The infrared regime of SU(2) with one adjoint Dirac Fermion

Ed Bennett

with

Andreas Athenodorou, Georg Bergner, and Biagio Lucini

Outline

Introduction

Motivation and background Chiral symmetry breaking Aims and predictions

Results

Phase diagram Spectrum Mass anomalous dimension

Conclusions and outlook

Motivation

- $\operatorname{SU}(2)+$ 2 adjoint Dirac flavours known to be in the conformal window

Motivation

- $\operatorname{SU}(2)+$ 2 adjoint Dirac flavours known to be in the conformal window
- Can we pin down the end of the conformal window?

Motivation

- $\operatorname{SU}(2)+$ 2 adjoint Dirac flavours known to be in the conformal window
- Can we pin down the end of the conformal window?
- Look at $\mathop{\rm SU}(2)+$ 1 adjoint Dirac flavour

Model is widely predicted to be confining. Why?

• Large-N volume reduction: 1 adjoint flavour is confining

- Large-N volume reduction: 1 adjoint flavour is confining
 - IR behaviour unclear

- Large-N volume reduction: 1 adjoint flavour is confining
 - IR behaviour unclear
 - N dependence uncertain

- Large-N volume reduction: 1 adjoint flavour is confining
 - IR behaviour unclear
 - N dependence uncertain
- + $\mathcal{N}=2$ SYM is confining; take large scalar mass limit

- Large-N volume reduction: 1 adjoint flavour is confining
 - IR behaviour unclear
 - N dependence uncertain
- + $\mathcal{N}=2$ SYM is confining; take large scalar mass limit
 - But confinement requires SUSY, which requires massless scalars.

- Large-N volume reduction: 1 adjoint flavour is confining
 - IR behaviour unclear
 - N dependence uncertain
- + $\mathcal{N}=2$ SYM is confining; take large scalar mass limit
 - But confinement requires SUSY, which requires massless scalars.
 - Fate of confinement when SUSY is broken is unclear

Model is widely predicted to be confining. Why?

- Large-N volume reduction: 1 adjoint flavour is confining
 - IR behaviour unclear
 - N dependence uncertain
- + $\mathcal{N}=2$ SYM is confining; take large scalar mass limit
 - But confinement requires SUSY, which requires massless scalars.
 - Fate of confinement when SUSY is broken is unclear

Strong assertions of confinement are not justified.

• One flavour-surely no chiral structure?

- One flavour-surely no chiral structure?
- 1 Dirac flavour = 2 Majorana/Weyl d.o.f.

- One flavour-surely no chiral structure?
- 1 Dirac flavour = 2 Majorana/Weyl d.o.f.
- SU(2) symmetry between two chiral flavours

- One flavour-surely no chiral structure?
- 1 Dirac flavour = 2 Majorana/Weyl d.o.f.
- SU(2) symmetry between two chiral flavours
- Breaks to SO(2): 2 Goldstones

- One flavour-surely no chiral structure?
- 1 Dirac flavour = 2 Majorana/Weyl d.o.f.
- SU(2) symmetry between two chiral flavours
- Breaks to SO(2): 2 Goldstones
- Insufficient for EWSB; not a WT candidate

• First-principles confirmation of IR conformality/confinement

- First-principles confirmation of IR conformality/confinement
- Spectroscopy

- First-principles confirmation of IR conformality/confinement
- Spectroscopy
- Anomalous dimension

- First-principles confirmation of IR conformality/confinement
- Spectroscopy
- Anomalous dimension
- Topological charge, susceptibility

- First-principles confirmation of IR conformality/confinement
- Spectroscopy
- Anomalous dimension
- Topological charge, susceptibility
- Static potential

• Confinement: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.

- Confinement: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :

- Confinement: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :
 - $\label{eq:prod} \textbf{-} \ m_{\rm PCAC} < m_{\rm lock} \Rightarrow m_{\rm state} \sim m^{1/(1+\gamma_*)} \rightarrow 0.$

- Confinement: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :
 - $m_{\rm PCAC} < m_{\rm lock} \Rightarrow m_{\rm state} \sim m^{1/(1+\gamma_*)} \rightarrow 0.$
 - Ratios of spectral quantities in this regime constant.

