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What is Beyond the Standard Model ?

The LHC will restart this month -   
will it reveal the nature of the 
Higgs ?

“With this new energy level, the LHC will open new horizons for 
physics and for future discoveries,” says CERN Director-General Rolf 
Heuer. “I’m looking forward to seeing what nature has in store for us”.

(Feb 2015)



Composite Higgs 

    is viable possibility: 
    Higgs is a       bound state (possibly       ) 
  

– What models are  compatible with EW data? 
• Most likely strongly coupled 

– What are the generic properties of strongly coupled models? 
• is walking necessary ? 
• spectrum : where is M0++ compared to Mρ ?   

qq qq



Strongly coupled models

We need only three Goldstones — 2 massless fermions will do 
– Nf = 2 SU(3) : QCD 
– Nf = 2 SU(2) adjoint : conformal 
– Nf = 2 SU(3) sextet : popular but is it indeed chirally broken? 

• Poster:  RG β function with Wilson fermions disagree with staggered 
• discrepancy could be due to rooting (?) or strong coupling effects  

 - needs better understanding 
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Strongly coupled models

We need only three Goldstones — 2 massless fermions will do 
– Nf = 2 SU(3) : QCD 
– Nf = 2 SU(2) adjoint : conformal 
– Nf = 2 SU(3) sextet : popular but is it indeed chirally broken? 

• Poster:  study with Wilson fermions disagree with staggered 
• discrepancy could be due to rooting (?) or strong coupling effects   

 - needs better understanding 

If not Nf = 2 :  
– Nf = 6 SU(2) fundamental (1313.4889 - LSD) 
– Nf = 8 SU(3) fundamental : seems to be close to the conformal  

window : E. Rinaldi talk; D. Schaich finite T poster 
We need some mechanism to break flavor  
        SU(8)xSU(8) → SU(2)xSU(2)  
What is the remnant of the many flavors in the IR? 

✘
✘

??



Simple model - I

SU(Nc) gauge with Nℓ𝓁  light (mℓ𝓁 ≈0) and Nℎ heavy (mℎ) fermions 
In the IR the heavy flavors decouple, Nℓ𝓁 light remain 

β∝1/g2

mℎ

UV

IR

Nℓ𝓁 +Nℎ =small:  gauge coupling runs fast,  heavy flavors have         
                          limited effect on the IR  (QCD)

RG flow from UV to IR



Nℓ𝓁+Nℎ = near  but below the conformal window
             IF the gauge coupling is “walking” the IR can be  
             very different  

β∝1/g2

mℎ

UV

IR

“walking”

Simple model - II

RG flow from UV to IR

SU(Nc) gauge with Nℓ𝓁  light (mℓ𝓁 ≈0) and Nℎ heavy (mℎ) fermions 
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IRFP

Nℓ𝓁+Nℎ = above the conformal window
             the gauge coupling will be “walking”;  
             the IR will be very different  

Simple model - III

SU(Nc) gauge with Nℓ𝓁  light (mℓ𝓁 ≈0) and Nℎ heavy (mℎ) fermions 



β∝1/g2

mℎ

UV

IR

IRFP

Nℓ𝓁+Nℎ = above the conformal window
             the gauge coupling will be “walking”;  
             the IR will be very different  

What are the properties 
of these strongly coupled
“walking” systems?

Simple model - III

SU(Nc) gauge with Nℓ𝓁  light (mℓ𝓁 ≈0) and Nℎ heavy (mℎ) fermions 



Nℓ𝓁+Nℎ  (lattice) models

Nℓ𝓁+Nℎ = 2 + 6   if Nf = 8 is the UV model 
  or 
Nℓ𝓁+Nℎ = 2 +10  for Nf =12 conformal behavior in the UV 

  Pilot study:  
       Nℓ𝓁+Nℎ = 4 + 8 : conformal in the UV, Nl=4 flavor in the IR 
   in collaboration with R. Brower, C. Rebbi, E. Weinberg, O. Witzel 
                                                                      arXiv:1411.3243 

