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Introduction

Strongly coupled fermions play an important role in 
many physical systems:

• QCD

• Technicolor

• Condensed matter



Typically, at weak coupling the dynamics is simple, 
while at strong coupling one finds many interesting 
phenomena, such as dynamical symmetry breaking, 
mass generation and confinement. 

The focus of this lecture will be the transition 
between the two regimes.  Examples of systems in 
which such transitions occur are:



QCD

SU(N) gauge theory coupled to F Dirac fermions in 
the fundamental representation.  Expected phase 
structure: 

1. Introduction

Consider SU(N) gauge theory coupled to F massless Dirac fermions in the funda-

mental representation of the gauge group.1 For F ≥ 11N/2, this theory is free at long

distances, and its low energy dynamics can be studied using the techniques of perturbative

field theory. For F < 11N/2, the theory becomes interacting in the infrared where it is

said to be in a non-abelian Coulomb phase. The crossover between the free ultraviolet

behavior and the interacting infrared conformal field theory occurs at a scale ΛQCD. As

F decreases, the infrared coupling increases; eventually, perturbation theory fails at scales

of order ΛQCD and below.

On the other hand, when F " N the theory is believed to confine and break the chiral

symmetry SU(F )L×SU(F )R → SU(F )diag. The ’t Hooft large N analysis of perturbation

theory [1] provides a nice picture of what happens in this regime. To leading order in F/N ,

the only fields that run in loops are the adjoint degrees of freedom (the gauge fields). The

spectrum includes F 2 − 1 massless Nambu-Goldstone bosons (“pions”), and a discrete

spectrum of massive glueballs and mesons with masses of order ΛQCD.
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Fig. 1: Schematic phase diagram of QCD as a function of the number of flavors

F . ΛQCD is the scale above which the theory becomes free; µ is the meson mass
scale.

It is natural to ask how the above two pictures are connected as one varies the number

of flavors F . Since the realization of chiral symmetry is different in the two regimes, there

must be a phase transition at a finite value of F/N . This transition is believed to be

continuous; the order parameter, which can be taken to be the typical meson mass µ, is

1 It is convenient for our purposes to study this theory in the limit F, N ! 1, so that the

parameter F/N can be treated as continuous. Much of what we say can be extended to finite

F,N .
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• For F slightly below 11N/2 the theory is 
weakly coupled at all scales (Banks-Zaks). 

• For small F , the theory looks like real 
world QCD: one scale,          ; well above 
that scale the theory is free;  hadron 
masses are at that scale as well.  

• Near the transition,            ,  scale 
separation,                 . 

ΛQCD

F � Fc

µ � ΛQCD



The physics near the transition is not well 
understood. It is believed that it is driven by 
the fermion bilinear      .  
The UV scaling dimension of this operator 
is three, but its IR scaling dimension is 
lower due to gauge interactions. It is 
believed that (at large N) as             ,  the 
IR dimension approaches two and for            
it becomes complex.    

ψ̄ψ

F → Fc

F < Fc



This behavior signals an instability of the Coulomb 

phase due to a non-vanishing beta function for the 

``double trace'' operator              , which leads to 

the appearance of the small mass gap    .

Near the transition one has:

                                              Miransky scaling 

         

          Conformal Phase Transition.

(Trψ̄ψ)2

µ

µ ∼ ΛQCD exp(−a/
�
F − Fc)



Defect fermions

Another class of systems that exhibits conformal 

phase transitions is systems of fermions localized 

on a d-1 dimensional defect interacting with 

gauge fields and scalars propagating in the bulk. In 

that case the parameter controlling the transition 

is the gauge coupling, which can be treated as a 

free parameter by  taking the bulk theory to have 

a line of fixed points (e.g. N=4 SYM).



Such systems can be embedded in string theory 

as low energy  theories on D-branes. The gauge 

fields live on D-branes, while the fermions are 

localized at intersections. Their dynamics can be 

studied using standard string theory techniques.  

In some regimes in parameter space this analysis 

can be done and one finds Miransky scaling at a 

critical value of the `t Hooft coupling    .  λ



More generally, conformal phase transitions 

occur when two fixed points of the RG approach 

each other, merge,  and move off into the 

complex plane (Kaplan, Lee, Son, Stephanov). 

In the examples mentioned above, the two fixed 

points that merge differ by the coefficient of a 

double trace operator      , with      a fermion 

bilinear.   

O
2 O



In general such transitions are difficult to study 

since the fixed points in question are strongly 

coupled. It is natural to ask whether holography 

can be used to study them. The purpose of this 

work is to develop such a description.



