Phase structure of the Higgs-Yukawa model in the strong-coupling regime

arXiv:1111.4544

C.-J. David Lin

National Chiao-Tung University

KMI Nagoya 20/03/2012

The collaboration

- Germany
 - NIC, DESY Zeuthen and Humboldt University Berlin John Bulava (CERN), Philipp Gerhold (\rightarrow d-Fine), Karl Jansen, Attila Nagy.
- Japan
 - Kobayashi-Maskawa Institute, Nagoya University Kei-Ichi Nagai.
- Taiwan
 - National Chiao-Tung University, Hsinchu
 C.-J.David Lin, Kenji Ogawa.
 - National Taiwan University, Taipei George W.-S. Hou, Bastian Knippschild (Mainz \rightarrow), Brian Smigielski (\rightarrow U.S.).

Motivation

Heavy fermions beyond SM3?

- Not much is known for strong (*non-perturbative*) Yukawa theory.
- Heavy extra generation of fermions may
 - enhance CP violation.

G.W.S. Hou, 2008

– offer an alternative way to break EW symmetry dynamically and induces bound states to unitarise WW scattering.

B. Holdom, 2007

- UV stablise the SM.

P.Q. Hung, C. Xiong, 2009

Outline

- Goals, general issues and recent developments.
- Simultation setup.
- The phase structure.
- Exploratory numerical studies.
 - VEV.
 - Susceptibility and critical exponents.
- Future plan.

Targets for the bare strong-Yukawa regime

- The nature of the phase transitions.
 - \Rightarrow Connection to the continuum world (next slide).
- Possible bound states.
 - \Rightarrow Computation of the spectrum.
- Possible new mechanism for dynamical symmetry breaking.
 - \Rightarrow Heavy scalar with fermion condensate?

General issues and strategy

• The triviality (Landau-pole) problem.

 \Rightarrow Non-trivial to take the lattice spacing to zero.

• Look for 2nd-order phase transitions via "scanning simulations".

 $\Rightarrow \xi \rightarrow \infty.$

- Problem: Finite-volume effects.
 - \Rightarrow Phase transitions are washed out.
 - \Rightarrow Severe near the critical points since $L = \hat{L}a$.
- Chiral fermions required. Challenging to simulate chiral gauge theories.

New ingredients in current work

• Previous studies (*circa* 1990):

Lee, Shigemitsu, Shrock; Bock et al.,...

- Use fermions without exact chiral symmetry.

 \Rightarrow Ambiguity in defining chiral fermions.

- Small ($\sim 8^3 \times 16$) volumes and no $L \rightarrow \infty$ limit taken.
- Current new-generation simulations:
 - Use the overlap fermion (exact chiral symmetry).
 - Several large volumes and $L \rightarrow \infty$ limit taken.
 - \Rightarrow Test finite-size scaling behaviour.
 - \Rightarrow Determine the order of the phase transition.

Reminder: Notaion for scalar field theory

• The discretised scalar action (a = 1)

$$S_{\varphi} = -\sum_{x,\mu} \varphi_x^{\alpha} \varphi_{x+\hat{\mu}}^{\alpha} + \sum_x \left[\frac{1}{2} (2d+m_0^2) \varphi_x^{\alpha} \varphi_x^{\alpha} + \frac{1}{4} \lambda_0 (\varphi_x^{\alpha} \varphi_x^{\alpha})^2 \right].$$

•
$$\varphi = \sqrt{2\kappa}\phi, \quad m_0^2 = \frac{1-2\hat{\lambda}}{\kappa}, \quad \lambda_0 = \frac{\hat{\lambda}}{\kappa^2}$$

