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Objectives
Identify IR fixed points in SU(3) Gauge Theories

with Nf fundamental fermions
within the conformal window 

                ?

anomalous mass dimension           ?

meson propagator on the fixed point in the continuum limit ?

Strategy

Propose a novel RG method 
based on the scaling behavior of the propagator 
through the RG analysis with a finite IR cut-off

γ∗

1

N c
f ≤ Nf ≤ 16

1

N c
f

1



Constructive approach
Define gauge theories as the continuum limit of lattice gauge theories
                                          (r aspect ratio) r=4 in this work
take the limit a->0 and N -> infinity
with                                   fixed
when L and/or Lt finite => IR cutoff

Conformal theories:
IR cutoff: an indispensable ingredient
in contrast with QCD

Nx = Ny = Nz = N

1

Nt = rN

1

L = aN and Lt = aNt

1



Constructive approach (2)
Important steps
1. Clarify the phase structure
2. Clarify what kind of phase exists
3. Clarify the boundary of the phases
4. Clarify the location of UV or IR fixed points

 The phase diagram for various number of flavors 7 \le Nf \le 300
Phys. Rev. Lett. 69(1992), 21

Phys. Rev. D69(2004), 014507The phase diagram for Nf \le 6
Phys. Rev. D54(1996), 7010

A new phase “conformal region” in addition to 
the confining region and deconfining region

Phys.Rev. D87 (2013) 7, 071503
Phys.Rev. D89 (2014) 114503

our earlier works: step 1. ~ 3.

we intend to perform step 4 in this work



Phase Diagram:                                     

confinement

`

g

deconfinement

N�����f

N

m  = 0q

m  = 0q

Chiral transition on the massless line                       
starting from the UVFP 

The finite temperature 
phase transition in the 
quenched QCD  transition 
and the chiral transition 
move toward larger beta,

as N increases.

as in 2004



Phase Diagram:

Complicated due to lack of chiral symmetry
1. the massless line from the UVFP hits the bulk transition

2. no massless line in the confining phase at strong coupling region 

massless quark line only in the deconfining phase

confinement

`

g

deconfinement

���N������f

N

m��!��q

m�� ��q

as in 2004



Confining

Deconfining

Conformal

¯

· m =0q

m >0q

10
0

Confining

Deconfining

Conformal

¯

· m =0q

10
0

m =0q

as in 2014



Conformal region

A new concept “conformal theories with an IR cutoff” 

 Large Nf and QCD in high temperature

meson propagators show a power-modified Yukawa-type decay 

Nf=7 ~ T/Tc =1.0 ~2.0: unparticle meson model

strongly support the conjecture that
the conformal window: 

Two sets of Conformal window

mq ≤ ΛIR

1

7 ≤ Nf ≤ 16

1
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where P is the pseudo-scalar density and A4 the fourth
component of the local axial vector current, with renor-
malization constants being suppressed. The quark mass
mq defined in this way only depends on β and K up to
order 1/N corrections.

One of the most important observables we will study
is the t dependence of the propagator of the local meson
operator in the H channel:

GH(t) =
∑

x

〈ψ̄γHψ(x, t)ψ̄γHψ(0)〉 , (2)

where the summation is over all the spatial lattice points.
In this paper, we mostly focus on the pseudo-scalar (PS)
channel H = PS.

In order to investigate the large t behavior of a propa-
gator, we define the effective mass mH(t) through

cosh(mH(t)(t−Nt/2))

cosh(mH(t)(t+ 1−Nt/2))
=

GH(t)

GH(t+ 1)
. (3)

When boundary effects can be neglected, it reduces to

mH(t) = ln
GH(t)

GH(t+ 1)
. (4)

In the case of exponential-type decay the effective mass
approaches a plateau in the large t regime, where it takes
a constant value.

Before non-perturbative discussion, let us first recall
the perturbative result. Within the two-loop perturbation
theory, the RG beta function for the SU(3) gauge coupling
constant is given as

B(g) = − (33− 2Nf )

48π2
g3 −

(
102− 38

3 Nf

)

(16π2)2
g5 +O(g7) .

(5)

The fixed point B(g∗) = 0 exists for 8.05 < Nf < 16.5
within the two-loop approximation[? ]. When Nf = 16,
the IR fixed point is located at β = 11.475. Since this
coupling constant is small, we may trust the perturbative
computations for Nf = 16. We will compare the non-
perturbative calculation with this value.

When Nf decreases, g∗ increases, at least in the per-
turbation theory, and therefore non-perturbative effects
become important. The smallest Nf where the fixed point
exists is denoted as N c

f and the range of flavors N c
f ≤

Nf ≤ 16 is called the “conformal window”. The lower
bound of the conformal window can only be determined
non-perturbatively. Our earlier studies [? ][? ] strongly
suggest the conjecture that the conformal window is 7 ≤
Nf ≤ 16. However, the conjecture is based on indirect log-
ics. In this article, we will present more direct evidence
supporting the conjecture.

Let us study the RG properties of the propagator in
the vicinity of the fixed point. First note the UV renor-
malization scale in lattice theories is set by the inverse

lattice spacing a−1. The change of the UV renormaliza-
tion scale a−1 → (as)−1 may be expressed alternatively
by the change of the lattice size N :

N ′ = N/s and t′ = st . (6)

while keeping L = aN constant. Therefore we may parametrize
the propagator G(t) by G(t; g,mq, N). Assuming it is close
to the fixed point, the RG equation (see e.g. [? ]) relates
the propagator with different parameters as

G(t; g,mq, N) =

(
N

′

N

)3−2γ

G(t′; g′,mq
′, N ′). (7)

The subscript H of G(t) is suppressed here and here-
after. The relation between g′ and g and m′

a and mq

are determined by the RG beta function B and the mass
anomalous dimensions γ. Let us first discuss the case in
which we are at the fixed point, i.e. g′ = g = g∗ and
m′

q = mq = 0 so that B = 0 and γ = γ∗. In this case, the
propagator may have simplified notation as

G̃(τ, N) = G(t,N). (8)

with τ = t/Nt. The variable t takes 0, 1, 2, · · · , Nt so that
0 ≤ τ ≤ 1. In terms of τ , the RG relation eq.(??) reduces
to

G̃(τ ;N) =

(
N

′

N

)3−2γ∗

G̃(τ ;N
′
) . (9)

Strictly speaking, this equation is satisfied in the limit
N,N ′ → ∞.

