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IR fixed point in two-loop β function of QCD like theories:

W. Caswell, PRL 33, 244 (1974);
D. Jones, Nucl. Phys. B75, 531 (1974);
A. Belavin and A. Migdal, Pisma Zh. Eksp. Teor. Fiz. [JETP
Letters] 19, 317 (1974).

First discussion of consequences of existence of this IR fixed point:

T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).



The two-loop solution:

dα

d lnµ
= −bα2 − cα3.

If b > 0 (Nf < N∗∗f ≡ 11Nc/2) and c < 0, the β function has a
zero corresponding to a infrared-stable fixed point at

α = α∗ = −b

c
.

For Nc = 3, the condition b > 0 and c < 0 is valid for
Nf > N∗f = 8 and Nf < N∗∗f = 16.5.

α∗ ' 0.04, 0.14, 0.28, 0.47 for Nf = 16, 15, 14, and 13,
respectively (Nc = 3).



There exist two solutions!



Nonperturbative effects and the phase transition with
respect to Nf

T. Appelquist, J. Terning, and L. C. R. Wijweardhana, PRL 77,
1214 (1996);
V. M. and K. Yamawaki, PRD 55, 5051 (1997)

The IR fixed point α∗(Nf ) formally exists for all Nf > N∗f when
b(Nf ) > 0 and c(Nf ) < 0. However, when

α∗(Nf ) > αcr '
2Nc

N2
c − 1

π

3
,

quarks get a dynamical mass and decouple:
the IR fixed point is a fake in this case.

N∗f < Nf < Ncr
f : α∗(Nf ) > αcr .

Ncr
f < Nf < N∗∗f =

11Nc

2
: α∗(Nf ) < αcr .

For Nc = 3, N∗f = 8 and Ncr
f = 12.



Phase transition in QCD at Nf = Ncr
f

m2
dyn ∼ Λ2

cr exp

(
− C√

α∗(Nf )
αcr

− 1

)
:

αcr '
2Nc

N2
c − 1

π

3
, Λcr : α(µ)

∣∣
µ=Λcr

= αcr ,

Ncr
f ∼ 4Nc > N∗f .



The Phase Diagram in SU(Nc) gauge model

V. M. and K. Yamawaki (1997)
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The phase diagram in an SU(Nc) gauge model. The coupling constant

g (0) =
√

4πα(0) and S and A denote symmetric and asymmetric phases,
respectively.

A. Deuzeman, M. Lombardo and E. Pallante, PRD 82, 074503 (2010)



Dynamics in the conformal window in QCD-like theories

The two loop β function leads to the following equation for the
running coupling:

b log

(
q

µ

)
=

1

α(q)
− 1

α(µ)
− 1

α∗
log

(
α(q)(α(µ)− α∗)
α(µ)(α(q)− α∗)

)
.

The case α(µ) < α∗ (T. Appelquist, J. Terning and
R. Wijewardhana (1996)):

α(q) ' 1

b log(q/Λ)
, q � Λ (α(Λ) ' 0.8α∗)

α(q) ' α∗

1 + e−1(q/Λ)bα∗ , q � Λ

Asymptotically free theory with no chiral symmetry breaking.



The case with α(µ) > α∗ (V. M. and K. Yamawaki (1997))

1

α(q)
= b log

q

Λ̃
+

1

α∗
log

(
α(q)

α(q)− α∗

)
,

where Λ̃ is a Landau pole at which α(q)
∣∣
q=Λ̃

=∞



Does a meaningful continuum limit exist in this case?
The answer is “yes”.

Introduce UV cutoff M with a finite bare coupling
α(0) ≡ α(q)

∣∣
q=M

> α∗.

Then, M < Λ̃ with α(Λ̃) =∞. The Landau pole is unreachable in
the theory with cutoff M and α(0) <∞.
As M →∞ with a fixed α(0) = α(q)

∣∣
q=M

,

α(q) ' α∗

1− e−1(q/Λ̃)bα∗ → α∗

Nontrivial conformal field theory



Deformation of theory: Introducing bare fermion mass

The absence of a mass for fermions and gluons is a key point
for not creating bound states in S1 and S2 phases.

The situation changes dramatically if a bare fermion mass is
introduced: even weak gauge, Coulomb-like, interactions easily
produce bound states composed of massive constituents, as it
happens, for example, in QED (positronium like bound states)



The main consequences of the presence of the bare mass:

a) Taking (α(0) − α∗)� α∗ (walking regime), the pole fermion
mass m is expressed through m(0) as

m ' M
(m(0)

M

)1/(1+γm)

b) The mass of n-body bound state composed of fermions is

M(n) ∼ nm ∼ nM
(
m(0)

M

)1/(1+γm)
.

c) At momenta q < m, fermions and their bound states decouple.
There is a pure Yang-Mills theory with confinement. Its spectrum
contains light glueballs, Mgl � m, if α∗ is not too large:

Mgl ∼ ΛYM ∼ m exp
(
− 1

b̄α∗

)
, b̄ =

11

6π
Nc .

