Strongly coupled gauge theories: What can lattice calculations teach us?

Anna Hasenfratz University of Colorado Boulder SCGT-2015, Nagoya, Mar 3, 2015

What is Beyond the Standard Model?

The LHC will restart this month will it reveal the nature of the Higgs ?

"With this new energy level, the LHC will open new horizons for physics and for future discoveries," says <u>CERN Director-General Rolf</u> <u>Heuer.</u>"I'm looking forward to seeing what nature has in store for us". (Feb 2015)

Composite Higgs

is viable possibility:

Higgs is a $\bar{q}q$ bound state (possibly qq)

- What models are compatible with EW data?
 - Most likely strongly coupled
- What are the generic properties of strongly coupled models?
 - is walking necessary ?
 - spectrum : where is M_{0++} compared to M_{ρ} ?

We need only three Goldstones — 2 massless fermions will do

- $N_f = 2 SU(3) : QCD$
- $N_f = 2 SU(2) adjoint : conformal$
- $N_f = 2 SU(3)$ sextet : popular but is it indeed chirally broken?
 - Poster: RG β function with Wilson fermions disagree with staggered
 - discrepancy could be due to rooting (?) or strong coupling effects
 - needs better understanding

We need only three Goldstones — 2 massless fermions will do \star

- $N_f = 2 SU(3) : QCD$
- $N_f = 2 SU(2) adjoint : conformal$
- $N_f = 2 SU(3)$ sextet : popular but is it indeed chirally broken?
 - Poster: RG β function with Wilson fermions disagree with staggered
 - discrepancy could be due to rooting (?) or strong coupling effects
 - needs better understanding

We need only three Goldstones — 2 massless fermions will do \star

- N_f = 2 SU(3) : QCD ¥
- $N_f = 2 SU(2) adjoint : conformal$
- $N_f = 2 SU(3)$ sextet : popular but is it indeed chirally broken?
 - Poster: RG β function with Wilson fermions disagree with staggered
 - discrepancy could be due to rooting (?) or strong coupling effects
 - needs better understanding

We need only three Goldstones — 2 massless fermions will do \star

- − N_f = 2 SU(3) : QCD ¥
- N_f = 2 SU(2) adjoint : conformal X
- $N_f = 2 SU(3)$ sextet : popular but is it indeed chirally broken?
 - Poster: RG β function with Wilson fermions disagree with staggered
 - discrepancy could be due to rooting (?) or strong coupling effects
 - needs better understanding

We need only three Goldstones — 2 massless fermions will do \star

- $N_f = 2 SU(3) : QCD$
- $N_f = 2 SU(2) adjoint : conformal X$
- N_f = 2 SU(3) sextet : popular but is it indeed chirally broken? ??
 - Poster: RG β function with Wilson fermions disagree with staggered
 - discrepancy could be due to rooting (?) or strong coupling effects
 - needs better understanding

We need only three Goldstones — 2 massless fermions will do

- $N_f = 2 SU(3) : QCD$
- $N_f = 2 SU(2) adjoint : conformal$
- $N_f = 2 SU(3)$ sextet : popular but is it indeed chirally broken?
 - Poster: study with Wilson fermions disagree with staggered
 - discrepancy could be due to rooting (?) or strong coupling effects

??

- needs better understanding

We need only three Goldstones — 2 massless fermions will do

- $N_f = 2 SU(3) : QCD$
- $N_f = 2 SU(2) adjoint : conformal$
- $N_f = 2 SU(3)$ sextet : popular but is it indeed chirally broken?
 - Poster: study with Wilson fermions disagree with staggered
 - discrepancy could be due to rooting (?) or strong coupling effects
 - needs better understanding
- If not $N_f = 2$:
 - $N_f = 6 SU(2)$ fundamental (1313.4889 LSD)
 - N_f = 8 SU(3) fundamental : seems to be close to the conformal window : E. Rinaldi talk; D. Schaich finite T poster

We need some mechanism to break flavor

 $SU(8)xSU(8) \rightarrow SU(2)xSU(2)$

What is the remnant of the many flavors in the IR?