To state our proposal concretely, we define the scaled
effective mass m(t;N) with respect to the reference lattice
size N0 as

m(t,N) =
N

N0
ln

G(t,N)

G(t+ 1, N)
. (10)

In the continuum limit N → ∞ Eq. (??) reduces to the
form

m(τ, N) = − 1

N0
∂τ lnG(τ, N) (11)

The crucial observation, which will be the core of our pro-
posal is that, combining Eqs.(??) and (??), the scaled ef-
fective mass does not depend on N as a function of τ :

m(τ, N) = m(τ, N
′
) (12)

at the fixed point.
Suppose that we are away from the fixed point (i.e

g '= g∗ while mq = 0) in contrast. The scaled effective
mass in the vicinity of the fixed point would instead show
the following behavior

m(τ, g,N) = m(τ, g,N ′) +
B(g)
N0

ln

(
N ′

N

)
∂g lnG(τ, g,N ′) .

(13)

2

RG equation for the propagator at vicinity of IRFP

at the IRFP

where P is the pseudo-scalar density and A4 the fourth
component of the local axial vector current, with renor-
malization constants being suppressed. The quark mass
mq defined in this way only depends on β and K up to
order 1/N corrections.

One of the most important observables we will study
is the t dependence of the propagator of the local meson
operator in the H channel:

GH(t) =
∑

x

〈ψ̄γHψ(x, t)ψ̄γHψ(0)〉 , (2)

where the summation is over all the spatial lattice points.
In this paper, we mostly focus on the pseudo-scalar (PS)
channel H = PS.

In order to investigate the large t behavior of a propa-
gator, we define the effective mass mH(t) through

cosh(mH(t)(t−Nt/2))

cosh(mH(t)(t+ 1−Nt/2))
=

GH(t)

GH(t+ 1)
. (3)

When boundary effects can be neglected, it reduces to

mH(t) = ln
GH(t)

GH(t+ 1)
. (4)

In the case of exponential-type decay the effective mass
approaches a plateau in the large t regime, where it takes
a constant value.

Before non-perturbative discussion, let us first recall
the perturbative result. Within the two-loop perturbation
theory, the RG beta function for the SU(3) gauge coupling
constant is given as

B(g) = − (33− 2Nf )

48π2
g3 −

(
102− 38

3 Nf

)

(16π2)2
g5 +O(g7) .

(5)

The fixed point B(g∗) = 0 exists for 8.05 < Nf < 16.5
within the two-loop approximation[4]. When Nf = 16,
the IR fixed point is located at β = 11.475. Since this
coupling constant is small, we may trust the perturbative
computations for Nf = 16. We will compare the non-
perturbative calculation with this value.

When Nf decreases, g∗ increases, at least in the per-
turbation theory, and therefore non-perturbative effects
become important. The smallest Nf where the fixed point
exists is denoted asN c

f and the range of flavorsN c
f ≤ Nf ≤

16 is called the “conformal window”. The lower bound
of the conformal window can only be determined non-
perturbatively. Our earlier studies [5][6] strongly suggest
the conjecture that the conformal window is 7 ≤ Nf ≤ 16.
However, the conjecture is based on indirect logics. In this
article, we will present more direct evidence supporting the
conjecture.

Let us study the RG properties of the propagator in
the vicinity of the fixed point. The RG equation for a RG
transformation µ

′
= µ/s, followed by a space-time scale

change t
′
= t/s (see e.g. [12]) relates the propagator with

different parameters as

G(t; g,mq, N, µ) =

(
N

′

N

)3−2γ

G(t′; g′,mq
′, N ′, µ). (6)

Here the UV renormalization scale µ in lattice theories
is set by the inverse lattice spacing a−1. The equation is
irrelevant from µ and µ may be omitted in the relation.
N

′
= N/s.
The subscript H of G(t) is suppressed here and here-

after. The relation between g′ and g and m′
a and mq

are determined by the RG beta function B and the mass
anomalous dimensions γ. Let us first discuss the case in
which we are at the fixed point, i.e. g′ = g = g∗ and
m′

q = mq = 0 so that B = 0 and γ = γ∗. In this case, the
propagator may have simplified notation as

G̃(τ, N) = G(t,N). (7)

with τ = t/Nt. The variable t takes 0, 1, 2, · · · , Nt so that
0 ≤ τ ≤ 1. In terms of τ , the RG relation eq.(6) reduces
to

G̃(τ ;N) =

(
N

′

N

)3−2γ∗

G̃(τ ;N
′
) . (8)

Strictly speaking, this equation is satisfied in the limit
N,N ′ → ∞.

To state our proposal concretely, we define the scaled
effective mass m(t;N) with respect to the reference lattice
size N0 as

m(t,N) =
N

N0
ln

G(t,N)

G(t+ 1, N)
. (9)

In the continuum limit N → ∞ Eq. (9) reduces to the
form

m(τ, N) = − 1

N0
∂τ lnG(τ, N) (10)

The crucial observation, which will be the core of our pro-
posal is that, combining Eqs.(8) and (10), the scaled effec-
tive mass does not depend on N as a function of τ :

m(τ, N) = m(τ, N
′
) (11)

at the fixed point.
Suppose that we are away from the fixed point (i.e

g '= g∗ while mq = 0) in contrast. The scaled effective
mass in the vicinity of the fixed point would instead show
the following behavior

m(τ, g,N) = m(τ, g,N ′) +
B(g)
N0

ln

(
N ′

N

)
∂g lnG(τ, g,N ′) .

