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Motivation
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Technicolor model is an attractive candidate 
for the origin of the Electroweak symmetry 
breaking, though one based on naive scale up 
of QCD is phenomenologically disfavored...

Walking
Technicolor

A theory which has an (approximate) infrared fixed point 
with large mass anomalous dimension is preferable

Large flavor QCD

Fully non-perturvative (lattice) study is desirable

Indication from the 2-loop analysis

Several ways of checking infrared conformality

 measure the running coupling
 study the spectrum
 ....

We discuss this here

Yamawaki-Bando-Matumoto (1986)



Hyperscaling relation (review)
Ref : Miransky, PRD59 105003, 1999
       Del Debbio, Zwicky,  PRD82 014502, 2010
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 Consider a theory which has an IRFP
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Hyperscaling relation (review)

µ

( ) (µ)

 Consider a theory which has an IRFP
 Deform it by introducing small fermion 

    bare mass

Hadrons emerge at this scale

m

a scale (in the case of lattice, one can consider                  )

(normalized) bare quark mass:

Relations between low-energy physical quantities (for example,  a 
hadron mass       )  and the bare fermion mass       can be derivedMH

MH � (const.) µ m̂1/1+γ∗

mass anomalous dimension at the fixed point

m

Ref : Miransky, PRD59 105003, 1999
       Del Debbio, Zwicky,  PRD82 014502, 2010



Hyperscaling relation (review)

µ

( ) (µ)

 Consider a theory which has an IRFP
 Deform it by introducing small fermion 

    bare mass

Hadrons emerge at this scale

When one considers a theory in a finite volume

MH = L−1f (x)
where x = L m̂1/(1+γ∗)ˆ L̂ ≡ Lµ

m

∼ L4

Relations between low-energy physical quantities (for example,  a 
hadron mass       )  and the bare fermion mass       can be derived
Relations between low-energy physical quantities (for example,  a 
hadron mass       )  and the bare fermion mass       can be derivedMH m

Ref : Miransky, PRD59 105003, 1999
       Del Debbio, Zwicky,  PRD82 014502, 2010



Hyperscaling relation (review)

Results of lattice simulation with various values of input 
should satisfy the hyperscaling relation (with an appropriate value of      )

if the theory has an IRFP

(L,m)

γ∗

Many lattice groups use this method to judge whether a theory 
is conformal, and if it is, to estimate the value of γ∗

ˆ ˆ
(Wouldn’t it be interesting to see that all the data you have
with different values of             align in a single curve?)

(L,m)ˆ ˆ



Hyperscaling relation (review)

Results of lattice simulation with various values of input 
should satisfy the hyperscaling relation (with an appropriate value of      )

if the theory has an IRFP
 
Couple of questions arise here:   

 How small       has be to observe the scaling?
   (What is the form of correction when it’s not small enough?)

 When the original theory does not have an IRFP, 
   how and how much the scaling relation is violated?

Schwinger-Dyson equation is a useful tool for such studies

m

γ∗

analytic understanding can be obtained (to a certain extent)

numerical calculations can be easily done in a wide range of parameter space
(on your Mac (or PC))

we know the phase structure, and a value of      for a given theoryγ∗

(L,m)ˆ ˆ



Schwinger-Dyson equation (review)

Self-consistent equation for the 
full fermion propagator

= + １PI

１particle irreducible diagram

in equation...

bare fermion propagator



Self-consistent equation for the 
full fermion propagator

C2 =
N2

C − 1
2NC

ḡ(p, k) : running coupling

We adopted...
Landau gauge
Improved ladder approximation

coupled equation for

A(p2), B(p2)

mass function

Σ(p2) ≡ B(p2)/A(p2)

Schwinger-Dyson equation (review)



setup for the current study 
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Running coupling is approximated by the step function

fixed by Nc, Nf

Energy scale where the coupling begins to run

2-loop running coupling of the SU(Nc) gauge theory 

Schwinger-Dyson equation (review)



After several minor approximations... integral equation 
can be rewritten in a form of linear differential equation 
with UV and IR boundary conditions:

x ≡ p2
E

mP ≡ Σ(x = m2
P )

where

Schwinger-Dyson equation (review)