Simple model - I

SU(N_c) gauge with N_l light (m_l \approx 0) and N_h heavy (m_h) fermions In the IR the heavy flavors decouple, N_l light remain

 $N_{\ell} + N_h = small:$ gauge coupling runs fast, heavy flavors have limited effect on the IR (QCD)

Simple model - II

SU(N_c) gauge with N_l light (m_l \approx 0) and N_h heavy (m_h) fermions

$N_{\ell}+N_{h}$ = near but below the conformal window IF the gauge coupling is "walking" the IR can be very different

RG flow from UV to IR

Simple model - III

SU(N_c) gauge with N_l light (m_l \approx 0) and N_h heavy (m_h) fermions

$N_{\ell}+N_{h}$ = above the conformal window

the gauge coupling will be "walking"; the IR will be very different

Simple model - III

SU(N_c) gauge with N_l light (m_l \approx 0) and N_h heavy (m_h) fermions

$N_{\ell}+N_{h}$ = above the conformal window

the gauge coupling will be "walking"; the IR will be very different

What are the properties of these strongly coupled "walking" systems? $N_{\ell}+N_h$ (lattice) models $N_{\ell}+N_{h}=2+6$ if $N_{f}=8$ is the UV model or $N_{\ell}+N_{h}=2+10$ for $N_{f}=12$ conformal behavior in the UV **Pilot study:** $N_{\ell}+N_{h}=4+8$: conformal in the UV, N_l=4 flavor in the IR in collaboration with R. Brower, C. Rebbi, E. Weinberg, O. Witzel arXiv:1411.3243

Why **4+8**? We use staggered fermions: 4 and 8 flavors do not require rooting (rooting is no-go in a conformal system near IRFP) $N_{\ell}+N_{h} = 4+8$: The lattice action

Action: nHYP smeared staggered fermions, fundamental + adjoint gauge plaquette

This action was used in the Boulder 4, 8, and 12 flavor studies (1106.5293, 111.2317, 1404.0984) It is the action used in the 8 flavor joint project with LSD (E. Rinaldi's talk, D. Schaich's poster)

We understand this action well

3 independent parameters: (g², m_{ℓ}, m_h)

- g² does not matter once the flow has reached the RG trajectory
- sufficient to work at $g^2 = const$, vary m_h only

3 independent parameters: (g², m_{ℓ} , m_{h})

- g² does not matter once the flow has reached the RG trajectory
- sufficient to work at $g^2 = const$, vary m_h only

3 independent parameters: (g², m_{ℓ} , m_{h})

- g² does not matter once the flow has reached the RG trajectory
- sufficient to work at $g^2 = const$, vary m_h only

- $-\beta$ =4.0 (close to the 12-flavor IRFP)
- $m_h = 0.10, 0.08, 0.06, 0.05$
- $m_\ell {=} 0.003, \, 0.005, \, 0.010, \, 0.015, \, 0.025, \, 0.035$

Volumes : 24³x48, (dots) 32³64 (circle), 48³x96 (square) Color: volume OK / marginal/ squeezed

20,000 MDTU, most still in progress

Lattice scale

Use Wilson flow to estimate the lattice scale $\sqrt{8t_0}$

Topology evolution

Topology is moving well even with the lightest mass

m_ℓ =0.010, 24³x48 volume

Running coupling

Gradient flow transformation defines a renormalized coupling

arXiv:1006.4518

$$g_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{N} t^2 \langle E(t) \rangle$$

t: flow time; E(t):energy density

 g_{GF}^2 is used for scale setting as

$$g_{GF}^2(t=t_0) = \frac{0.3}{N}$$

Is it appropriate for renormalized running coupling? Yes,

- on large enough volumes
- at large enough flow time
- in the continuum limit

Running coupling

Rescaling forces the renormalized couplings to agree at t₀ Fan-out before and after are due to cut-off lattice artifacts

Improved running coupling

t-shift improved running coupling

$$\tilde{g}_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{\mathcal{N}}t^2 \langle E(t + \tau_0) \rangle$$

by adjusting τ_0 most cut-off effects can be removed

(1404.0984, 1501.07848)

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \rightarrow 0$: this is walking ! Walking range can be tuned arbitrarily with m_h

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \rightarrow 0$: this is walking ! Walking range can be tuned arbitrarily with m_h

The state of the s

The "shoulder" is the gauge dynamics : slow evolution

The "shoulder" is the gauge dynamics : slow evolution

The "shoulder" is the gauge dynamics : slow evolution The fast rise is due to the fermion mass running What is the consequence of the two separate regimes?

Connected spectrum, 4+8 flavors

- > M_{π} , M_{ρ} vs m_{ℓ} (rescaled by the gradient flow scale $\sqrt{8t_0}$)
 - little variation with m_h

Chiral limit?

M_{ρ}/M_{π} shows that we approach the chiral regime

< N_f=12 predicts an almost constant ratio (as should be in a conformal system) (arXiv:1401.0195)

Chiral limit?