Why 4+8 ?  We use staggered fermions:   
 4 and 8 flavors do not require rooting 
 (rooting is no-go in a conformal system near IRFP)  



Nℓ𝓁+Nℎ = 4+ 8 : The lattice action

Action: nHYP smeared staggered fermions,  
            fundamental + adjoint gauge plaquette 

This action was used in the Boulder 4, 8, and 12 flavor studies 
                                                   (1106.5293, 111.2317, 1404.0984) 
It is the action used in the 8 flavor joint project with LSD 
                                                   (E. Rinaldi’s talk, D. Schaich’s poster) 

We understand this action well



Nℓ𝓁+Nℎ = 4+ 8 : Parameter space

3 independent parameters: (g2, mℓ𝓁, mℎ )  
– g2 does not matter once the flow has reached the RG trajectory 
– sufficient to work at g2 =const, vary mℎ only 
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– β=4.0 (close to the 12-flavor IRFP) 
– mℎ=0.10, 0.08, 0.06, 0.05 
– mℓ𝓁=0.003, 0.005, 0.010, 0.015, 0.025, 0.035 

Nℓ𝓁+Nℎ = 4+ 8 : Parameter space
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Lattice scale

Use Wilson flow to estimate the lattice scale

is usually sufficient 
→ color coding 

8t0!L /5
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Topology evolution

Topology is moving well even with the lightest mass
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Running coupling

Gradient flow transformation defines a renormalized coupling 
                                                                                     arXiv:1006.4518 

       is used for scale setting as 
  

Is it appropriate for renormalized running coupling? 
 Yes,  

– on large enough volumes  
– at large enough flow time 
– in the continuum limit  

                                                                

gGF2 (µ=
1
8t
)= 1
N
t2〈E(t)〉 t: flow time;  

E(t):energy density

gGF2

gGF2 (t = t0)=
0.3
N



Running coupling

t2〈E(t)〉 gGF2 (t /t0)               rescaled by t0 

at various mh values              

Rescaling forces the renormalized couplings to agree at t0 

Fan-out before and after are due to cut-off lattice artifacts  

              in the chiral limit 
at various mh values 

mℓ𝓁  = 0 mℓ𝓁  = 0 



Improved running coupling

t-shift improved running coupling 

by adjusting 𝜏0 most cut-off effects can be removed 
                                                                       (1404.0984, 1501.07848)

!gGF2 (µ= 1
8t
)= 1
N
t2〈E(t+τ0)〉

Nf=4
Nf=4

Nf=4+8



Improved running coupling : 4+8 flavors

               develops a “shoulder”  as mℎ → 0 : this is walking ! 
Walking range can be tuned arbitrarily with mℎ 

gGF2 (µ)

Nf=4 : running fast

mℓ𝓁  = 0 



Improved running coupling : 4+8 flavors

               develops a “shoulder”  as mℎ → 0 : this is walking ! 
Walking range can be tuned arbitrarily with mℎ 

gGF2 (µ)

mℎ →0:  Nf=12 

mℓ𝓁  = 0 



Improved running coupling : 8 flavors

Is this walking?



Improved running coupling : 8 flavors

m →0

Is this walking?

The “shoulder” is the gauge dynamics : slow evolution 



Improved running coupling : 8 flavors

m →0

The “shoulder” is the gauge dynamics : slow evolution 

arXiv:1410.5886

g2

m=0



Improved running coupling : 8 flavors

m →0

The “shoulder” is the gauge dynamics : slow evolution 
The fast rise is due to the fermion mass running 
What is the consequence of the two separate regimes? 



Connected spectrum, 4+8 flavors

> Mπ, Mρ vs mℓ𝓁   
  (rescaled by the gradient flow 

scale         ) 
   

– little variation with mℎ 
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Chiral limit ? 