(12)

Therefore, the agreement of the scaled effective mass as a
function of N and τ are stringent tests of the fixed point.

Our strategy is as follows. With given Nf and β, we
tune the quark mass (defined through Ward-Takahashi
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within the two-loop approximation[4]. When Nf = 16,
the IR fixed point is located at β = 11.475. Since this
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The variable t takes 0, 1, 2, · · · , Nt so that 0 ≤ τ ≤ 1.
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)3−2γ∗

G̃(τ ;N
′
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N
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ln
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. (8)

In the continuum limit N → ∞ Eq. (8) reduces to the
form
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The crucial observation, which will be the core of our pro-
posal is that, combining Eqs.(7) and (9), the scaled effec-
tive mass does not depend on N as a function of τ :
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′
) (10)
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Suppose that we are away from the fixed point (i.e

g '= g∗ while mq = 0) in contrast. The scaled effective
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Therefore, the agreement of the scaled effective mass as a
function of N and τ are stringent tests of the fixed point.

2

Simplified expression

Scaling relation 1

Scaling relations from RG

scale change
RG

N
′
= N/s

t
′
= t/s

1

e.g. Del Debbio, Zwicky 2010



Scaled effective mass

where P is the pseudo-scalar density and A4 the fourth
component of the local axial vector current, with renor-
malization constants being suppressed. The quark mass
mq defined in this way only depends on β and K up to
order 1/N corrections.

One of the most important observables we will study
is the t dependence of the propagator of the local meson
operator in the H channel:

GH(t) =
∑

x

〈ψ̄γHψ(x, t)ψ̄γHψ(0)〉 , (2)

where the summation is over all the spatial lattice points.
In this paper, we mostly focus on the pseudo-scalar (PS)
channel H = PS.

In order to investigate the large t behavior of a propa-
gator, we define the effective mass mH(t) through

cosh(mH(t)(t−Nt/2))

cosh(mH(t)(t+ 1−Nt/2))
=

GH(t)

GH(t+ 1)
. (3)

When boundary effects can be neglected, it reduces to

mH(t) = ln
GH(t)

GH(t+ 1)
. (4)

In the case of exponential-type decay the effective mass
approaches a plateau in the large t regime, where it takes
a constant value.

Before non-perturbative discussion, let us first recall
the perturbative result. Within the two-loop perturbation
theory, the RG beta function for the SU(3) gauge coupling
constant is given as

B(g) = − (33− 2Nf )

48π2
g3 −

(
102− 38

3 Nf

)

(16π2)2
g5 +O(g7) .

(5)

The fixed point B(g∗) = 0 exists for 8.05 < Nf < 16.5
within the two-loop approximation[? ]. When Nf = 16,
the IR fixed point is located at β = 11.475. Since this
coupling constant is small, we may trust the perturbative
computations for Nf = 16. We will compare the non-
perturbative calculation with this value.

When Nf decreases, g∗ increases, at least in the per-
turbation theory, and therefore non-perturbative effects
become important. The smallest Nf where the fixed point
exists is denoted as N c

f and the range of flavors N c
f ≤

Nf ≤ 16 is called the “conformal window”. The lower
bound of the conformal window can only be determined
non-perturbatively. Our earlier studies [? ][? ] strongly
suggest the conjecture that the conformal window is 7 ≤
Nf ≤ 16. However, the conjecture is based on indirect log-
ics. In this article, we will present more direct evidence
supporting the conjecture.

Let us study the RG properties of the propagator in
the vicinity of the fixed point. First note the UV renor-
malization scale in lattice theories is set by the inverse

lattice spacing a−1. The change of the UV renormaliza-
tion scale a−1 → (as)−1 may be expressed alternatively
by the change of the lattice size N :

N ′ = N/s and t′ = st . (6)

while keeping L = aN constant. Therefore we may parametrize
the propagator G(t) by G(t; g,mq, N). Assuming it is close
to the fixed point, the RG equation (see e.g. [? ]) relates
the propagator with different parameters as

G(t; g,mq, N) =

(
N

′

N

)3−2γ

G(t′; g′,mq
′, N ′). (7)

The subscript H of G(t) is suppressed here and here-
after. The relation between g′ and g and m′

a and mq

are determined by the RG beta function B and the mass
anomalous dimensions γ. Let us first discuss the case in
which we are at the fixed point, i.e. g′ = g = g∗ and
m′

q = mq = 0 so that B = 0 and γ = γ∗. In this case, the
propagator may have simplified notation as

G̃(τ, N) = G(t,N). (8)

with τ = t/Nt. The variable t takes 0, 1, 2, · · · , Nt so that
0 ≤ τ ≤ 1. In terms of τ , the RG relation eq.(??) reduces
to

G̃(τ ;N) =

(
N

′

N

)3−2γ∗

G̃(τ ;N
′
) . (9)

Strictly speaking, this equation is satisfied in the limit
N,N ′ → ∞.

To state our proposal concretely, we define the scaled
effective mass m(t;N) with respect to the reference lattice
size N0 as

m(t,N) =
N

N0
ln

G(t,N)

G(t+ 1, N)
. (10)

In the continuum limit N → ∞ Eq. (??) reduces to the
form

m(τ, N) = − 1

N0
∂τ lnG(τ, N) (11)

The crucial observation, which will be the core of our pro-
posal is that, combining Eqs.(??) and (??), the scaled ef-
fective mass does not depend on N as a function of τ :

m(τ, N) = m(τ, N
′
) (12)

at the fixed point.
Suppose that we are away from the fixed point (i.e

g '= g∗ while mq = 0) in contrast. The scaled effective
mass in the vicinity of the fixed point would instead show
the following behavior

m(τ, g,N) = m(τ, g,N ′) +
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where P is the pseudo-scalar density and A4 the fourth
component of the local axial vector current, with renor-
malization constants being suppressed. The quark mass
mq defined in this way only depends on β and K up to
order 1/N corrections.