M_{ρ}/M_{π} : compare to 8 flavors

Finally : the 0⁺⁺ scalar state

We use the same method to construct and fit the correlators as with $N_f = 8$ joint LSD project:

- Disconnected correlators:
 - 6 U(1) sources
 - diluted on each timeslice, color, even/odd spatial
 - variance reduced $\langle \bar{\psi}\psi
 angle$
- Fit:
 - correlated fits to both parity (staggered) states
 - the vacuum subtraction introduces very large uncertainties
 - it is advantageous to add a (free) constant to the fit

$$C(t) = c_{0^{++}} \cosh\left(M_{0^{++}} \left(N_T / 2 - t\right)\right) + c_{\pi_{\overline{sc}}} (-1)^t \cosh\left(M_{\pi_{\overline{sc}}} \left(N_T / 2 - t\right)\right) + v$$

-this is equivalent to fitting the finite difference of the correlator

C(t+1)-C(t)

There is one major difference between N_f = 4 + 8 and 8 :

- with non-degenerate masses the 0⁺⁺ splits to light and heavy states
- there is mixing the heavy and light species

This is similar to $\eta - \eta'$ mixing in QCD

 \rightarrow need to diagonalize the correlator matrix

$$C(t) = \begin{pmatrix} D_{ll}(t) - C_{ll}(t) & \sqrt{2}D_{lh}(t) \\ \sqrt{2}D_{hl}(t) & 2D_{hh}(t) - C_{hh}(t) \end{pmatrix}$$

Normalization: even though we we describe 4 and 8 flavors, on the lattice they correspond to 1 and 2 staggered species

$$C(t) = \begin{pmatrix} D_{ll}(t) - C_{ll}(t) & \sqrt{2}D_{lh}(t) \\ \sqrt{2}D_{hl}(t) & 2D_{hh}(t) - C_{hh}(t) \end{pmatrix}$$

Diagonalizing C(t) could lead to very large statistical errors.

Fortunately: $D_{\ell h}$ << diagonal terms for almost all parameter values

$$C(t) = \begin{pmatrix} D_{ll}(t) - C_{ll}(t) & \sqrt{2}D_{lh}(t) \\ \sqrt{2}D_{hl}(t) & 2D_{hh}(t) - C_{hh}(t) \end{pmatrix}$$

Diagonalizing C(t) could lead to very large statistical errors.

Fortunately: $D_{\ell h}$ << diagonal terms for almost all parameter values

but not always!

Derivative correlators at $m_h = 0.05, m_\ell = 0.015$

$$C(t) = \begin{pmatrix} D_{ll}(t) - C_{ll}(t) & \sqrt{2}D_{lh}(t) \\ \sqrt{2}D_{hl}(t) & 2D_{hh}(t) - C_{hh}(t) \end{pmatrix}$$

Diagonalizing C(t) could lead to very large statistical errors.

Fortunately: the lightest excitation in $D_{\ell\ell}$ (and $D_{\ell h}$, D_{hh}) is the 0⁺⁺

Derivative correlators at $m_h = 0.06, m_\ell = 0.010$: $D_{\ell\ell}$ and $D_{\ell\ell} - C_{\ell\ell}$

The 0⁺⁺ mass

We strive to compare predictions from $D_{\ell\ell}$ and $D_{\ell\ell} - C_{\ell\ell}$ correlators – in the $t \to \infty$ limit they should agree

 $m_h = 0.06$, $m_\ell = 0.010$:

 M_{0++} predicted from non-linear range fits (t_{min} - N_T/2)

The 0⁺⁺ mass

We strive to compare predictions from $D_{\ell\ell}$ and $D_{\ell\ell} - C_{\ell\ell}$ correlators – in the $t \to \infty$ limit they should agree

$m_h = 0.06$, $m_\ell = 0.010$:

 M_{0++} predicted from non-linear range fits (t_{min} - N_T/2)

both volumes, both correlators predict a consistent value

The 0⁺⁺ mass

We strive to compare predictions from $D_{\ell\ell}$ and $D_{\ell\ell} - C_{\ell\ell}$ correlators – in the $t \to \infty$ limit they should agree

$m_h = 0.06$, $m_\ell = 0.010$:

Spectrum

Compare the pion, rho and 0⁺⁺ masses:

 $m_h = 0.08$: the 0++

- is just above the pion,
- not Goldstone
- well below the rho

Spectrum

Compare the pion, rho and 0⁺⁺ masses:

 $m_h = 0.06$: the 0++

- is degenerate with pion at heavier m_l
- need larger volumes, more statistics to resolve the small m_l region

Conclusion & Summary

Lots of interesting possibilities

Lattice studies are needed to investigate strongly coupled systems

Even those without apparent phenomenological importance can teach us :

- understand universality
 - Wilson vs staggered vs rooted staggered vs domain wall fermions
- understand general properties of strongly coupled systems
 - walking near the conformal window
 - 0⁺⁺ near the conformal window

Models with split fermion masses, like the 4+8 flavor model, help us navigate the landscape

Special thanks to my collaborators

Rich Brower, Claudio Rebbi, Evan Weinberg and Oliver Witzel