

University of Southern Denmark

Composite Conformal Dynamics

Francesco Sannino

CP³ - Origins

Particle Physics & Origin of Mass

Nagoya March 2012

Riddles

Theoretical blah blah blah...

Carlo Rubbia

© Francesco Sannino

Thinking Slow

Gauge bosonsSpin 1

Fermions
Spin 1/2

• Graviton Spin 2

• Dark matter sector ? • Inflationary sector ?

Lorentz Group basics

- Lorentz group is SL(2, C)
- Spin 1/2 is the fund. representation
- All other spins are derived
- No need for fund. scalars

What about Supersymmetry?

Supersymmetry is an emergent theory

See for example Antipin, Mojaza, Pica and Sannino arXiv:1105.1510

SM - Geometry

Fermi Scale

 $v = 1/\sqrt{\sqrt{2}G_F} \approx 246 \text{ GeV}$

 $M_H^2 = 2\lambda v^2$

Natural SM mass spectrum

$$v = 1/\sqrt{\sqrt{2}G_F} \approx 246 \text{ GeV}$$

$$M_W = g \frac{v}{2} \approx g \ 123 \ \text{GeV}$$

 $M_H = \lambda \ \sqrt{2} \ v \approx \lambda \ 345 \ \text{GeV}$
 $m_f = \lambda_f \frac{v}{\sqrt{2}} \approx \lambda_f \ 174 \ \text{GeV}$

Top has the right energy scale!

Light quarks and leptons are odd!

O' Higgs, where art thou!

Light Higgs Anatomy

 $pp \to \gamma \gamma \ 4.9 \text{fb}^{-1} \ m_H = 126.5 \pm 0.7 \text{ GeV } R = 2^{+0.9}_{-0.7}$

 $pp \to WW^* \to \ell^+ \nu \ell'^- \bar{\nu}' 4.7 \text{fb}^{-1}$ no excess $R = 0.16^{+0.6}_{-0.6} @126 \text{GeV}$ $pp \to ZZ^* \to \ell^+ \ell^- \ell'^- \ell'^+ 4.8 \text{fb}^{-1}$ $m_{\text{H}} = 126 \pm 2 \text{ GeV}$ $R = 1.2^{+1.2}_{-0.8}$

Light Higgs Anatomy cont.

 $pp \to \gamma \gamma \ 4.8 \text{fb}^{-1} \ m_H = 125 \ \text{GeV} \ R = 1.65^{+0.67}_{-0.6}$

 $pp \to WW^* \to \ell^+ \nu \ell'^- \bar{\nu}' \quad 4.6 \text{fb}^{-1} \text{ no excess } R = 0.4^{+0.6}_{-0.55} @126 \text{GeV}$

 $pp \to ZZ^* \to \ell^+ \ell^- \ell'^- \ell'^+ 4.7 \text{fb}^{-1} \text{m}_{\text{H}} = 125 \pm 2 \text{ GeV} R = 0.58^{+1.0}_{-0.58}$

 $H \to b\bar{b} \ 10/9.7 \text{ fb}^{-1} \ m_H = 115 - 135 \text{ GeV} \ R = 1.6^{+0.6}_{-0.6} @120 \text{ GeV}$

What if Higgs-like state is there?

"Higgs" @ 125 GeV vs unitarity scale:

$$\frac{M_H}{1.2 \text{ TeV}} \simeq 0.1$$

• Mass of the "Higgs" versus EW ChPT convergence radius scale:

• Compare with mass of the pion versus ChPT convergence radius:

Conformal Goldstone

• Spontaneous breaking of scale (conformal) symmetry

$$\partial_{\mu}D^{\mu} = \Theta^{\mu}_{\mu} = \sum_{i} \beta(g_{i}) \frac{\partial \mathcal{L}}{\partial g_{i}}$$

Oilaton mass and decay constant

$$\langle D|\partial_{\mu}D^{\mu}|0\rangle = -f_D m_D^2$$

In near-conformal technicolor like models

$$f_D = v \qquad \qquad m_D = M_H$$

LHC Higgs "potential" discovery

$$f_D = v \quad m_D = M_H$$

• Would imply

$$m_D \ll 4\pi f_D , \qquad m_D < f_D$$

• For comparison in QCD

$$M_{\pi} \ll 4\pi F_{\pi}$$
, $M_{\pi} \simeq F_{\pi}$

• What kind of models can do this?