One of the most important observables we will study
is the t dependence of the propagator of the local meson
operator in the H channel:
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∑

x

〈ψ̄γHψ(x, t)ψ̄γHψ(0)〉 , (2)

where the summation is over all the spatial lattice points.
In this paper, we mostly focus on the pseudo-scalar (PS)
channel H = PS.
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=
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In the case of exponential-type decay the effective mass
approaches a plateau in the large t regime, where it takes
a constant value.
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the perturbative result. Within the two-loop perturbation
theory, the RG beta function for the SU(3) gauge coupling
constant is given as
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perturbative calculation with this value.
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exists is denoted as N c
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the propagator with different parameters as

G(t; g,mq, N) =

(
N

′

N

)3−2γ

G(t′; g′,mq
′, N ′). (7)

The subscript H of G(t) is suppressed here and here-
after. The relation between g′ and g and m′

a and mq

are determined by the RG beta function B and the mass
anomalous dimensions γ. Let us first discuss the case in
which we are at the fixed point, i.e. g′ = g = g∗ and
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where P is the pseudo-scalar density and A4 the fourth
component of the local axial vector current, with renor-
malization constants being suppressed. The quark mass
mq defined in this way only depends on β and K up to
order 1/N corrections.

One of the most important observables we will study
is the t dependence of the propagator of the local meson
operator in the H channel:

GH(t) =
∑

x

〈ψ̄γHψ(x, t)ψ̄γHψ(0)〉 , (2)

where the summation is over all the spatial lattice points.
In this paper, we mostly focus on the pseudo-scalar (PS)
channel H = PS.

In order to investigate the large t behavior of a propa-
gator, we define the effective mass mH(t) through

cosh(mH(t)(t−Nt/2))
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When boundary effects can be neglected, it reduces to

mH(t) = ln
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In the case of exponential-type decay the effective mass
approaches a plateau in the large t regime, where it takes
a constant value.

Before non-perturbative discussion, let us first recall
the perturbative result. Within the two-loop perturbation
theory, the RG beta function for the SU(3) gauge coupling
constant is given as

B(g) = − (33− 2Nf )

48π2
g3 −
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102− 38
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(16π2)2
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(5)

The fixed point B(g∗) = 0 exists for 8.05 < Nf < 16.5
within the two-loop approximation[? ]. When Nf = 16,
the IR fixed point is located at β = 11.475. Since this
coupling constant is small, we may trust the perturbative
computations for Nf = 16. We will compare the non-
perturbative calculation with this value.

When Nf decreases, g∗ increases, at least in the per-
turbation theory, and therefore non-perturbative effects
become important. The smallest Nf where the fixed point
exists is denoted as N c

f and the range of flavors N c
f ≤

Nf ≤ 16 is called the “conformal window”. The lower
bound of the conformal window can only be determined
non-perturbatively. Our earlier studies [? ][? ] strongly
suggest the conjecture that the conformal window is 7 ≤
Nf ≤ 16. However, the conjecture is based on indirect log-
ics. In this article, we will present more direct evidence
supporting the conjecture.

Let us study the RG properties of the propagator in
the vicinity of the fixed point. First note the UV renor-
malization scale in lattice theories is set by the inverse

lattice spacing a−1. The change of the UV renormaliza-
tion scale a−1 → (as)−1 may be expressed alternatively
by the change of the lattice size N :

N ′ = N/s and t′ = st . (6)

while keeping L = aN constant. Therefore we may parametrize
the propagator G(t) by G(t; g,mq, N). Assuming it is close
to the fixed point, the RG equation (see e.g. [? ]) relates
the propagator with different parameters as

G(t; g,mq, N) =

(
N

′

N

)3−2γ

G(t′; g′,mq
′, N ′). (7)

The subscript H of G(t) is suppressed here and hereafter.
The relation between g′ and g and m′

a and mq are deter-
mined by the RG beta function B and the mass anomalous
dimensions γ. Let us first discuss the case in which we are
at the fixed point, i.e. g′ = g = g∗ and m′

q = mq = 0 so
that B = 0 and γ = γ∗. In this case, the propagator may
have simplified notation as

G̃(τ, N) = G(t,N). (8)

with τ = t/Nt. The variable t takes 0, 1, 2, · · · , Nt so that
0 ≤ τ ≤ 1. In terms of τ , the RG relation eq.(??) reduces
to

G̃(τ ;N) =

(
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N

)3−2γ∗

G̃(τ ;N
′
) . (9)

Strictly speaking, this equation is satisfied in the limit
N,N ′ → ∞.

To state our proposal concretely, we define the scaled
effective mass m(t;N) with respect to the reference lattice
size N0 as

m(t,N) =
N

N0
ln

G(t,N)

G(t+ 1, N)
. (10)

In the continuum limit N → ∞ Eq. (??) reduces to the
form

m(τ, N) = − 1

N0
∂τ lnG(τ, N) (11)

The crucial observation, which will be the core of our pro-
posal is that, combining Eqs.(??) and (??), the scaled ef-
fective mass does not depend on N as a function of τ :

m(τ, N) = m(τ, N
′
) (12)

at the fixed point.
Suppose that we are away from the fixed point (i.e

g '= g∗ while mq = 0) in contrast. The scaled effective
mass in the vicinity of the fixed point would instead show
the following behavior

m(τ, g,N) = m(τ, g,N ′) +
B(g)
N0

ln

(
N ′

N

)
∂g lnG(τ, g,N ′) .
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where P is the pseudo-scalar density and A4 the fourth
component of the local axial vector current, with renor-
malization constants being suppressed. The quark mass
mq defined in this way only depends on β and K up to
order 1/N corrections.

One of the most important observables we will study
is the t dependence of the propagator of the local meson
operator in the H channel:

GH(t) =
∑

x

〈ψ̄γHψ(x, t)ψ̄γHψ(0)〉 , (2)

where the summation is over all the spatial lattice points.
In this paper, we mostly focus on the pseudo-scalar (PS)
channel H = PS.