The fact that the transition is continuous makes 

it natural to look for a description in terms of 

the order parameter     . In the bulk this 

operator correspondence to a scalar field T 

whose mass approaches the Breitenlohner-

Freedman (BF) bound.  Thus, to describe the 

transition in d dimensional QFT, we need to 

study the dynamics of T in            . 

O

AdSd+1



What Lagrangian should we take for T ? Intuition 

from Landau-Ginzburg theory of phase transitions 

might lead one to expect that we only need to 

consider the behavior of the Lagrangian for small 

and slowly varying T, but this is not true, essentially 

because CPT’s are infinite order transitions, as is 

clear from the Miransky scaling formula. 



We will pick a class of Lagrangians and study 

their dynamics. This should be understood as a 

bottom-up approach that is useful for exploring 

possible universality classes. Which universality 

class corresponds to a particular transition is a 

separate question, that we will not address.

One advantage of this class is that any CPT that 

occurs in a system which has a (probe) D-brane 

description is described by a Lagrangian of this 

sort.



TDBI description

In the examples mentioned above, the bulk field T 

is dual to a bilinear in fields trasforming in the 

fundamental representation of the gauge group. 

Thus, it is an open string tachyon. 

The dynamics of such tachyons has been 

extensively studied, and is known to be well 

described by the Tachyon Dirac-Born-Infeld 

action.



For a real tachyon, it takes the form:

dimensions labeled by xa, the radial direction r, and an Sn−1 of maximal radius in the

S5. The 6 − n directions on S5 transverse to the Sn−1 give rise to scalar fields on the

worldvolume. These scalar fields are by construction compact, since they correspond to

angular variables on the sphere. Their action is manifestly invariant under SO(d, 2).

To make this more explicit, consider an excitation of one of the scalar fields θ = θ(xM ),

where (xM ) = (xa, r) parametrize the AdSd+1. The metric on the S5 can be written as

dΩ2
5 = L2dθ2 + (L cos θ)2dΩ2

n−1 + · · · (2.4)

where the ellipsis denotes terms associated with other directions on the sphere, which we

do not excite. The induced metric on the Dp-brane now takes the form

ds2 =
(

gMN + L2∂Mθ∂Nθ
)

dxMdxN + (L cos θ)2dΩ2
n−1 (2.5)

where gMN is the AdSd+1 metric ((2.1) restricted to xM ). The DBI action that follows

from (2.5) is4

S = −
∫

dd+1x
√
−g(cos θ)n−1

√

1 + L2gMN∂Mθ∂Nθ. (2.6)

This action is manifestly covariant in AdSd+1 and thus is SO(d, 2) symmetric. From the

point of view of the parametrization employed in [7], the excitation θ(xM) corresponds to

one of the 6 − n scalar fields, say φ = φ1. The map between the coordinates (ρ,φ) of [7]

and (r, θ) here is

ρ = r cos θ; φ = r sin θ. (2.7)

The action (2.6) has the TDBI form that was studied in the context of open string

tachyon condensation [16-19,22-24],

S = −
∫

dd+1xV (T )
√
−G = −

∫

dd+1x
√
−gV (T )

√

1 + gMN∂MT∂NT , (2.8)

where

GMN = gMN + ∂MT∂NT (2.9)

is the induced metric, G = detGMN , T = Lθ is the “tachyon” field, and

V (T ) =

(

cos
T

L

)n−1

(2.10)

4 We omitted an overall multiplicative factor.
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where          is the bulk (AdS) metric, and V(T) 

is the tachyon potential.   

gMN



For small T it behaves like 

3. TDBI description of dynamical symmetry breaking

Consider a d-dimensional CFT which contains an operator O(xa) with scaling dimen-

sion close to d/2. If this CFT has a holographic description, the operator O is dual to a

scalar field T (xM ) in AdSd+1, whose mass is close to the BF bound (2.12). Suppose that

the mass depends on a tunable parameter. Then it may happen that as the parameter is

varied, the mass approaches the BF bound and crosses it. In the CFT, this corresponds

to the dimension of O approaching d/2 and going into the complex plane. While such

behavior may appear strange at first sight, it is realized in the system studied in [7] and

is believed to be realized in (large N) QCD. It was also discussed in the context of the

AdS/CFT correspondence in [31-34] and in the presence of background fields that break

Lorentz symmetry in [35-41].

In the systems studied in [31-34] the bulk field T dual to O is a closed string tachyon,

while in the others it comes from the open string sector. As mentioned in the introduction,

some aspects of the dynamics of open string tachyons are well described qualitatively, and

in some cases quantitatively, by the tachyon DBI action. It is thus natural to ask whether

the TDBI action can describe the dynamics associated with more general CPTs than the

one discussed in [7] and the previous section. In this and the following sections, we will

study such models.