- Confinement: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :
 - $m_{\text{PCAC}} < m_{\text{lock}} \Rightarrow m_{\text{state}} \sim m^{1/(1+\gamma_*)} \to 0.$
 - Ratios of spectral quantities in this regime constant.
- Near-conformal: Intermediary conformal-like region, IR confining region

- Confinement: $m_{\text{PS}} \rightarrow 0$, $m_{\text{V}} \not\rightarrow 0$ as $m_{\text{PCAC}} \rightarrow 0$.
- Conformal: Locking at scale m_{lock} :
 - $m_{\text{PCAC}} < m_{\text{lock}} \Rightarrow m_{\text{state}} \sim m^{1/(1+\gamma_*)} \to 0.$
 - Ratios of spectral quantities in this regime constant.
- Near-conformal: Intermediary conformal-like region, IR confining region
 - Not clearly identifiable, for limited range of masses

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$

Phase diagram

a m

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Full set of simulations at two values of β

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Full set of simulations at two values of β

– $\beta=2.05$ and 2.2:

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Full set of simulations at two values of β
 - $\beta=2.05$ and 2.2:
 - Baryon spectroscopy,
 - Static potential
 - Topological charge

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Full set of simulations at two values of β
 - $\beta=2.05$ and 2.2:
 - Baryon spectroscopy,
 - Static potential
 - Topological charge
 - $\beta = 2.05$ only:

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Full set of simulations at two values of β
 - $\beta=2.05$ and 2.2:
 - Baryon spectroscopy,
 - Static potential
 - Topological charge
 - $\beta = 2.05$ only:
 - Gluonic spectroscopy (glueballs and torelon mass)
 - Mesonic spectoscopy
 - Spin- $\frac{1}{2}$ state mass (~gluion-glue)
 - Anomalous dimension (mode number)

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Full set of simulations at two values of β
 - $\beta=2.05$ and 2.2:
 - Baryon spectroscopy,
 - Static potential
 - Topological charge
 - $\beta = 2.05$ only:
 - Gluonic spectroscopy (glueballs and torelon mass)
 - Mesonic spectoscopy
 - Spin-¹/₂ state mass (~gluion-glue)
 - Anomalous dimension (mode number)
- $V = 2L \times L^3$, L = 8, 12, 16, 24, 32

$\beta = 2.05 \text{ spectrum}$

 $a m_{PCAC}$

$\beta = 2.05$ spectral ratios

 $a m_{\rm PCAC}$

$\beta = 2.05$ spectral ratios

 $a m_{PCAC}$

$\beta = 2.2$ spectrum–provisional

 $a m_{PCAC}$

 $\beta = 2.2$ spectral ratios–provisional

 $a m_{PCAC}$

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Full set of simulations at two values of β
 - $\beta=2.05$ and 2.2:
 - Baryon spectroscopy,
 - Static potential
 - Topological charge
 - $\beta = 2.05$ only:
 - Gluonic spectroscopy (glueballs and torelon mass)
 - Mesonic spectoscopy
 - Spin- $\frac{1}{2}$ state mass (~gluion-glue)
 - Anomalous dimension (mode number)
- $V = 2L \times L^3$, L = 8, 12, 16, 24, 32
- Spectral ratios roughly constant-consistent with conformality

Center symmetry

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Full set of simulations at two values of β
 - $\beta=2.05$ and 2.2:
 - Baryon spectroscopy,
 - Static potential
 - Topological charge
 - $\beta = 2.05$ only:
 - Gluonic spectroscopy (glueballs and torelon mass)
 - Mesonic spectoscopy
 - ► Spin-¹/₂ state mass (~gluion-glue)
 - Anomalous dimension (mode number)
- $V = 2L \times L^3$, L = 8, 12, 16, 24, 32
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma \equiv \text{torelon } \sigma$