< Nf=12 predicts an almost 
constant ratio (as should be 
in a conformal system) 

(arXiv:1401.0195) 
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Chiral limit ?
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Finally : the 0++ scalar state

We use the same method to construct and fit the correlators  
as with Nf = 8 joint LSD project: 

– Disconnected correlators:  
• 6 U(1) sources 
• diluted on each timeslice, color, even/odd spatial 
• variance reduced  

– Fit:  
• correlated fits to both parity (staggered) states 
• the vacuum subtraction introduces very large uncertainties  

– it is advantageous to add a (free) constant to the fit 

–this is equivalent to fitting the finite difference of the correlator

〈ψψ 〉

C(t) = c0++cosh M0++ NT /2− t⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟ +cπsc(−1)tcosh Mπsc NT /2− t⎛
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⎞
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⎟ +v

C(t+1)−C(t)



Mixing in the 0++ channel

There is one major difference between Nf= 4 + 8 and 8 : 
– with non-degenerate masses the 0++ splits to light and heavy states  
– there is mixing the heavy and light species 

This is similar to η - η’ mixing in QCD 
   → need to diagonalize the correlator matrix

C(t)=
Dll(t)−Cll(t) 2Dlh(t)
2Dhl(t) 2Dhh(t)−Chh(t)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Normalization: even though we we describe 4 and 8 flavors, on the lattice 
they correspond to 1 and 2 staggered species



Mixing in the 0++ channel

Diagonalizing C(t) could lead to very large statistical errors. 

Fortunately:  Dℓ𝓁ℎ  << diagonal terms for almost all parameter values

C(t)=
Dll(t)−Cll(t) 2Dlh(t)
2Dhl(t) 2Dhh(t)−Chh(t)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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mℎ = 0.05, mℓ𝓁 = 0.005 
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Mixing in the 0++ channel

C(t)=
Dll(t)−Cll(t) 2Dlh(t)
2Dhl(t) 2Dhh(t)−Chh(t)
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Derivative correlators at 
mℎ = 0.05, mℓ𝓁 = 0.015 

but not always!
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Fortunately:  Dℓ𝓁ℎ  << diagonal terms for almost all parameter values



Mixing in the 0++ channel

Diagonalizing C(t) could lead to very large statistical errors. 

Fortunately:  the lightest excitation in Dℓ𝓁ℓ𝓁 (and Dℓ𝓁ℎ , Dℎℎ ) is the 0++  

C(t)=
Dll(t)−Cll(t) 2Dlh(t)
2Dhl(t) 2Dhh(t)−Chh(t)
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Derivative correlators at 
mℎ = 0.06, mℓ𝓁 = 0.010: 
Dℓ𝓁ℓ𝓁 and  Dℓ𝓁ℓ𝓁 - Cℓ𝓁ℓ𝓁
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The 0++ mass

We strive to compare predictions from Dℓ𝓁ℓ𝓁 and Dℓ𝓁ℓ𝓁 - Cℓ𝓁ℓ𝓁  correlators 
– in the  t → ∞ limit they should agree 

mℎ= 0.06 , mℓ𝓁 = 0.010:
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mℎ = 0.06: the 0++  
• is degenerate with pion  

at heavier mℓ𝓁   
• need larger volumes, 

more statistics to resolve 
the small mℓ𝓁 region

mℎ= 0.06



Conclusion & Summary

Lots of interesting possibilities …. 
Lattice studies are needed to investigate strongly coupled systems 

Even those without apparent phenomenological importance can 
teach us : 
– understand universality  

• Wilson vs staggered vs rooted staggered vs domain wall fermions 
– understand general properties of strongly coupled systems 

• walking near the conformal window 
• 0++ near the conformal window 

Models with split fermion masses, like the 4+8 flavor model, 
help us navigate the landscape



Rich Brower, Claudio Rebbi,  
Evan Weinberg and Oliver Witzel

Special thanks to my collaborators 