In the system discussed in the previous section, the “tachyon” was a geometric mode,

and the “tachyon DBI” action was just the usual DBI action for the brane system. In the

literature on open string tachyon dynamics, there have been proposals that one can more

generally interpret the open string tachyon geometrically (see e.g. [22-24]). Although such

an interpretation fits naturally with our results, we will not assume it here.

The starting point of our discussion is the TDBI action (2.8). This action describes

a real tachyon field T on AdSd+1, whose dynamics depends on the choice of a potential

V (T ). We will assume that the field has a mass slightly below the BF bound, i.e. the

potential V (T ) has a local maximum at the origin:

V (T ) = 1 +
1

2
m2T 2 + · · · (3.1)

where m2 < m2
BF = −d2/4.6 We will further assume that V (T ) is a monotonically

decreasing function of T that goes to zero at a particular value of T , T = TIR. As we

6 Here and below we take the AdS radius to be L = 1.
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For larger T it has the form

will see shortly, there is a qualitative difference between the cases of finite and infinite

TIR (see figure 4). In the system of [7] TIR was finite, while for the potentials that arise

in open string tachyon condensation it is typically infinite [42,43]. We will consider both

cases below.

(b)

V

1

T!T T IRIR

V

T

1

(a)

Fig. 4: The tachyon potential, for finite (a) and infinite (b) TIR.

The fact that the potential vanishes somewhere in field space is important. In the

study of open string tachyon condensation this value of the tachyon corresponds to the

state in which the unstable D-brane (or brane-antibrane pair) disappears [16]. In the defect

fermion system of [7] it is the state where the probe D-brane is pushed to infinite φ, so that

the fermions have an infinite current mass and decouple. Such a decoupling limit should

exist for other systems described by (2.8) as well.

One can think of the TDBI action as an analog of the Landau-Ginzburg action for

an order parameter in the vicinity of a first or second order phase transition. Here, the

order parameter T is a bulk field, which describes an infinite number of light states in

the boundary theory. The potential V (T ) labels different “universality classes” of such

transitions.

Before turning to a more detailed investigation of the action (2.8), we comment on

some generalizations. If the boundary CFT we are studying has a U(1) global symmetry

(under which the operator O is not charged), generated by a conserved current Ja, we need

to include in the bulk description a gauge field AM . This can be achieved by replacing

12

We will see that there is a qualitative difference 
between the two cases. 



In the remainder of the talk I will describe the 

physics of the phase transition described by this 

class of Lagrangians (see papers for details). 

I will discuss:

(1) Vacuum structure.   

(2) Small excitations (mesons).

(3) Finite temperature phase transition.                                



Vacuum structure

To find the vacuum we need to minimize the energy

function,

GMN → GMN + FMN in (2.8). The modified action can be used to calculate correlation

functions of the current Ja and the spectrum of vector mesons, and to turn on a chemical

potential for the corresponding conserved charge.

In QCD, the tachyon field is complex, like the dual fermion bilinear ψ†
LψR. This can

be accomodated by using the TDBI action for the D −D tachyon [16,18],

S = −
∫

dd+1xV (T †T )
(

√

−G(L) +
√

−G(R)
)

(3.2)

where

G(L)
MN = gMN +

1

2
D(MT †DN)T + F (L)

MN (3.3)

and similarly for L ↔ R. In QCD with Nf flavors, the tachyon transforms in the (Nf , Nf )

representation of the SU(Nf )L × SU(Nf )R global symmetry group. DBI-type actions for

matrix fields are known to be inherently ambiguous. For the purpose of our discussion, it is

enough to study the full non-perturbative action (3.2) for the trace of theNf×Nf matrix T ,

which develops a non-trivial vacuum expectation value. The rest of the components of T , as

well as the SU(Nf )L×SU(Nf )R gauge fields A(L,R)
M which are dual to the global symmetry

currents, can be treated perturbatively. In particular, to study the spectrum of mesons we

only need to work to quadratic order in these fields, in which (3.2) is unambiguous.

