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Introduction

Strongly coupled fermions play an important role in

many physical systems:

e QCD
* Technicolor

e Condensed matter



Typically, at weak coupling the dynamics is simple,
while at strong coupling one finds many interesting
phenomena, such as dynamical symmetry breaking,

mass generation and confinement.

The focus of this lecture will be the transition
between the two regimes. Examples of systems in

which such transitions occur are:



QCD

SU(N) gauge theory coupled to F Dirac fermions in
the fundamental representation. Expected phase
structure:

W




® For F slightly below | IN/2 the theory is
weakly coupled at all scales (Banks-Zaks).

® For small F, the theory looks like real
world QCD: one scale, Agcp ; well above
that scale the theory is free; hadron
masses are at that scale as well.

® Near the transition, F ~ F., scale
separation, u < Agep -



The physics near the transition is not well
understood. It is believed that it is driven by
the fermion bilinear ¢y .

The UV scaling dimension of this operator

is three, but its IR scaling dimension is

lower due to gauge interactions. It is
believed that (at large N) as F' — F. , the

IR dimension approaches two and for F' < F,
it becomes complex.



This behavior signals an instability of the Coulomb
phase due to a non-vanishing beta function for the
"“double trace" operator (Try)?, which leads to

the appearance of the small mass gap 1.

Near the transition one has:

i~ Aocp exp(—a/\/F — F,) Miransky scaling

Conformal Phase Transition.



Defect fermions

Another class of systems that exhibits conformal
phase transitions is systems of fermions localized
on a d-| dimensional defect interacting with
gauge fields and scalars propagating in the bulk. In
that case the parameter controlling the transition
is the gauge coupling, which can be treated as a

free parameter by taking the bulk theory to have
a line of fixed points (e.g. N=4 SYM).



Such systems can be embedded in string theory
as low energy theories on D-branes. The gauge
fields live on D-branes, while the fermions are
localized at intersections. Their dynamics can be
studied using standard string theory techniques.
In some regimes in parameter space this analysis
can be done and one finds Miransky scaling at a

critical value of the 't Hooft coupling ).



More generally, conformal phase transitions
occur when two fixed points of the RG approach
each other, merge, and move off into the
complex plane (Kaplan, Lee, Son, Stephanov).

In the examples mentioned above, the two fixed
points that merge differ by the coefficient of a
double trace operator 04, with O a fermion

bilinear.



In general such transitions are difficult to study

since the fixed points in question are strongly
coupled. It is natural to ask whether holography

can be used to study them.The purpose of this

work is to develop such a description.



The fact that the transition is continuous makes
it natural to look for a description in terms of
the order parameter O . In the bulk this
operator correspondence to a scalar field T
whose mass approaches the Breitenlohner-
Freedman (BF) bound. Thus, to describe the
transition in d dimensional QFT, we need to

study the dynamics of T in AdSy. ;.



What Lagrangian should we take for T ? Intuition
from Landau-Ginzburg theory of phase transitions
might lead one to expect that we only need to
consider the behavior of the Lagrangian for small
and slowly varying T, but this is not true, essentially
because CPT’s are infinite order transitions, as is

clear from the Miransky scaling formula.



We wiill pick a class of Lagrangians and study
their dynamics. This should be understood as a
bottom-up approach that is useful for exploring
possible universality classes.Which universality
class corresponds to a particular transition is a
separate question, that we will not address.
One advantage of this class is that any CPT that
occurs in a system which has a (probe) D-brane
description is described by a Lagrangian of this

sort.



TDBI description

In the examples mentioned above, the bulk field T
is dual to a bilinear in fields trasforming in the
fundamental representation of the gauge group.
Thus, it is an open string tachyon.

The dynamics of such tachyons has been
extensively studied, and is known to be well

described by the Tachyon Dirac-Born-Infeld

action.



For a real tachyon, it takes the form:

S = —/ddHa:V(T)\/ —G = —/dd+1x\/—gV(T)\/1 + gMNONTONT,

Gun = gun + Oy TONT

where gun is the bulk (AdS) metric,and V(T)

is the tachyon potential.



For small T it behaves like
1 22
V(T) =1+ 5mT? + -

where the mass m is taken to be close to the BF

bound



For larger T it has the form

We will see that there is a qualitative difference
between the two cases.



In the remainder of the talk | will describe the
physics of the phase transition described by this
class of Lagrangians (see papers for details).

| will discuss:

(1) Vacuum structure.
(2) Small excitations (mesons).

(3) Finite temperature phase transition.



Vacuum structure

To find the vacuum we need to minimize the energy

function,

E = /drrd_1V(T)\/1—|—r2T’(r)2

where r is the radial direction in AdS.
The boundary conditions are:
UV: T(r=A)=0

o,
IR: a—;(T:TIR):O



The form of the vacuum depends on the sign of

kK=mpp —m°

For x < 0 the vacuum is trivial, T'(r) = 0, and
conformal symmetry is unbroken.

For x > 0 the trivial vacuum is unstable, the
lowest energy configuration has 7'(r) # 0 and

the conformal symmetry is broken.