(xΣ(x))�� + α∗
3C2

4π

Σ(x)
x + mP

= 0

IRBC : lim
x→0

x2Σ(x)� = 0

UVBC : (xΣ(x))���
x=Λ2 = m

2



After several minor approximations... integral equation 
can be rewritten in a form of linear differential equation 
with UV and IR boundary conditions:

x ≡ p2
E
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P )

where

mP        is sometimes called the 
“pole mass”, though it’s not.
Anyway, we identify this quantity 
as a typical scale of low-energy 
physical quantity. 
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After several minor approximations... integral equation 
can be rewritten in a form of linear differential equation 
with UV and IR boundary conditions:

x ≡ p2
E

mP ≡ Σ(x = m2
P )

where

mP        is sometimes called the 
“pole mass”, though it’s not.
Anyway, we identify this quantity 
as a typical scale of low-energy 
physical quantity. 

mP ∝MHNote:                   is observed from 
the analysis based on BS equation

Schwinger-Dyson equation (review)

(xΣ(x))�� + α∗
3C2

4π

Σ(x)
x + mP

= 0

IRBC : lim
x→0

x2Σ(x)� = 0

UVBC : (xΣ(x))���
x=Λ2 = m

2



Schwinger-Dyson equation (review)

By checking whether the solution 
exists or not for            ,             ,
critical coupling is obtained as

(xΣ(x))�� + α∗
3C2

4π

Σ(x)
x + mP

= 0

IRBC : lim
x→0

x2Σ(x)� = 0

UVBC : (xΣ(x))���
x=Λ2 = m

αcr =
π

3C2

e.g.)  SU(3) fundamental:

αcr = π/4 ⇔ N cr
f � 11.9

for                an IRFP exists
in the chiral limit

Nf ≥ 12

Σ �= 02 m = 0



Schwinger-Dyson equation (review)

By checking whether the solution 
exists or not for            ,             ,
critical coupling is obtained as

(xΣ(x))�� + α∗
3C2

4π

Σ(x)
x + mP

= 0

IRBC : lim
x→0

x2Σ(x)� = 0

UVBC : (xΣ(x))���
x=Λ2 = m

αcr =
π

3C2

e.g.)  SU(3) fundamental:

αcr = π/4 ⇔ N cr
f � 11.9

for                an IRFP exists
in the chiral limit

Nf ≥ 12

Σ �= 0

Since we are here interested in hyperscaling of IR conformal
theories and correction by bare fermion mass, we consider

α∗ < αcr, m �= 0

2 m = 0



Schwinger-Dyson equation (review)

The solution of differential equation which satisfies the IRBC looks like

Σ(x) = ξ mP F

�
1 + ω

2
,
1− ω

2
, 2,− x

m2
P

�
ω ≡

�
1− α∗

αcr
,    where

hypergeometric function

a constant which is determined by mP ≡ Σ(x = m2
P )



Schwinger-Dyson equation (review)

The solution of differential equation which satisfies the IRBC looks like

Σ(x) = ξ mP F

�
1 + ω

2
,
1− ω

2
, 2,− x

m2
P

�
ω ≡

�
1− α∗

αcr
,    where

In the limit of x� m2
P

Σ(x) � ξ mP

�
Γ(ω)

Γ(ω+1
2 ) Γ(ω+3

2 )

�
x

m2
P

�ω−1
2

+ (ω ↔ −ω)

�



Schwinger-Dyson equation (review)

The solution of differential equation which satisfies the IRBC looks like

Σ(x) = ξ mP F

�
1 + ω

2
,
1− ω

2
, 2,− x

m2
P

�
ω ≡

�
1− α∗

αcr
,    where

In the limit of x� m2
P

Σ(x) � ξ mP

�
Γ(ω)

Γ(ω+1
2 ) Γ(ω+3

2 )

�
x

m2
P

�ω−1
2

+ (ω ↔ −ω)

�

Inserting this into UVBC, 
we obtain the ralation between      and  m mP

m = ξ mP

�
Γ(ω)

Γ(ω+1
2 )2

�
Λ2

m2
P

�ω−1
2

+ (ω ↔ −ω)