In order to investigate the large t behavior of a propa-
gator, we define the effective mass mH(t) through

cosh(mH(t)(t−Nt/2))

cosh(mH(t)(t+ 1−Nt/2))
=

GH(t)

GH(t+ 1)
. (3)

When boundary effects can be neglected, it reduces to

mH(t) = ln
GH(t)

GH(t+ 1)
. (4)

In the case of exponential-type decay the effective mass
approaches a plateau in the large t regime, where it takes
a constant value.

Before non-perturbative discussion, let us first recall
the perturbative result. Within the two-loop perturbation
theory, the RG beta function for the SU(3) gauge coupling
constant is given as

B(g) = − (33− 2Nf )

48π2
g3 −

(
102− 38

3 Nf

)

(16π2)2
g5 +O(g7) .

(5)

The fixed point B(g∗) = 0 exists for 8.05 < Nf < 16.5
within the two-loop approximation[4]. When Nf = 16,
the IR fixed point is located at β = 11.475. Since this
coupling constant is small, we may trust the perturbative
computations for Nf = 16. We will compare the non-
perturbative calculation with this value.

When Nf decreases, g∗ increases, at least in the per-
turbation theory, and therefore non-perturbative effects
become important. The smallest Nf where the fixed point
exists is denoted asN c

f and the range of flavorsN c
f ≤ Nf ≤

16 is called the “conformal window”. The lower bound
of the conformal window can only be determined non-
perturbatively. Our earlier studies [5][6] strongly suggest
the conjecture that the conformal window is 7 ≤ Nf ≤ 16.
However, the conjecture is based on indirect logics. In this
article, we will present more direct evidence supporting the
conjecture.

Let us study the RG properties of the propagator in
the vicinity of the fixed point. The RG equation for a RG
transformation µ

′
= µ/s, followed by a space-time scale

change t
′
= t/s (see e.g. [12]) relates the propagator with

different parameters as

G(t; g,mq, N, µ) =

(
N

′

N

)3−2γ

G(t′; g′,mq
′, N ′, µ). (6)

Here the UV renormalization scale µ in lattice theories
is set by the inverse lattice spacing a−1. The equation is
irrelevant from µ and µ may be omitted in the relation.
N

′
= N/s.
The subscript H of G(t) is suppressed here and here-

after. The relation between g′ and g and m′
a and mq

are determined by the RG beta function B and the mass
anomalous dimensions γ. Let us first discuss the case in
which we are at the fixed point, i.e.

g′ = g = g∗

m′
q = mq = 0

γ = γ∗.
In this case, the propagator may have simplified nota-

tion as
G̃(τ, N) = G(t,N)
with τ = t/Nt.
The variable t takes 0, 1, 2, · · · , Nt so that 0 ≤ τ ≤ 1.

In terms of τ , the RG relation eq.(6) reduces to

G̃(τ ;N) =

(
N

′

N

)3−2γ∗

G̃(τ ;N
′
) . (7)

Strictly speaking, this equation is satisfied in the limit
N,N ′ → ∞.

To state our proposal concretely, we define the scaled
effective mass m(t;N) with respect to the reference lattice
size N0 as

m(t,N) =
N

N0
ln

G(t,N)

G(t+ 1, N)
. (8)

In the continuum limit N → ∞ Eq. (8) reduces to the
form

m(τ, N) = − 1

N0
∂τ lnG(τ, N) (9)

The crucial observation, which will be the core of our pro-
posal is that, combining Eqs.(7) and (9), the scaled effec-
tive mass does not depend on N as a function of τ :

m(τ, N) = m(τ, N
′
) (10)

at the fixed point.
Suppose that we are away from the fixed point (i.e

g '= g∗ while mq = 0) in contrast. The scaled effective
mass in the vicinity of the fixed point would instead show
the following behavior

m(τ, g,N) = m(τ, g,N ′) +
B(g)
N0

ln

(
N ′

N

)
∂g lnG(τ, g,N ′) .

(11)

Therefore, the agreement of the scaled effective mass as a
function of N and τ are stringent tests of the fixed point.
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Scaling relation 2

Stringent condition for the IR fixed point



Strategy
With given Nf, choose \beta, and tune mq ~ 0.0
Calculate the meson propagator on the lattices 
with size 8^3x32, 12^3x48 and 16^3x64
Plot the scaled effective mass
In general, three points and lines do not coincide

repeat this process
narrow the region of \beta in such a way that the three approach together

finally find the \beta at which three pots and lines coincide 
within the standard error

identify the \beta IR fixed point



Stage and Tools
SU(3) gauge theories with Nf quarks in the fundamental representation

Action: the RG gauge action (called the Iwasaki gauge action)

 Wilson fermion action

Nf = 7, 8,  12, 16

Lattice size: 8^3x32, 12^3x48, 16^3 x 64

Boundary conditions: periodic boundary conditions 

    an anti-periodic boundary conditions (t direction) for fermions

Algorithm: Blocked HMC for 2N and  RHMC for 1 : Nf=2N + 1

Statistics: 1,000  +1,000 ~ 4000 trajectories

Computers: U. Tsukuba: CCS  HAPACS;   KEK: HITAC 16000



Measurement

Plaquette
Polyakov loop

mq =
h0|r4A4|PSi
2h0|P |PSi

GH(t) =
X

x

h ̄�H (x, t) ̄�H (0)i

cosh(mH(t)(t�Nt/2))

cosh(mH(t)(t+ 1�Nt/2))
=

GH(t)

GH(t+ 1)

effective mass

quark mass

meson propagator

mH(t) = ln
GH(t)

GH(t+ 1)
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Table 1: Simulation Parameters for the cases we identify the IR fixed
points: the first column N is the lattice size, the second column Ntraj

for the number of trajectories, the third ”acc” is the acceptance ratio
for the global Metropolis test, ”plaq” for the value of the plaquette
and the fifth mq is the quark mass defined by eq.(??).