Near Conformal Models

• Conformal technicolor models (Light Composite Higgs)

$$\frac{M_H}{v} \simeq (N_f^c - N_f)^{\nu}$$

Dietrich, Sannino, Tuominen hep-ph/0510217 Dietrich, Sannino hep-ph/0611341

- u critical exponent
- N_f^c critical number of techniflavors for conformality

- Other examples?
 - Calculable perturbative examples

Grinstein, Uttayarat 1105.2370 Antipin, Mojaza, Sannino 1107.2932

Technicolor - Geometry

Dynamical EW Breaking

$$L(H) \to -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + i \,\bar{Q} \gamma^\mu D_\mu Q + \cdots$$

Dots are partially fixed by Anomalies as well as other principles

$\cdots \rightarrow L(\text{New SM Fermions})$

- Minimal Technicolor passing precision tests
- ETC for Fermion masses generation
- Non QCD dynamics/Walking
- Large mass anomalous dimensions ?
- Dark matter candidates

© Francesco Sannino

No seriously, Walking?

Dietrich Sannino 06 Fukano & Sannino 10

How can one tune an integer number?

Anomalous dimensions may be small

© Francesco Sannino

ideal Walking = iWalk

Fukano & Sannino 10

$$L(H) \to -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + i \bar{Q} \gamma^\mu D_\mu Q + \cdots$$

Appelquist, Soldate, Takeuchi and Wijewardhana, 88 Miranky and Yamawaki 88 Kondo, Mino, Yamawaki 89 Takeuchi 96 Yamawaki, Kurachi and Shrock 08

Gauged Nambu Jona-Lasinio

Fukano & Sannino 10

- As if the number of flavors is continuous
- Anomalous dimensions increase

- Phenomenologically viable
- Being tested!

Discovering Working Technicolor

Much unexplored !

Andersen, Hapola, Sannino 11

Belyaev, Foad, Frandsen, Jarvinen, Pukhov, Sannino 08

Need to go beyond QCD

Knobs

Gauge Group, i.e. SU, SO, SP

Matter Representation

of Flavors per Representation

A novel phase @ large Nf

Interesting structure at large Nf

Pica & Sannino 10

First coefficients at large Nf are known

Ciuchini, Derkachov, Gracey, Manashov '99

A novel phase @ large Nf

Perturbation theory

Perturbative region

N

Four loops

$$a = \frac{\alpha}{4\pi} = \frac{g^2}{16\pi^2}$$

Van Ritbergen, Vermaseren, Larin 97 Vermaseren, Larin, Van Ritbergen, 97

$$\frac{da}{d\ln\mu^2} = \beta(a) = -\beta_0 a^2 - \beta_1 a^3 - \beta_2 a^4 - \beta_3 a^5 + O(a^6) ,$$

$$-\frac{d\ln m}{d\ln\mu^2} = \frac{\gamma(a)}{2} = \gamma_0 a + \gamma_1 a^2 + \gamma_2 a^3 + \gamma_3 a^4 + O(a^5) ,$$

Generalized 4th order Casimirs for SU(N), SO(N) and SP(N)

Mojaza, Pica, Sannino 10

Zero's - Dynamics

4 - loop Zerology

4 - Zerology

FP V is physical

$$\tilde{\alpha} = \sum_{n=1}^{\infty} h_n \alpha^n , \text{ with } h_1 = 1 ,$$

$$\tilde{m} = m z_m (\alpha) = m \sum_{n=0}^{\infty} \ell_n \alpha^n , \text{ with } \ell_0 = 1$$

$$\beta(\alpha) = \frac{\partial \alpha}{\partial \tilde{\alpha}} \tilde{\beta}(\tilde{\alpha}) ,$$

$$\gamma(\alpha) = \tilde{\gamma}(\tilde{\alpha}) - \left(\tilde{\beta}(\tilde{\alpha}) \frac{\partial \ln z_m}{\partial \tilde{\alpha}} \right)$$