For Nc = 3, exp(−1/b̄α∗) is 6× 10−7, 2× 10−2, 10−1, and
3× 10−1 for Nf = 16, 15, 14, and 13, respectively



The signature of the conformal window for lattice
computer simulations

1 The universal scaling: M(n) ∼
(
m(0)

)1/(1+γm)

2 Light glueballs: Mgl ∼
(
m(0)

)1/(1+γm)
and Mgl � M(n)

Z. Fodor, K. Holland, J. Kuti, D. Noǵrádi, C. Schroeder,
Phys. Lett. B 681, 353 (2009)

T. DeGrand and A. Hasenfratz , PRD 80, 034506 (2009)

L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago,
PRD 80, 074507 (2009)

A. Deuzeman, M. Lombardo and E. Pallante, PRD 82, 074503 (2010)

T. Appelquist, G. Fleming, M. Lin, E. Neil and D. Schaich,
PRD 84, 054501 (2011)

Kenji Ogawa et al., arXiv:1111.1575 [hep-lat]

Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K. Nagai, H. Ohki, A. Shibata,

K. Yamawaki, T. Yamazaki, arXiv:1201.4157 [hep-lat]; arXiv:1202.4916

[hep-lat].



The structure of the β-function in QCD in the MS scheme

F. Chishtie, V. Elias, V. Miransky, and T. Steele,
Prog. Theor. Phys. 104, 603 (2000)

The questions:

1 What is the Ncr
f in the MS scheme?

2 What is the form of the β-function for Nf > Ncr
f in the MS

scheme?

3 What is the form of the β-function for Nf < Ncr
f in the MS

scheme?



Padé-improvement for β-function

J. Ellis, I. Jack, D. Jones, M. Karliner, M. Samuel,
Phys. Rev. D 57, 2665 (1998)

A k-loop truncation:

β(k)(x) = −β0x
2(1 + R1x + · · ·+ Rk−1x

k−1),

x =
α

π
, β0 =

11− 2
3Nf

4
.

Then, the [N/M] Padé-approximant (N + M = k − 1) is

β[N/M] = −β0x
2

(
1 + a1x + · · ·+ aNx

N

1 + b1x + · · ·+ bMxM

)
The N + M coefficients a1, . . . , aN , b1, . . . , bM are determined by
the requirement that the first k terms in the Taylor expansion of
β[N/M] replicate β(k)(x).



SU(Nc) SUSY gluodynamics

I. Kogan and M. Shifman, PRL 75, 2085 (1995)

β(x) = −3Ncx
2

4

[
1

1− Ncx/2

]
; x ≡ αs

π

There is an UV stable fixed point at x =∞ in strong coupling
phase. The denominator zero xd = 2

Nc
corresponds to an infrared

attractor.



Gluodynamics

Four-loop MS β-function:

β
(4)(x) = −

11

4
x2
[

1 + 2.31818x + 8.11648x2 + 41.5383x3
]
,

β
[2|1](x) = −

11

4
x2
[

1 − 2.7996x − 3.7475x2

1 − 5.1178x

]
,

β
[1|2](x) = −

11

4
x2
[

1 − 5.9672x

1 − 8.2854x + 11.091x2

]
,

The denominator zero xd (infrared attractor) precedes the
numerator zero (xn):
xd = 0.195 < xn = 0.264 and xd = 0.151 < xn = 0.168 in [2|1]
and [1|2] approximant, respectively. If taken seriously, xn zero
corresponds to UV fixed point.

F. Sannino and J. Schechter, Phys. Rev. D 82, 096008 (2010)
Rytov-Sannino β function for Gluodynamics



QCD with fermions

Below an approximant-dependent flavor threshold
(6 6 Nthr

f 6 8), the approximants [2|1] and [1|2] always
exhibit a positive pole prior to the occurence of their first
positive zero, precluding any identification of this zero as a IR
fixed point.

Above the threshold Nthr
f , those approximants exhibit a IR

fixed point. Its value becomes less than xcr = 1
4 at Nf = 11.

This value decreases with increasing Nf and is close to the
2-loop value for Nf > 12.



β[2|1] for Nf = 3 β[2|1] for Nf = 12

UV fixed point in strong coupling gauge theories
(recent discussions):

D. Kaplan, J. Lee, D. Son and M. Stephanov,
PRD 80, 125005 (2009)



Conclusion

Dynamics in the conformal window is a new territory

and one can expect interesting surprises there.