The vacuum of the model (2.8) is described by specifying a field configuration T =

T0(r) which minimizes the energy function obtained from (2.8),

E =

∫

drrd−1V (T )
√

1 + r2T ′(r)2. (3.4)

The equation of motion following from (3.4) can be written as

rd−1∂T lnV√
1 + r2T ′2

=
∂

∂r

(

rd+1T ′
√
1 + r2T ′2

)

, (3.5)

or equivalently,

−(1 + r2T ′2)∂T lnV + (1 + d)rT ′ + dr3T ′3 + r2T ′′ = 0. (3.6)

We believe, but have not proven in general, that for any potential of the qualitative form

in figure 4, the vacuum is trivial (i.e. T0(r) = 0 for all r) when the mass (3.1) is above the

BF bound. We will mention some evidence supporting this claim below. We will also see

that for m2 below the BF bound the vacuum corresponds to a non-trivial solution, T0(r),

which takes the qualitative form depicted in figure 3. The boundary conditions satisfied

by the solution are the same as those of section 2: T (r = Λ) = 0 in the UV, and (2.13) in

the IR. For models where TIR → ∞, there is no excised region and T0(r) takes the form

shown in figure 5. It can be thought of as a limit of the solution in figure 3, obtained by

taking TIR → ∞ and µ → 0.
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where r is the radial direction in AdS. 

The boundary conditions are:

UV:

IR:
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(3) The IR boundary condition φ′(ρ = 0) = 0 translates in the (r, T ) parametrization to

the condition that r(T ) is stationary at TIR,

∂r

∂T
(T = TIR) = 0, (2.13)

or equivalently, ∂rT diverges as T → TIR. r(T, xa), thought of as a field living on the

interval 0 ≤ T ≤ TIR, satisfies Dirichlet boundary conditions at T = 0 and Neumann

ones at T = TIR. Thus, the scale µ = r(TIR), which governs the size of the region in

r that is excised from the space, is dynamical.

(4) The preceding discussion is reminiscent of what happens in the holographic models

of spontaneous symmetry breaking studied in [27-29] following [30]. Indeed, if we

rotate figure 3 by ninety degrees, so that the T and r axes become horizontal and

vertical respectively, we arrive at a similar picture to those papers. The symmetric

configuration T (r) = 0 can be thought of as describing a brane extending along the

r axis from r = Λ to r = 0, then going up the T axis, from T = 0 to T = TIR.

For m2 < m2
BF this configuration is unstable and is dynamically deformed to that of

figure 3, which looks like half of the U-shape describing the symmetry breaking phase

in [27-29]. The boundary condition (2.13) is very natural from this point of view. It

ensures that one can continue the configuration of figure 3 past TIR and connect it to

its mirror image, obtained by reflecting the configuration of figure 3 about the dashed

line. This gives a smooth U-shape, very similar to those found in the above papers. Of

course, there are important differences between the systems. In particular, comparing

the action (2.8) to the one given by eq. (2.11) in [29], we see that the analog of V (T ) is

constant there, while the function of r in front of the square root, which here is rd−1,

is in general different there. This accounts for the different physics of these systems.

An interesting question is whether the analysis of this section can be extended to more

general CFTs which generate a mass scale due to the dynamics of operators with dimension

close to d/2. In holography, such operators correspond to scalars with mass close to the

BF bound, and if they come from the open string sector, it is natural to try to describe

them by a tachyon DBI action with some V (T ). In the next section we will develop such

a description, and study the resulting models for different V (T ).

10



The form of the vacuum depends on the sign of 

! r

T

Fig. 5: The vacuum configuration T0(r) for infinite TIR.

As is clear from figures 3 and 5, at large r the solution of (3.6) is small, and we can

replace the full equation of motion by the linearized one,

r2T ′′ + (1 + d)rT ′ −m2T = 0. (3.7)

The general solution of this equation is

T0(r) = A
(µ

r

)
d
2
sin

(√
κ ln

r

µ
+ φ

)

(3.8)

where

κ = m2
BF −m2 (3.9)

is assumed to be positive, µ is a scale, and A, φ are dimensionless constants whose definition

depends on µ. As r decreases, T0(r) increases, until eventually the linear approximation

(3.7) breaks down and one has to go back to the full equation of motion. µ can be thought

of as the scale at which this happens. The advantage of this definition is that it applies

both to models with finite TIR, where µ here is of the order of the scale µ defined in figure

3, and with infinite TIR, where there is no excised region. Of course, this definition is not

precise, but it can be made precise e.g. by setting µ to be the mass of the lowest lying

meson. Other definitions differ from this one by numerical factors. The ambiguity in the

definition of the dynamically generated scale is familiar in QFT, and it can be dealt with

using the renormalization group.

In the BKT limit Λ → ∞, κ → 0 with µ held fixed, the large r behavior of T0(r)

becomes [7]

T0(r) =
(µ

r

)
d
2

(

C1 ln
r

µ
+ C2

)

(3.10)
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For           the vacuum is trivial,              ,  and 

conformal symmetry is unbroken. 