Sample topological charge histories

- Phase diagram: plaquette on 4^4 lattice; $1.4 \leq \beta \leq 2.8, -1.7 \leq am \leq -0.1$
- Full set of simulations at two values of β
 - $\beta=2.05$ and 2.2:
 - Baryon spectroscopy,
 - Static potential
 - Topological charge
 - $\beta = 2.05$ only:
 - Gluonic spectroscopy (glueballs and torelon mass)
 - Mesonic spectoscopy
 - Spin- $\frac{1}{2}$ state mass (~gluion-glue)
 - Anomalous dimension (mode number)
- $V = 2L \times L^3$, L = 8, 12, 16, 24, 32
- Spectral ratios roughly constant-consistent with conformality
- Wilson loop $\sigma \equiv \text{torelon } \sigma$
- Center unbroken
- Good sampling of topological sectors

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\sf PCAC})^{rac{1}{1+\gamma_*}}$

γ_* inspection fit

 $\gamma_* = 0.8$

γ_* inspection fit

 $\gamma_* = 0.9$

γ_* inspection fit

 $\gamma_* = 1.0$

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\rm PCAC})^{rac{1}{1+\gamma_*}}$
 - $\Rightarrow 0.9 \lesssim \gamma_* \lesssim 1.1$

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\rm PCAC})^{\frac{1}{1+\gamma_*}}$ - $\Rightarrow 0.9 \lesssim \gamma_* \lesssim 1.1$
- Fitting the Dirac mode number per unit volume $\overline{\nu}(\Omega)$

$$a^{-4}\overline{\nu}(\Omega) \approx a^{-4}\nu_0(m) + A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$$

from Patella [arxiv:1204.4432]

Mode number results

Mode number results

γ_* mode number fit

- Mass anomalous dimension $\gamma_* \sim 1$ important for WTC
- Observing large γ_* here indicates viability for other WTC candidates
- By inspection, fitting $Lam_{\gamma_5} \sim L(am_{\rm PCAC})^{\frac{1}{1+\gamma_*}}$ - $\Rightarrow 0.9 \lesssim \gamma_* \lesssim 1.1$
- Fitting the Dirac mode number per unit volume $\overline{\nu}(\Omega)$

$$a^{-4}\overline{\nu}(\Omega) \approx a^{-4}\nu_0(m) + A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$$

from Patella [arxiv:1204.4432]

 $- \Rightarrow 0.9 \lesssim \gamma_* \lesssim 0.95$

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios
- Light scalar present in spectrum

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1

Results tentatively suggest

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1

Results tentatively suggest

+ SU(2) + 1 adjoint Dirac flavour is not QCD-like

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1
- Results tentatively suggest
 - + SU(2) + 1 adjoint Dirac flavour is not QCD-like
 - Potentially walking or conformal

- First lattice study of $\mathop{\rm SU}(2)+1$ adjoint Dirac flavour
- Constant mass ratios
- Light scalar present in spectrum
- Mass anomalous dimension is large, ~ 1

Results tentatively suggest

- + SU(2) + 1 adjoint Dirac flavour is not QCD-like
- Potentially walking or conformal
- Could form part of a slightly larger technicolor sector (e.g. ${\rm SU}(2)+1$ adjoint + 1 fundamental Dirac flavour)

- Complete data for $\beta=2.2$

- Complete data for $\beta=2.2$
- Larger volumes (more data at $V = 64 \times 32^3, 96 \times 48^3$)

- Complete data for $\beta=2.2$
- Larger volumes (more data at $V = 64 \times 32^3, 96 \times 48^3$)
- Lower m (towards chiral limit, look for signs of χ SB)

- Complete data for $\beta=2.2$
- Larger volumes (more data at $V = 64 \times 32^3, 96 \times 48^3$)
- Lower m (towards chiral limit, look for signs of χ SB)
- Look to running of coupling via Wilson flow