 $S_\phi = -2\kappa \sum_{x,\mu} \phi_x^\alpha \phi_{x+\hat{\mu}}^\alpha + \sum_x \left[\phi_x^\alpha \phi_x^\alpha + \hat{\lambda}(\phi_x^\alpha \phi_x^\alpha - 1)^2\right],$
 $Z_\phi = \int \prod_{x,\alpha} d\phi_x^\alpha \exp(-S_\phi) = \int \prod_{x,\alpha} d\mu(\phi_x^\alpha) \exp\left(2\kappa \sum_{x,\mu} \phi_x^\alpha \phi_{x+\hat{\mu}}^\alpha\right),$
 $d\mu(\phi_x^\alpha) = d\phi_x^\alpha \exp\left[-\phi_x^\alpha \phi_x^\alpha - \hat{\lambda}(\phi_x^\alpha \phi_x^\alpha - 1)^2\right].$

• "staggered symmetry": $\kappa \to -\kappa$ and $\phi_x^{\alpha} \to (-1)^{x_1+x_2+\ldots+x_d} \phi_x^{\alpha}$.

Fermions and the Yukawa couplings

- Use the overlap Dirac operator with exact lattice chiral symmetry.
- The Yukawa terms $S_{HY} = \sum_{x} y(\bar{t}_x, \bar{b}_x)_L \Phi_x b_{x,R} + y(\bar{t}_x, \bar{b}_x)_L \tilde{\Phi}_x t_{x,R} + h.c.$

- Φ is a complex scalar doublet and $\tilde{\Phi} = i\tau_2 \Phi^*$.

• Results presented in this talk are from $8^3 \times 16$, $12^3 \times 24$ and $16^3 \times 32$.

Phase diagram of the H-Y model (qualitative)

- * From earlier work using Wilson fermions.
- \Rightarrow Controversy from staggered-fermion calculations.

Evidence of a symmetric phase at large y

Consistent with recent results in P. Gerhold and K. Jansen, 2007.

The bare scalar vev at large Y

Finite-size scaling of susceptibility

- Susceptibility: $\chi = V_4 \left(\langle \phi^2 \rangle \langle \phi \rangle \langle \phi \rangle \right).$
- The scaling behaviour from solving the RGE,
 - Universal function $\chi L_s^{-\gamma/\nu} \sim g(\tilde{t}L_s^{1/\nu})$, where $\tilde{t} = (y/y_{\text{crit}} 1)$.
 - critical exponents γ and ν .
 - Modelling the scaling violation from

M. Fisher and M. Barber, 1972

$$\Rightarrow \chi L_s^{-\gamma/\nu} \sim g(t L_s^{1/\nu})$$
, where $t = (y/(y_{\text{crit}} - A_4/L_s^b) - 1)$.

– Fit all the data to the (partly empirical) function at fixed κ

K. Jansen and P. Seuferling, 1990

$$\chi = A_1 \left\{ L_s^{-2/\nu} + A_{2,3} \left(y - y_{\text{crit}} - A_4 / L_s^b \right)^2 \right\}^{-\gamma/2}$$

Finite-size fit of susceptibility

Finite-size scaling of susceptibility

Probing the phase structure using susceptibility

	$\kappa = 0.00$	$\kappa = 0.06$	O(4) scalar model
y_{crit}	16.57 ± 0.06	18.11 ± 0.06	N/A
γ	1.02 ± 0.02	1.08 ± 0.01	1
ν	0.57 ± 0.03	0.66 ± 0.02	0.5
b	2.05 ± 0.20	2.04 ± 0.20	?

- Quoted errors are statistical, from uncorrelated fits with $\chi^2/dof \sim 0.001$.
- Estimate systematics by changing the fit range in y.
- Systematic effects
 - y_{crit} is very stable.
 - γ can change by $\sim 2\%$.
 - ν can vary by ~ 8%. \Rightarrow Different from O(4) scalar model?

Outlook

- Improving results by
 - running at large lattices, $24^3 \times 48$. (finishing soon.)
 - studying the scaling behaviour of Binder's cummulant.
- More information:
 - Compute three renormalised couplings to "trade" with κ , $\hat{\lambda}$ and y.
 - Study the spectrum in the strong Yukawa regime.

A lot more to do and to understand.