For           the trivial vacuum is unstable, the 

lowest energy configuration has               and                

the conformal symmetry is broken.

κ < 0

κ > 0

T (r) = 0

T (r) �= 0



The form of the vacuum solution is different for 

the two classes of potentials mentioned above. 

For potentials with finite       , the vacuum is 

In particular, a region of size     is excised from

the space. The resulting models are similar to 

hard wall models of AdS/QCD.
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!

"

r

µ

#
$

Fig. 2: The shape of the brane parametrized in terms of (ρ,φ) and (r, θ).

T

#

T

rµ

IR

Fig. 3: The shape of the brane in figure 2 parametrized in terms of T (r).

In terms of the TDBI variables T , r, the shape of the brane is depicted in figure 3.

Note that:

(1) In the trivial vacuum T (r) = 0 which preserves conformal symmetry, r ranges from
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5 See also comment (4) below.
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The dynamically generated scale    is given by

Thus, as one approaches the transition it becomes 

parametrically smaller than the UV cutoff. One 

can focus on the physics at the scale    by taking 

the double scaling limit

with    held fixed. 

µ

µ � Λ exp(−c/
√
κ)

µ

Λ → ∞;κ → 0

µ

µ



For infinite        the vacuum solution takes the 

form  

TIR

! r

T

Fig. 5: The vacuum configuration T0(r) for infinite TIR.

As is clear from figures 3 and 5, at large r the solution of (3.6) is small, and we can

replace the full equation of motion by the linearized one,

r2T ′′ + (1 + d)rT ′ −m2T = 0. (3.7)

The general solution of this equation is

T0(r) = A
(µ

r

)
d
2
sin

(√
κ ln

r

µ
+ φ

)

(3.8)

where

κ = m2
BF −m2 (3.9)

is assumed to be positive, µ is a scale, and A, φ are dimensionless constants whose definition

depends on µ. As r decreases, T0(r) increases, until eventually the linear approximation

(3.7) breaks down and one has to go back to the full equation of motion. µ can be thought

of as the scale at which this happens. The advantage of this definition is that it applies

both to models with finite TIR, where µ here is of the order of the scale µ defined in figure

3, and with infinite TIR, where there is no excised region. Of course, this definition is not

precise, but it can be made precise e.g. by setting µ to be the mass of the lowest lying

meson. Other definitions differ from this one by numerical factors. The ambiguity in the

definition of the dynamically generated scale is familiar in QFT, and it can be dealt with
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In the BKT limit Λ → ∞, κ → 0 with µ held fixed, the large r behavior of T0(r)

becomes [7]

T0(r) =
(µ

r

)
d
2

(

C1 ln
r

µ
+ C2

)

(3.10)
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In this case there is no excised region in space. 

The dynamically generated scale can be thought 

of as the value of r for which T takes some 

prescribed value, say T=1.



• The resulting dynamics is very similar to 
that of soft wall AdS/QCD.  

• The ``open string’’ metric          is 
approximately AdS; the soft wall is provided 
by a non-trivial effective dilaton.

• The dynamically generated scale again 
satisfies Miransky scaling.

GMN



Mesons

One can use the bulk description to study the spectrum

of small excitations, which give rise to mesons. We will 

only discuss scalar mesons.  One can study vector 

mesons by including gauge fields in the TDBI action, and 

pseudoscalars and axial vectors by studying the 

complex TDBI. 



One expands

where C1, C2 are again dimensionless constants, related to A, φ as follows:
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the closed string (AdS) metric g and the dilaton approaches a constant, but for small r,
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section, we will derive the equations describing fluctuations of the TDBI action around the
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and GMN is the open string metric (3.12). It is easy to check using (3.1), (3.10), that

at large r the dilaton Φ approaches a constant, and the mass function m2(r) goes to the

tachyon mass m2.

To study the spectrum of mesons, it is convenient to change coordinates from r to

z(r), defined by the requirement that the open string metric GMN takes the form

GMNdxMdxN = hαβdx
αdxβ = r2(z)dxαdxβηαβ . (3.15)

Here (xα) = (z, xa). Comparing (3.12) and (3.15) we see that the coordinates z and r are

related as follows:
dz

dr
= −

√

1 + r2T ′2
0

r2
. (3.16)
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and writes the quadratic action for y
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For large r, (3.16) reduces to z = 1/r, and (3.15) becomes a familiar parametrization of

the metric on AdSd+1. For small r, there are significant deviations from AdS, which we

will discuss below.