Nf = 16, β = 10.5, K = 0.1292
N Ntraj acc plaq mq

16 2000 0.59(1) 0.922 55(1) −0.0063(1)
12 4000 0.77(1) 0.922 55(1) −0.0053(1)
08 4000 0.89(1) 0.922 57(1) 0.0003(5)

Nf = 12, β = 3.0, K = 0.1405
N Ntraj acc plaq mq

16 3000 0.68(1) 0.744 16(2) −0.002(1)
12 3000 0.84(1) 0.744 15(1) −0.002(1)
08 4000 0.94(1) 0.744 19(2) 0.004(1)

Nf = 8, β = 2.4, K = 0.147
N Ntraj acc plaq mq

16 4000 0.72(1) 0.676 20(1) −0.007(1)
12 4000 0.84(1) 0.676 20(1) −0.006(3)
08 3000 0.93(1) 0.676 22(2) −0.0005(5)

Nf = 7, β = 2.3, K = 0.14877
N Ntraj acc plaq mq

16 4000 0.72(1) 0.659 31(1) −0.0017(2)
12 4000 0.85(1) 0.659 31(1) −0.0005(3)
08 5000 0.94(1) 0.659 41(3) 0.0047(6)

for the measurement. We estimate the errors by the jack-
knife method with a bin size corresponding to 100 HMC
trajectories.

Before examining our numerical results, we have a few
comments in order.

For gauge configuration generation we have to be very
careful to choose the lowest energy state, not quasi-stable
states in the conformal region. As stressed in Ref.[? ],
there are quasi-stable states, which persist for long time
for a HMC algorithm.

In contrast with the confining phase, when the system
is either in the deconfining phase at high temperature or in
the conformal region, it is not hard to perform simulations
at zero quark mass. It is even possible to calculate across
the zero quark mass from positive to negative mass with-
out any trouble. This is because in the deconfining phase
the density of eigenvalues of the massless Dirac-Wilson op-
erator decreases toward zero (modification[? ][? ] of the
Banks and Cacher relation[? ].) We used this fact to iden-
tify the first order chiral phase transition for Nf = 3 and
6, which we call “on the Kc method”[? ], and to find the
fact that for Nf ≥ 7 there is no confining phase at the
massless quark in the strong coupling limit.

Because the chiral symmetry is explicitly broken in the
Wilson action, we have to tune the hopping parameter K.
The quark mass does have 1/N correction. The mass at
N = 12 differ from that at N = 16 with order of O(0.001),
while that at N = 8 with order of O(0.005) in our case. We
estimate the effect on the meson propagator of this differ-
ence. The effect by the difference of O(0.001) is one of or-
der smaller than the statistical errors and that of O(0.005)
is order of a half of one standard deviation. In total, we
estimate the smallness of the difference is enough for the
accuracy we take in this article.

Now, let us show the results, starting with the Nf = 16
case. As mentioned earlier, within the two-loop perturba-
tion, the IR fixed point is β∗ = 11.475, which is RG scheme
independent. On the other hand, the coupling constants
in different RG schemes are related to each other by a
constant as β1 = β2 + c12 in the one-loop approximation.
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For example[? ], the lattice coupling constants βRG and
βone−plaquette for one-plaquette action are related to that
in the continuum theory βMS (in the modified minimal
subtraction scheme) as

βRG = βMS − 0.3

and
βone−plaquette = βMS + 3.1.

It is well-known that the convergence of the perturbation
by the gone−plaquette is poor in general. The contribution
of higher order terms will be large. On the other hand, the
lattice coupling constant βRG is close to βMS and therefore
we may expect that the higher-order contribution is not so
large and the location of the fixed point is close to 11.2 in
βRG from the two-loop estimate and the above relation.
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Figure 5: Propagators for Nf=08 at beta=2.4: three sets of symbols
are N=16(red square), N=12(green circle), N = 8(blue triangle

.

In order to find the fixed point from our proposal,we
make several trials including those at β = 10.0, 10.5, 11.0,
and 11.5. We find the three sets of data and the lines con-
necting them are apparently different from each other at
β = 11.5 (Fig.(1); left panel) and they approach closer by
decreasing β as 11.5, 11.0. On the other hand, at β = 10.0

(Fig.1; right panel) they are apart each other again but
they approach closer by increasing β as 10.0, 10.5. This
suggests that there is an IR fixed point between β = 10.0
and 11.0. We indeed find, as shown in Fig.(2), that the
three sets of the scaled effective mass plots are almost de-
generate at β = 10.5 and K = 0.1292. We see that three
lines almost overlap for τ ≥ 0.1. Only in the small τ region
(τ ≤ 0.1) we see the differences.

The fact that our method identifies the location of the
IR fixed point at a value expected from the perturbation
theory, together with the fact that three lines almost over-
lap, strengthens our confidence in the validity of our ap-
proach

We make similar process for Nf = 12, 8 and 7 as the
Nf = 16 case. In Figs. (3) and (4) are shown the results.
The qualitative feature of our results are the same. If we
choose a very particular β for each Nf , the data and three
lines almost overlap for τ ≥ 0.1, as shown in the Figures.
In the small t region (t/Nt ≤ 0.1) we find the differences.
Since they are similar to the case of Nf = 16, we do not
present them here. One difference noted, however, is that
the β dependence of the effective mass is more rapid than
the Nf = 16 case and therefore it is easier to narrow the
β region to find the fixed point. We interpret this fact
that the coefficient of the B function at the fixed point g∗

defined by B ∼= B′(g−g∗) is small forNf = 16 and becomes
larger as Nf decreases, as the perturbation theory implies.

Finally we identify the IR fixed points at β∗ = 10.5±0.5
for Nf = 16; 3.0 ± 0.1 for Nf = 12; 2.4 ± 0.1 for Nf = 8;
and 2.3± 0.05 for Nf = 7.

