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Analytic prediction

Model is widely predicted to be confining. Why?

• Large-N volume reduction: 1 adjoint flavour is confining

– IR behaviour unclear

– N dependence uncertain

• N = 2 SYM is confining; take large scalar mass limit

– But confinement requires SUSY, which requires massless scalars.

– Fate of confinement when SUSY is broken is unclear

Strong assertions of confinement are not justified.
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• One flavour—surely no chiral structure?

• 1 Dirac flavour = 2 Majorana/Weyl d.o.f.

• SU(2) symmetry between two chiral flavours

• Breaks to SO(2): 2 Goldstones

• Insufficient for EWSB; not a WT candidate
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Predictions

• Confinement: mPS → 0, mV ̸→ 0 as mPCAC → 0.

• Conformal: Locking at scale mlock:

– mPCAC < mlock ⇒ mstate ∼ m1/(1+γ∗) → 0.
– Ratios of spectral quantities in this regime constant.

• Near-conformal: Intermediary conformal-like region, IR confining
region

– Not clearly identifiable, for limited range of masses
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Lattice results
• Phase diagram: plaquette on 44 lattice; 1.4 ≤ β ≤ 2.8,
−1.7 ≤ am ≤ −0.1

• Full set of simulations at two values of β

– β = 2.05 and 2.2:

▶ Baryon spectroscopy,
▶ Static potential
▶ Topological charge

– β = 2.05 only:

▶ Gluonic spectroscopy (glueballs and torelon mass)
▶ Mesonic spectoscopy
▶ Spin- 1

2
state mass (∼gluion-glue)

▶ Anomalous dimension (mode number)

• V = 2L × L3, L = 8, 12, 16, 24, 32

• Spectral ratios roughly constant—consistent with conformality

• Wilson loop σ ≡ torelon σ

• Center unbroken

• Good sampling of topological sectors
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Mass anomalous dimension

• Mass anomalous dimension γ∗ ∼ 1 important for WTC

• Observing large γ∗ here indicates viability for other WTC

candidates

• By inspection, fitting Lamγ5 ∼ L(amPCAC)
1

1+γ∗

– ⇒ 0.9 ≲ γ∗ ≲ 1.1

• Fitting the Dirac mode number per unit volume ν(Ω)

a−4ν(Ω) ≈ a−4ν0(m) + A
[
(aΩ)2 − (am)2

] 2
1+γ∗

from Patella [arxiv:1204.4432]

– ⇒ 0.9 ≲ γ∗ ≲ 0.95
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• First lattice study of SU(2) + 1 adjoint Dirac flavour

• Constant mass ratios

• Light scalar present in spectrum

• Mass anomalous dimension is large, ∼ 1

Results tentatively suggest

• SU(2) + 1 adjoint Dirac flavour is not QCD-like

• Potentially walking or conformal

• Could form part of a slightly larger technicolor sector (e.g.

SU(2) + 1 adjoint + 1 fundamental Dirac flavour)
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SU(2) + 1 adjoint + 1 fundamental Dirac flavour)



Ongoing work

• Complete data for β = 2.2

• Larger volumes (more data at V = 64× 323, 96× 483)

• Lower m (towards chiral limit, look for signs of χSB)

• Look to running of coupling via Wilson flow



Ongoing work

• Complete data for β = 2.2

• Larger volumes (more data at V = 64× 323, 96× 483)

• Lower m (towards chiral limit, look for signs of χSB)

• Look to running of coupling via Wilson flow



Ongoing work

• Complete data for β = 2.2

• Larger volumes (more data at V = 64× 323, 96× 483)

• Lower m (towards chiral limit, look for signs of χSB)

• Look to running of coupling via Wilson flow



Ongoing work

• Complete data for β = 2.2

• Larger volumes (more data at V = 64× 323, 96× 483)

• Lower m (towards chiral limit, look for signs of χSB)

• Look to running of coupling via Wilson flow


	Introduction
	Motivation and background
	Chiral symmetry breaking
	Aims and predictions

	Results
	Phase diagram
	Spectrum
	Mass anomalous dimension

	Conclusions and outlook