The quadratic action for fluctuations (3.13) is given in these coordinates by

S2 =− 1

2

∫

dd+1x
√
−he−Φ

(

hαβ∂αy∂βy +m2(r(z))y2
)

=− 1

2

∫

dd+1xrd−1e−Φ
(

∂αy∂
αy +m2(r)r2y2

)

(3.17)

where on the second line r is viewed as a function of z, and indices are raised and lowered

with the flat metric ηαβ . We next define the wavefunction ψ = ye−B/2 where

B(z) = Φ(z) − (d− 1) ln r(z), (3.18)

and write it as ψ(xα) = ψ(z)exp(ikaxa). The equation of motion for ψ(z) that follows

from (3.17) takes the Schrödinger form

−ψ′′ + Veff (z)ψ = M2ψ (3.19)

where the prime denotes differentiation w.r.t. z, M2 = −kaka is the meson mass, and the

effective potential is

Veff (z) =
1

4
(B′)2 − 1

2
B′′ + r(z)2m2(r(z)). (3.20)

The large z (IR) behavior of the potential Veff (z) depends on the details of the tachyon

potential V (T ). For small z, however, the potential is universal: T0(r) goes to zero as

r → ∞, the dilaton Φ(r) and mass function m(r) approach constants, and r = 1/z. Thus,

in this regime one finds B(z) = (d− 1) ln z and

Veff (z) =

(

d2 − 1

4
+m2

)

1

z2
= −

(

1

4
+ κ

)

1

z2
. (3.21)

We are interested in κ > 0 (the massive phase), in the presence of a UV cutoff, which

provides a lower bound z ≥ zUV = 1/Λ on z. The boundary condition there is ψ(zUV ) = 0.

If the potential Veff was given by (3.21) for all z ≥ zUV , the spectrum of (3.19) would

contain normalizable states with M2 < 0, i.e. tachyons. The mass squared of the lowest

lying of these tachyons is of order −µ2, where µ ∼ Λexp(−π/
√
κ). It is easy to understand

this from the point of view of the TDBI system. The potential (3.21) describes small
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If one takes T(r)=0 (the symmetric solution), one finds
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Veff (z) =
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d2 − 1
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+m2
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1

z2
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(

1

4
+ κ

)

1

z2
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We are interested in κ > 0 (the massive phase), in the presence of a UV cutoff, which

provides a lower bound z ≥ zUV = 1/Λ on z. The boundary condition there is ψ(zUV ) = 0.

If the potential Veff was given by (3.21) for all z ≥ zUV , the spectrum of (3.19) would
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lying of these tachyons is of order −µ2, where µ ∼ Λexp(−π/
√
κ). It is easy to understand

this from the point of view of the TDBI system. The potential (3.21) describes small
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Expanding around the stable vacua above 

modifies the potential at             and lifts these 

tachyons. Interestingly, the lowest lying of the 

mesons is relatively light, since the tachyonic 

contribution from small z is approximately 

canceled by that of larger z. This light scalar can 

be thought of as a pseudo dilaton; it is of 

interest in the context of technicolor. 

z ∼ 1/µ



The highly excited meson spectrum is in general 

interesting (for soft wall potentials). E.g. if we 

take the potential V(T) to behave at large T like

we find the spectrum 
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to a non-trivial radial dilaton profile, which was chosen to get (5.1). More elaborate

constructions appeared in [25,26].

In this section we will see that in our framework this can be achieved by considering

potentials V (T ) with TIR → ∞. Such potentials have the qualitative form in figure 4(b),

and appear naturally in the study of open string tachyon condensation in string theory

[6,7,13,14,15]. We will refer to them as soft wall potentials.

As in the previous section, we will not analyze the most general potential with the

qualitative form of figure 4(b). As a first step, we restrict to the class of potentials that

behave at large T like

V (T ) # e−
1
2
βT 2

(5.2) inftir

with β a positive constant. Potentials of this form (with a fixed value of β) naturally arise

in studies of open string tachyon condensation [27,28]. There is no particular reason to

expect them to play a role in AdS/QCD, but we will see that they give rise to interesting,

β-dependent, physics.

Proceeding as in section 4, we substitute (5.2) into (3.6), to find the form of the

vacuum solution T0(r). The small r behavior of this solution is

T0(r) #
(µ

r

)

β
d

. (5.3) smallrtzero

It has the qualitative form depicted in figure 5, in agreement with the discussion of section

3. In particular, there is no excised region in r, like in the soft wall model of AdS/QCD

[12].