On the other hand, in the Nf = 6 case, there is a
chiral phase transition point at finite β when N is finite[?
]. If we would perform a program similar to the above (by
fixing β and increasing the lattice size N), then at some N
the system would end up with the confining phase rather
than the chiral symmetric phase (to which the conformal
fixed points belong). Therefore the IR behavior would be
completely different. It cannot be a conformal field theory.

Combining all of our results and theoretical argument,
including those in our previous works, we establish that
the conformal window is 7 ≤ Nf ≤ 16.

We do not exclude the possibility that the RG beta
function is anomalously small at Nf = 7, and for a larger
N an undiscovered chiral phase transition point happens
to appear at some value of β and the asymptotic behavior
at β = 2.3 eventually shows the confinement in the infinite
N limit. The simulations with a larger lattice size N will
clarify which scenario is realized in the continuum limit.

We note that it seems possible to extract the mass
anomalous dimension γ∗ using the scaling of propagators
Eq.(??) in the continuum limit N → ∞. In Fig.?? we
show the results for the propagator on the three lattice
sizes in the Nf = 8 case. The data are depicted in units
of logarithm. We see the data roughly scale at τ ≥ 0.1.
However, due to the 1/N correction, it is still difficult to
estimate γ∗ although we roughly get as an estimate of
(3.0 − 2γ∗) around 3.0. It means the sizes N = 8, 12 and

5

Results
Nf=16

Perturbation:
beta function up to two loops
RG scheme independent 

=11.5

ence. The effect by the difference of O(0.001) is one of or-
der smaller than the statistical errors and that of O(0.005)
is order of a half of one standard deviation. In total, we
estimate the smallness of the difference is enough for the
accuracy we take in this article.
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Figure 4: Scaled effective mass plots for Nf=07 at beta=2.3: three
sets of symbols are N=16(red square), N=12(green circle), N =
8(blue triangle)

Now, let us show the results, starting with the Nf = 16
case. As mentioned earlier, within the two-loop perturba-
tion, the IR fixed point is β∗ = 11.475, which is RG scheme
independent. On the other hand, the coupling constants
in different RG schemes are related to each other by a
constant as β1 = β2 + c12 in the one-loop approximation.
For example[11], the lattice coupling constants βRG and
βone−plaquette for one-plaquette action are related to that
in the continuum theory βMS (in the modified minimal
subtraction scheme) as

βRG = βMS − 0.3

and
βone−plaquette = βMS + 3.1.

It is well-known that the convergence of the perturbation
by the gone−plaquette is poor in general. The contribution
of higher order terms will be large. On the other hand, the
lattice coupling constant βRG is close to βMS and therefore
we may expect that the higher-order contribution is not so
large and the location of the fixed point is close to 11.2 in
βRG from the two-loop estimate and the above relation.

In order to find the fixed point from our proposal,we
make several trials including those at β = 10.0, 10.5, 11.0,
and 11.5. We find the three sets of data and the lines con-
necting them are apparently different from each other at
β = 11.5 (Fig.(1); left panel) and they approach closer by
decreasing β as 11.5, 11.0. On the other hand, at β = 10.0
(Fig.1; right panel) they are apart each other again but
they approach closer by increasing β as 10.0, 10.5. This
suggests that there is an IR fixed point between β = 10.0
and 11.0. We indeed find, as shown in Fig.(2), that the
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Figure 5: Propagators for Nf=08 at beta=2.4: three sets of symbols
are N=16(red square), N=12(green circle), N = 8(blue triangle)

.

three sets of the scaled effective mass plots are almost de-
generate at β = 10.5 and K = 0.1292. We see that three
lines almost overlap for τ ≥ 0.1. Only in the small τ region
(τ ≤ 0.1) we see the differences.

The fact that our method identifies the location of the
IR fixed point at a value expected from the perturbation
theory, together with the fact that three lines almost over-
lap, strengthens our confidence in the validity of our ap-
proach

We make similar process for Nf = 12, 8 and 7 as the
Nf = 16 case. In Figs. (3) and (4) are shown the results.
The qualitative feature of our results are the same. If we
choose a very particular β for each Nf , the data and three
lines almost overlap for τ ≥ 0.1, as shown in the Figures.
In the small t region (t/Nt ≤ 0.1) we find the differences.
Since they are similar to the case of Nf = 16, we do not
present them here. One difference noted, however, is that
the β dependence of the effective mass is more rapid than
the Nf = 16 case and therefore it is easier to narrow the
β region to find the fixed point. We interpret this fact
that the coefficient of the B function at the fixed point g∗

defined by B ∼= B′(g−g∗) is small forNf = 16 and becomes
larger as Nf decreases, as the perturbation theory implies.

Finally we identify the IR fixed points at β∗ = 10.5±0.5
for Nf = 16; 3.0 ± 0.1 for Nf = 12; 2.4 ± 0.1 for Nf = 8;
and 2.3± 0.05 for Nf = 7.

On the other hand, in the Nf = 6 case, there is a chi-
ral phase transition point at finite β when N is finite[10].
If we would perform a program similar to the above (by
fixing β and increasing the lattice size N), then at some N
the system would end up with the confining phase rather
than the chiral symmetric phase (to which the conformal
fixed points belong). Therefore the IR behavior would be
completely different. It cannot be a conformal field theory.

Combining all of our results and theoretical argument,
including those in our previous works, we establish that
the conformal window is 7 ≤ Nf ≤ 16.
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On the other hand, 

higher order contribution will be large for one-plaquette action

may expect \beta_RG ~11.2

β∗

1
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The location of IR fixed points

The conformal window

7 ≤ Nf ≤ 16

1

Nf = 16: β∗ = 10.5± 0.5
Nf = 12: β∗ = 3.0± 0.1
Nf = 8 : β∗ = 2.4± 0.1
Nf = 7: β∗ = 2.3± 0.05

1



Continuum limit of propagators at IRFP

continuum limit of scaled effective mass is given 
by the limit N --> infinity 

Even up to N=16, the limit is almost realized for \tau \ge 0.1.
As N becomes larger, it will be realized for   \tau \le 0.1 

Note the limit depends on the aspect ratio and boundary conditions, 
but not on L= N a

Note that local-local propagators are not local observables, 
due to the summation over the space coordinates



Scaling relation for propagators

where P is the pseudo-scalar density and A4 the fourth
component of the local axial vector current, with renor-
malization constants being suppressed. The quark mass
mq defined in this way only depends on β and K up to
order 1/N corrections.