$$\gamma_0 , \beta_0 \text{ and } \beta_1 \text{ are universal}$$

V – Fundamental

V – Minimal Walking

Universal Picture

$\int_{\alpha} SU(N)$ Phase Diagram

N

A Perturbative Dilaton Model

O. Antipin, M. Mojaza, F. Sannino - hep-ph/1107.2932

QCD-likeAdjoint fermion $\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F^2$ $+\sum_{j}^{N_f} i \overline{\psi}_j \not{D} \psi_j$ $+i\lambda^a \sigma^\mu D_\mu^{ab} \overline{\lambda}^b$ $+y_H \overline{\psi}_i H_{ij} \psi_j$ $+\operatorname{Tr} |\partial_\mu H|^2 - u_1 (\operatorname{Tr} H^{\dagger} H)^2 - u_2 \operatorname{Tr} (H^{\dagger} H)^2$ Higgs-sector~ Mesons

Spectrum extremely close to the wanted one!

 $H \sim \psi \bar{\psi}$

Infrared physics

 $\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + y_H \bar{\psi} H \psi - u_1 \left(\mathrm{Tr} H^{\dagger} H \right)^2 - u_2 \mathrm{Tr} \left(H^{\dagger} H \right)^2$

Perturbative IR stable fixed point (a la Banks-Zaks)

$$N_f / N_c \equiv x = x_{\rm AF} (1 - \epsilon) < x_{\rm AF}$$
$$\{g^{*2}, y_H^{*2}, u_1^{*}, u_2^{*}\} \sim \epsilon$$

IR conformal or?

Spontaneous symmetry breaking

$$\mathcal{L} = \mathcal{L}_K(F_{\mu\nu}, \lambda, \psi, H; g) + \sqrt{\frac{a_H}{N_f}} \bar{\psi} H \psi - \frac{z_1}{N_f^2} \left(\text{Tr} H^{\dagger} H \right)^2 - \frac{z_2}{N_f} \text{Tr} \left(H^{\dagger} H \right)^2$$

Coleman-Weinberg mechanism

H.Yamagishi, 1980

$$\frac{dV_{\text{eff}}^{\text{RG}}}{d\mu} = \left(\mu \frac{\partial}{\partial \mu} + \sum_{i} \beta(g_i) \frac{\partial}{\partial g_i} + \gamma_{\phi} \phi_c \frac{\partial}{\partial \phi_c}\right) V_{\text{eff}}^{\text{RG}} = 0$$

 $H_{ij}^c = \phi_c \overline{\delta_{ij}}$

The Light Dilaton

$$V_{\text{eff}}^{\text{RG}'}(\phi_c) = 0$$
$$V_{\text{eff}}^{\text{RG}''}(\phi_c) = 0 \Rightarrow$$
$$m_{\phi}^{(1)\,2} \propto 4z_2^2 - xa_H = 0$$

 $V_{\rm eff}^{\rm RG}(\phi_c) = 0$

 ϕ arbitrarily light by tuning:

$$4z_2^2 - xa_H = \delta \text{ small}$$

Is it the Dilaton?

 $\langle D|\partial_{\mu}D^{\mu}|0\rangle = -f_D m_D^2$

 $\partial_{\mu}D^{\mu} = \Theta^{\mu}_{\mu} = \sum_{i} \beta(g_{i}) \frac{\partial \mathcal{L}}{\partial g_{i}}$

 $\Theta^{\mu}_{\mu} \propto (\beta_1 + \beta_2)\phi + \cdots$ since $\beta(g), \beta(y_H) \approx 0$ at μ_0

 $\delta(\mu_0) \lesssim \epsilon$

The Complete Picture

Full Spectrum of Broken Phase

Mass eigenstates of quarks and mesons

$$H_{ij} \approx (\phi_c + \phi + i\pi^0)\delta_{ij} + h^a T^a_{ij} + i\pi^a T^a_{ij}, \qquad a = 1, \dots N_{\rm f}^2 - 1$$

Minimal Working TC

• Minimal WT $SU(2)_{TC} \square \begin{matrix} \mathbf{U} & \mathbf{N} \\ \mathbf{D} & \mathbf{E} \end{matrix}$