The form of the vacuum solution is different for
the two classes of potentials mentioned above.

For potentials with finite 7} , the vacuum is

glx A r
In particular, a region of size p is excised from

the space. The resulting models are similar to
models of AdS/QCD.



The dynamically generated scale p is given by

p =~ Aexp(—c/vVk)

Thus, as one approaches the transition it becomes
parametrically smaller than the UV cutoff. One
can focus on the physics at the scale 1 by taking
the double scaling limit

AN — ook —0

with 1 held fixed.



For infinite 77 the vacuum solution takes the

form

A r

In this case there is no excised region in space.
The dynamically generated scale can be thought
of as the value of r for which T takes some

prescribed value, say T=1.



® The resulting dynamics is very similar to
that of AdS/QCD.

® The open string” metric G,y is
approximately AdS; the soft wall is provided
by a non-trivial effective dilaton.

® The dynamically generated scale again
satisfies Miransky scaling.



Mesons

One can use the bulk description to study the spectrum
of small excitations, which give rise to mesons.We will
only discuss scalar mesons. One can study vector
mesons by including gauge fields in the TDBI action, and
pseudoscalars and axial vectors by studying the

complex TDBI.



One expands

T(z™) = To(r) +y(z™)

and writes the quadratic action for y

1
Sy = —3 /dd:z:dr\/ —Ge™? (GMNﬁMyﬁNy + mz(T)yQ)
where
S~ _ V(Th)
(42T
(1) V12T |02V 1 - l)av rIp, 0V 0 2T},
- 1% T2 \/1 4 r2T7? OT \/1+ 272 0T Or \ /1 +r2T7?




After a change of coordinates

GundrMdzN = hogdr®dz’ = r?(2)dz*ds nas

dz \/1 + 12T}
dr r2 '

One gets an effective Schroedinger problem

" + Ve (2)1p = M9



If one takes T(r)=0 (the symmetric solution), one finds

d? —1 1 1 1
‘/eff(z):< A ‘|‘m2)z_2:—(1—|—/€>z—2




This is a well known potential in QM. For « > 0
and in the presence of a UV cutoff z> zyy =1/A
there are normalizable states with M2 <0, i.e.
tachyons.

These tachyons have an obvious interpretation:
they signal the instability of the unbroken (T=0)

vacuum. Their mass squared is of order —p°.



Expanding around the stable vacua above
modifies the potential at z ~ 1/u and lifts these
tachyons. Interestingly, the lowest lying of the
mesons is relatively light, since the tachyonic
contribution from small z is approximately
canceled by that of larger z. This light scalar can
be thought of as a it is of

interest in the context of technicolor.



The highly excited meson spectrum is in general
interesting (for soft wall potentials). E.g. if we

take the potential V(T) to behave at large T like
V(T) ~ e~ 2PT"

we find the spectrum

My, ~ Mn%(l_%).



To study the low lying spectrum one needs to specify
the tachyon potential V(T). For V(T) = (cosT)”, which
is relevant for the defect fermion system, one finds

(i ~ p/VA)
O - mesons: m?/i% ~ 0.44,9.65,26.63,51.35, 84, - - -

vector mesons: m°/i” ~ 3.08,15.12,34.87,62.32,97.46, - - -

The anomalously light scalar meson is the techni-

dilaton.



In technicolor there is a long-standing debate about
the fate of the dilaton near the CPT in QCD. There
are two schools of thought:

(l) mtd/mmeson — 0
(2) Mitd /Mmeson — const
as u/A — 0.

We find that (2) is correct.



Intriguingly, in QCD it was argued (by M.
Hashimoto and K.Yamawaki) that the mass
of the techni-dilaton is smaller than that of
the lightest vector meson by a factor of
about 2.8. In our system this ratio is about

2.6...

It would be interesting to explore the range
which this ratio takes as one changes the

potential V(T).



Finite temperature

To introduce finite temperature we replace the

AdS background by an AdS black hole. Even if the
zero temperature theory is in the broken phase,
the symmetry is restored at a finite temperature
of order u . Interestingly, the nature of the phase
transition is only sensitive to the behavior of the

potential V(T) near the origin.



1 22 a4, 4

for a below a critical value the transition is first

order, while above this value it is second order.



Summary

® Holography provides a useful tool for studying
conformal phase transitions. In this approach,
one needs to analyze the dynamics of a scalar

field in AdS, with mass close to the BF bound.

® The universal physics near the transition is

sensitive to the full non-linear Lagrangian for T.



® We took the Lagrangian to have the TDBI form
and found that the dynamics is similar to that of
hard and soft wall AdS/QCD (depending on the
potential V(T)), with a dynamically generated

wall.

® We analyzed the spectrum and thermodynamics
of these models and found some properties
that are different from standard holographic
models, such as a second order symmetry

restoration transition.



® |t would be interesting to analyze in more
detail the properties of the lightest scalar
meson, which plays the role of the techni-

dilaton in technicolor theories.

® |t would also be interesting to further study
the finite temperature dynamics and look
for applications to condensed matter and

other systems.



Thank You!