One of the most important observables we will study
is the t dependence of the propagator of the local meson
operator in the H channel:

GH(t) =
∑

x

〈ψ̄γHψ(x, t)ψ̄γHψ(0)〉 , (2)

where the summation is over all the spatial lattice points.
In this paper, we mostly focus on the pseudo-scalar (PS)
channel H = PS.

In order to investigate the large t behavior of a propa-
gator, we define the effective mass mH(t) through

cosh(mH(t)(t−Nt/2))

cosh(mH(t)(t+ 1−Nt/2))
=

GH(t)

GH(t+ 1)
. (3)

When boundary effects can be neglected, it reduces to

mH(t) = ln
GH(t)

GH(t+ 1)
. (4)

In the case of exponential-type decay the effective mass
approaches a plateau in the large t regime, where it takes
a constant value.

Before non-perturbative discussion, let us first recall
the perturbative result. Within the two-loop perturbation
theory, the RG beta function for the SU(3) gauge coupling
constant is given as

B(g) = − (33− 2Nf )

48π2
g3 −

(
102− 38

3 Nf

)

(16π2)2
g5 +O(g7) .

(5)

The fixed point B(g∗) = 0 exists for 8.05 < Nf < 16.5
within the two-loop approximation[? ]. When Nf = 16,
the IR fixed point is located at β = 11.475. Since this
coupling constant is small, we may trust the perturbative
computations for Nf = 16. We will compare the non-
perturbative calculation with this value.

When Nf decreases, g∗ increases, at least in the per-
turbation theory, and therefore non-perturbative effects
become important. The smallest Nf where the fixed point
exists is denoted as N c

f and the range of flavors N c
f ≤

Nf ≤ 16 is called the “conformal window”. The lower
bound of the conformal window can only be determined
non-perturbatively. Our earlier studies [? ][? ] strongly
suggest the conjecture that the conformal window is 7 ≤
Nf ≤ 16. However, the conjecture is based on indirect log-
ics. In this article, we will present more direct evidence
supporting the conjecture.

Let us study the RG properties of the propagator in
the vicinity of the fixed point. First note the UV renor-
malization scale in lattice theories is set by the inverse

lattice spacing a−1. The change of the UV renormaliza-
tion scale a−1 → (as)−1 may be expressed alternatively
by the change of the lattice size N :

N ′ = N/s and t′ = st . (6)

while keeping L = aN constant. Therefore we may parametrize
the propagator G(t) by G(t; g,mq, N). Assuming it is close
to the fixed point, the RG equation (see e.g. [? ]) relates
the propagator with different parameters as

G(t; g,mq, N) =

(
N

′

N

)3−2γ

G(t′; g′,mq
′, N ′). (7)

The subscript H of G(t) is suppressed here and here-
after. The relation between g′ and g and m′

a and mq

are determined by the RG beta function B and the mass
anomalous dimensions γ. Let us first discuss the case in
which we are at the fixed point, i.e. g′ = g = g∗ and
m′

q = mq = 0 so that B = 0 and γ = γ∗. In this case, the
propagator may have simplified notation as

G̃(τ, N) = G(t,N). (8)

with τ = t/Nt. The variable t takes 0, 1, 2, · · · , Nt so that
0 ≤ τ ≤ 1. In terms of τ , the RG relation eq.(??) reduces
to

G̃(τ ;N) =

(
N

′

N

)3−2γ∗

G̃(τ ;N
′
) . (9)

Strictly speaking, this equation is satisfied in the limit
N,N ′ → ∞.

To state our proposal concretely, we define the scaled
effective mass m(t;N) with respect to the reference lattice
size N0 as

m(t,N) =
N

N0
ln

G(t,N)

G(t+ 1, N)
. (10)

In the continuum limit N → ∞ Eq. (??) reduces to the
form

m(τ, N) = − 1

N0
∂τ lnG(τ, N) (11)

The crucial observation, which will be the core of our pro-
posal is that, combining Eqs.(??) and (??), the scaled ef-
fective mass does not depend on N as a function of τ :

m(τ, N) = m(τ, N
′
) (12)

at the fixed point.
Suppose that we are away from the fixed point (i.e

g '= g∗ while mq = 0) in contrast. The scaled effective
mass in the vicinity of the fixed point would instead show
the following behavior

m(τ, g,N) = m(τ, g,N ′) +
B(g)
N0

ln

(
N ′

N

)
∂g lnG(τ, g,N ′) .

(13)
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G(t) = c(t) exp(−m(t) t)
tα(t)

1

Local analysis of propagators 

parametrization using data at three points
useful for seeing the characteristics
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• meson unparticle model* 

Nf=7, 8

plateau at 



=0.0=2.0

free fermion
Z(3) twisted vacuummeson

~1.3

unparticle

Correspondence between two sets

γ∗

1

γ∗

1

γ∗

1



Conclusions (cont.)

• two scaling relations are derived

• scaling of scaled effective masses provides a 
stringent test of IRFP

• able to identify the location of IRFP for Nf=7, 8, 12 
and 16.

• established the conformal window

• continuum limit of propagators at IRFP is derived

• It depends on the aspect ratio and boundary 
conditions, not L=N a



Conclusions

• Nf=16 is similar to free fermions in the Z(3) 
twisted vacuum

• Nf=7 and 8 are consistent with meson 
unparticle model

• there is a nice correspondence between large 
Nf and high temperature.

•  A lot of things should be done

• Larger N and high statistics

• estimate      by several methodsγ∗

1



Thank you !