Sannino & Tuominen 04 Dietrich, Sannino, Tuominen 05 Frandsen, Masina, Sannino 09

• Next to MWT $SU(3)_{TC} \square \begin{bmatrix} \mathbf{U} \\ \mathbf{D} \end{bmatrix}$

Sannino, Tuominen 04 Dietrich, Sannino, Tuominen 05

• Orthogonal $SO(4)_{TC} \square \begin{bmatrix} \mathbf{U} \\ \mathbf{D} \end{bmatrix}$

Frandsen, Sannino 09

• Ultra MT $SU(2)_{TC} \square \begin{bmatrix} \mathbf{U} \\ \mathbf{D} \end{bmatrix}$

Ryttov & Sannino 08

Vanilla TC

Minimal Walking Technicolor

U and D: Adj of SU(2)

 $S = S_{(W)TC} + S_{NS}$

Offset the first term

New Leptons & Precision Data

Exotic Leptonic hypercharge Y=-3/2

Standard Model Leptonic hypercharge

• DEWSB can naturally occur at the LHC

- Phase Diagram of strongly interacting theories
- Minimal models of technicolor
- Composite Dark Matter and Inflation (... another time)

MWT Features

- The most economical WT theory
- Compatible with precision measurements
- Possible DM candidates
- Light Composite Higgs
- Under investigation on the Lattice

MWT Effective Lagrangian

 $\mathcal{L}(\text{Composites}) + \mathcal{L}(\text{Mixing with SM}) + \mathcal{L}(\text{New Leptons}) + \mathcal{L}(\text{SM} - \text{Higgs})$

Composite Higgs

Composite Axial - Vector States

Heavy Electron

2 Heavy Majoranas

Frandsen, Masina, Sannino 09

Hapola, Masina, Sannino 11

Foadi, Frandsen, Ryttov & F.S. 07

Constraining MWT

Belyaev, Foad, Frandsen, Jarvinen, Pukhov, Sannino 08 M_A (TeV)

- DEWSB can naturally occur at the LHC
- Phase Diagram of strongly interacting theories
- Minimal models of technicolor
- Composite Dark Matter
- Composite inflation.

© Francesco Sannino

Dark Matter

Francesco Sannino

DM asymmetry

A particle similar to the nucleon

- Electrically neutral
- At most EW-type cross sections
- Great if connected to EW (Observable at LHC)

Del Nobile, Kouvaris, Sannino II

Interfering Composite ADM

CoGeNT and DAMA

Del Nobile, Kouvaris, Sannino II

What makes DM?

(Un)TC Interact. Massive Particle (u)TIMP

TIMPs	Masses	Annih.	Asymm	Symm	Models
TC-Baryon	(I - 3)TeV	_	Х	-	Complex-Rep Traditional TC
TC-PGB	5 GeV5 TeV	Х	Х	Х	(Pseudo)-Real (UMT, MWT, OT)
Unbaryon	(- 0) GeV	X	Х	X	Techni-unparticle

Nussinov, 86 Barr - Chivukula - Farhi 90 Sarkar 96 Gudnason - Kouvaris - F.S. 06 Foadi, Frandsen, Sannino 09 Nardi, Sannino., Strumia, 08. Sannino, 10

TC-Baryon

TC-PGB

Gudnason - Kouvaris - Sannino. 06 Ryttov - Sannino 08 Frandsen & Sannino. 09 Unbaryon

D.B. Kaplan 92 Sannino, Zwicky 09 Frandsen, Sarkar, 10

Related

Kouvaris 06,07,10 Kainulainen, Virkajarvi, Tuominen 06,09,10

Mixed TIMP DM

Belyaev, Frandsen, Sannino, Sarkar 10

DM and GUTs

Gudnason, Ryttov, FS 06

Nardi, FS, Strumia, 08.

Francesco Sannino

New life in Technicolor

Not the Coldplay album

The model

$$\mathcal{L} = -\frac{1}{2} \mathrm{Tr} F^2$$

 $+\sum_{j}^{N_f} i\overline{\psi}_j D \!\!\!/ \psi_j$

 $+y_H \bar{\psi}_i H_{ij} \psi_j + \text{h.c.}$