As before, we change variables from r to z using the map (3.16). For small r this map

reduces to

z(r) ∼ 1

r

(µ

r

)

β
d

(5.4) zrsoft

Note that as r → 0, z → ∞, so the z coordinate runs from zero to infinity as well.
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We can again compute the effective dilaton and mass function for scalar mesons (3.14),

which (for large z) take the form

Φ(z), m2(z) ∼ T 2 ∼ (µz)
2β

β+d . (5.5) formphm

Plugging into (3.20), we find the large z behavior of the effective potential,

Veff ∼ µ2(µz)2
β−d
β+d . (5.6) largezveff

For β < d the potential (5.6) goes to zero as z → ∞. Hence the spectrum contains a

continuum of “scattering” states living at large z. For β > d, the potential grows without

bound as z → ∞, and one expects a discrete spectrum. The asymptotic form of the

spectrum is determined by the behavior of the potential at large z. The problem is very

similar to that analyzed in [29], and one can read off the asymptotic spectrum from their

results. It is given by

mn ∼ µn
1
2 (1− d

β ). (5.7) asmn

The above discussion was for scalar mesons, but it is easy to see that the behavior (5.6),

(5.7) is similar for vector mesons. The difference between the two cases is in the propor-

tionality constant in (5.7). It has to do with the fact that the last term in the effective

potential (3.20) contributes to the coefficient in (5.6) for scalars, and is absent for vectors.

comment on pseudo scalars and axial vectors

We see that soft wall tachyon DBI models naturally give spectra different from those of

hard wall ones. Interestingly, as β → ∞ the spectrum (5.7) approaches the one associated

with linear confinement, (5.1). Thus, it is natural to ask whether one can find a potential

that reproduces the behavior (5.1) exactly. Presumably, as T → ∞ such a potential would

have to go to zero faster than (5.2) with any finite β.

To try to answer this question we next consider a potential V (T ) with the large T

asymptotic behavior

V (T ) $ e−γT 2 lnT . (5.8) ttlltt
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To study the low lying spectrum one needs to specify 
the tachyon potential V(T). For                        , which 
is relevant for the defect fermion system, one finds 

    

    - mesons: 

vector mesons: 

 The anomalously light scalar meson is the techni-
dilaton.        
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Fig. 3: C(σ)
2 /C(σ)

1 as a function of L4m2/µ2.

In fig. 3 we plot the results of the numerical integration. Note that eq. (4.9) is never

satisfied for negative m2, which is consistent with the stability of the vacuum. The lightest

few states have

m2/µ2 ≈ 0.44, 9.65, 26.63, 51.35, 84, · · · (4.10) dilaton

where µ is definied in (4.1). This spectrum is well described by the general formula

m2
n/µ

2 ≈ 3.89n2 + 5.32n+ 0.44; n = 0, 1, 2, · · · (4.11) approxsigma

It exhibits the characteristic behavior mn ∼ n at large excitation number n. This is

similar to other holographic models, although here it does not have an obvious Kaluza-

Klein interpretation. We also see that the typical mass scale of the mesons is µ ∼ µ/
√
λ.

Thus, at large λ the mesons are deeply bound, as in [31].

Another notable fact is that the lowest lying meson, which corresponds to n = 0 in

(4.11), is quite light relative to the others. Its mass is m0 $ 0.66µ, while the next lightest

meson has mass m $ 3.1µ, and the asymptotic separation between subsequent masses

in (4.11) is mn+1 − mn $ 1.97µ. Thus, m0 is smaller by a factor of three to five than

the typical mass scales in the problem, but the separation between the two scales is not

parametric in the BKT limit. The lowest lying σ-meson can be thought of as a pseudo-NG

29
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One class of states that we consider are σ-mesons, which correspond to fluctuations

of the order parameter for the breaking of conformal symmetry. The lowest of these is

the would-be Goldstone boson of broken scale invariance, the analog of the techni-dilaton

in walking technicolor theories. We will see that it is lighter than the other states in the

spectrum, but not parametrically so. We will also discuss vector mesons, the analogs of

the (techni-) ρ-meson in QCD (technicolor).

Since the vacuum with f(ρ) != 0 spontaneously breaks the global O(6− n) symmetry

to O(5− n), when n < 5 one expects to find massless Goldstone bosons that parametrize

the coset O(6 − n)/O(5 − n). We will describe them and calculate their mass when the

symmetry is broken explicitly.

4.1. σ-mesons

To study radial excitations of the probe brane, we expand the radial scalar f (3.14)

around the solution of (3.17),

f(ρ, xa) = f(ρ) + y(ρ, xa). (4.2) dbiexp

Since the DBI action preserves d dimensional Lorentz symmetry, it suffices to take the

perturbation y to be a function of ρ and t. For such configurations, the action takes the

form

SDp = −
∫

ddx

∫
dρ

ρn−1

rn−d+2

√
r4 − L4ẏ2 + (f ′ + y′)2r4. (4.3) emdbi

For y = 0 this agrees with (3.16) (up to an overall constant, which we do not keep track

of here and below).

