analogy:
Tachyon EoM \leftrightarrow Gap equation in Dyson-Schwinger approach

Similar observations have been made in other holographic frameworks

For $m > 0$ the conformal transition disappears.

The ratio of typical UV/IR scales $\Lambda_{UV}/\Lambda_{IR}$ varies in a natural way:

$m/\Lambda_{UV} = 10^{-6}, 10^{-5}, \ldots, 10$ \quad x = 2, 3.5, 3.9, 4.25, 4.5

\[
\frac{\Lambda_{UV}}{\Lambda_{IR}} = \frac{2}{10^{6}}, \frac{3.5}{10^{5}}, \frac{3.9}{10^{5}}, \frac{4.25}{10^{5}}, \frac{4.5}{10^{5}}\]

\[
\frac{m}{\Lambda_{UV}} = 2, 3, 5, 7, 10
\]
The case of $\mathcal{N} = 1 \ SU(N_c)$ superQCD with N_f quark multiplets is known and provides an interesting (and more complex) example for the nonsupersymmetric case. From Seiberg we have learned that:

- $x = 0$ the theory has confinement, a mass gap and N_c distinct vacua associated with a spontaneous breaking of the leftover R symmetry Z_{N_c}.
- At $0 < x < 1$, the theory has a runaway ground state.
- At $x = 1$, the theory has a quantum moduli space with no singularity. This reflects confinement with ChSB.
- At $x = 1 + 1/N_c$, the moduli space is classical (and singular). The theory confines, but there is no ChSB.
- At $1 + 2/N_c < x < 3/2$ the theory is in the non-abelian magnetic IR-free phase, with the magnetic gauge group $SU(N_f - N_c)$ IR free.
- At $3/2 < x < 3$, the theory flows to a CFT in the IR. Near $x = 3$ this is the Banks-Zaks region where the original theory has an IR fixed point at weak coupling. Moving to lower values, the coupling of the IR $SU(N_c)$ gauge theory grows. However near $x = 3/2$ the dual magnetic $SU(N_f - N_c)$ is in its Banks-Zaks region, and provides a weakly coupled description of the IR fixed point theory.
- At $x > 3$, the theory is IR free.
Saturating the BF bound (sketch)

Why is the BF bound saturated at the phase transition (massless quarks)?

\[\Delta_{\text{IR}}(4 - \Delta_{\text{IR}}) = \frac{24a(\lambda_*)}{\kappa(\lambda_*)(V_g(\lambda_*) - xV_0(\lambda_*))} \]

- For \(\Delta_{\text{IR}}(4 - \Delta_{\text{IR}}) < 4 \):
 \[\tau(r) \sim m_q r^{4-\Delta_{\text{IR}}} + \sigma r^{\Delta_{\text{IR}}} \]

- For \(\Delta_{\text{IR}}(4 - \Delta_{\text{IR}}) > 4 \):
 \[\tau(r) \sim C r^2 \sin [(\text{Im}\Delta_{\text{IR}}) \log r + \phi] \]

- Saturating the BF bound, the tachyon solutions will entangle
 → required to satisfy boundary conditions

- Nodes in the solution appear through UV → massless solution
Does the nontrivial (ChSB) massless tachyon solution exist? Two possibilities:

- $x > x_c$: BF bound satisfied at the fixed point \Rightarrow only trivial massless solution ($\tau \equiv 0$, ChS intact, fixed point hit)
- $x < x_c$: BF bound violated at the fixed point \Rightarrow a nontrivial massless solution exist, which drives the system away from the fixed point

Conclusion: phase transition at $x = x_c$
As $x \rightarrow x_c$ from below, need to approach the fixed point to satisfy the boundary conditions \Rightarrow nearly conformal, “walking” dynamics
Massless backgrounds: gamma functions \(\frac{\gamma}{\tau} = \frac{d \log \tau}{dA} \)

\(\chi = 2, 3, 3.5, 3.9 \)