Expanding (4.3) around the solution f(ρ) and keeping only terms quadratic in y, we

find the action

S2 = −
∫

ddx

∫
dρ

(
A(ρ)y2 +B(ρ)y′2 − L4C(ρ)ẏ2

)
(4.4) lineardbi
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m2/µ̄2 ≈ 3.08, 15.12, 34.87, 62.32, 97.46, · · ·

(µ̄ ∼ µ/
√
λ)

V (T ) = (cosT )α



In technicolor there is a long-standing debate about 
the fate of the dilaton near the CPT in QCD.  There 
are two schools of thought:

(1)                           

(2) 

as              

We find that (2) is correct.

mtd/mmeson → 0

mtd/mmeson → const

µ/Λ → 0.



Intriguingly, in QCD it was argued (by M. 
Hashimoto and K. Yamawaki) that the mass 
of the techni-dilaton is smaller than that of 
the lightest vector meson by a factor of 
about 2.8. In our system this ratio is about 
2.6...

It would be interesting to explore the range 
which this ratio takes as one changes the 
potential V(T).



Finite temperature

To introduce finite temperature we replace the 

AdS background by an AdS black hole. Even if the 

zero temperature theory is in the broken phase, 

the symmetry is restored at a finite temperature 

of order    . Interestingly, the nature of the phase 

transition is only sensitive to the behavior of the 

potential V(T) near the origin. 

µ



Parametrizing
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We can also compute F for small Th directly, by expanding (6.18) in a power series in T .

To determine the form of F up to order Tn
h , one needs to keep contributions to (6.18) up

to order Tn. The leading contribution is quadratic,

F2 =
1

2

∫ Λ

rh

drrd−1
[

F (r)(rT ′)2 +m2T 2
]

(6.26) deltaquad

Integrating the first term by parts we get the e.o.m. (6.9), so the integral (6.26) reduces

to evaluating rd+1F (r)TT ′ at the two boundaries, r = rh,Λ. Both of those vanish, since

F (rh) = 0 and T (Λ) = 0.

Thus, the leading contribution to F is quartic in Th. To calculate it we need to include

the quartic contribution to the potential V (T ),

V (T ) = 1 +
1

2
m2T 2 +

a

4
T 4 + · · · (6.27) quarticv

Plugging (6.27) into (6.18), we find

F4 =
1

2

∫ Λ

rh

drrd−1

[

F (r)(rT ′)2 +m2T 2 +
a

2
T 4 +

1

2
m2F (rTT ′)2 − 1

4
F 2(rT ′)4

]

. (6.28) deltaquartic

The solution to the full e.o.m. (6.3) can be expanded as T (r) = T1(r) + T3(r) + . . . where

Ti(r) is of order T i
h. In particular, T1 is given by (6.13), and T3(r) is obtained by varying

(6.28), and keeping only terms cubic in Th.

Using the e.o.m. of (6.28) and plugging back into F4 one finds (in the BKT limit)

F4 =
1

8

∫ ∞

rh

drrd−1(−6aT 4 +
3d2

2
r2FT 2T ′2 + 3r4F 2T ′4) (6.29) deltaquarticthree

Since all terms in (6.29) are quartic in T , to leading order in Th we can replace T by T1,

(6.13). Performing the integral we find

F4 =
1

d
T 4
h (r

(crit)
h )d(c1a+ d4c2) (6.30) deltaquarticfour

with

c1 " −2.847, c2 " 0.072. (6.31) cs

34

for a below a critical value the transition is first 

order, while above this value it is second order. 



Summary

• Holography provides a useful tool for studying 

conformal phase transitions. In this approach, 

one needs to analyze the dynamics of a scalar 

field in AdS, with mass close to the BF bound. 

• The universal physics near the transition is 

sensitive to the full non-linear Lagrangian for T. 



• We took the Lagrangian to have the TDBI form 

and found that the dynamics is similar to that of 

hard and soft wall AdS/QCD (depending on the 

potential V(T)), with a dynamically generated 

wall. 

• We analyzed the spectrum and thermodynamics 

of these models and found some properties 

that are different from standard holographic 

models, such as a second order symmetry 

restoration transition.



• It would be interesting to analyze in more 

detail the properties of the lightest scalar 

meson, which plays the role of the techni-

dilaton in technicolor theories. 

• It would also be interesting to further study 

the finite temperature dynamics and look 

for applications to condensed matter and 

other systems.



Thank You!