�



Schwinger-Dyson equation (review)
Rewriting       in terms of the mass anomalous dimension,

we obtain

ω

γ∗ = 1− ω

�
= 1−

�
1− α∗

αcr

�
,

m/Λ = ξ

�
Γ(1− γ∗)
Γ( 2−γ∗

2 )2

�mP

Λ

�1+γ∗
+

Γ(−1 + γ∗)
Γ(γ∗

2 )2
�mP

Λ

�3−γ∗
�

This is a textbook fact,
( Refs:   V.A. Miransky,   “Dynamical Symmetry Breaking in Quantum Field Theory” )

Now, let us discuss implications of this

however, the importance of the second term in the 
context of hyperscaling relation hasn’t been discussed



Scaling violation

Hyperscaling and deviation from it

Rewriting       in terms of the mass anomalous dimension,
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Scaling violation

Hyperscaling and deviation from it

In what situation the solution approximates well 
the hyperscaling relation?
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Scaling violation

Hyperscaling and deviation from it

In what situation the solution approximates well 
the hyperscaling relation?

Rewriting       in terms of the mass anomalous dimension,

we obtain

ω

γ∗ = 1− ω

�
= 1−

�
1− α∗

αcr

�
,

m/Λ = ξ

�
Γ(1− γ∗)
Γ( 2−γ∗

2 )2

�mP

Λ

�1+γ∗
+

Γ(−1 + γ∗)
Γ(γ∗

2 )2
�mP

Λ

�3−γ∗
�

Note
α∗

γ∗

0 ←→ αcr

0 ←→ 1

when        , or equivallently,       is small since                        
mP

Λ
m

Λ 1 + γ∗ < 3− γ∗

but, it’s difficult direction for lattice simulations



Scaling violation

Hyperscaling and deviation from it

In what situation the solution approximates well 
the hyperscaling relation?

Rewriting       in terms of the mass anomalous dimension,

we obtain

ω

γ∗ = 1− ω

�
= 1−

�
1− α∗

αcr

�
,

m/Λ = ξ

�
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2 )2

�mP

Λ
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+

Γ(−1 + γ∗)
Γ(γ∗

2 )2
�mP

Λ

�3−γ∗
�

Note
α∗

γ∗

0 ←→ αcr

0 ←→ 1

when     is small since power suppression becomes strong, 
as well as the coefficient of the second term becomes small

γ∗

γ∗but, our (phenomenological) motivation was large      ...



Scaling violation

Hyperscaling and deviation from it

Rewriting       in terms of the mass anomalous dimension,

we obtain
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The message is:  we should keep the existence 
of the correction term in mind when we analyze 

data in practical situations



Scaling violation

Hyperscaling and deviation from it

Rewriting       in terms of the mass anomalous dimension,

we obtain

ω

γ∗ = 1− ω

�
= 1−

�
1− α∗

αcr

�
,

m/Λ = ξ

�
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�mP

Λ

�1+γ∗
+

Γ(−1 + γ∗)
Γ(γ∗

2 )2
�mP

Λ

�3−γ∗
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Note
α∗

γ∗

0 ←→ αcr

0 ←→ 1

The message is:  we should keep the existence 
of the correction term in mind when we analyze 

data in practical situations

What happens if we forget it ?



Scaling violation

m/Λ = ξ

�
Γ(1− γ∗)
Γ( 2−γ∗

2 )2

�mP

Λ

�1+γ∗
+

Γ(−1 + γ∗)
Γ(γ∗

2 )2
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Λ

�3−γ∗
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Consider

Hyperscaling correction

If there is no correction term, it gives 

The question is: how much it deviates from       

when the correction term exists

γ∗

γ∗

mP
∂

∂mP
(log m)− 1 ≡ γeff



Effective anomalous dimension SU(3) fundamental
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Effective anomalous dimension SU(3) fundamental
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γeff/γ∗
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mP /Λ

deviation is large when
mP /Λ −→ large

Nf −→ N cr
f



Finite-volume scaling

MH = L−1f (x)
where x = L m̂1/(1+γ∗)

When the correction term is important, what happens 
if we try to judge conformality, and extract the value 
of mass anomalous dimension from finite-volume 
hyperscaling relation?

For the purpose of studying this, we formulate the 
Schwinger-Dyson equation in a finite size spacetime, 
and generate data for various values of (L, m)

ˆ

ˆ ˆ



In the case of finite volume, we replace continuous 
momentum by the discrete one:

SD equation

Self-consistent equation for the 
full fermion propagator

� ∞

−∞
dp f(p) −→ 2π

L

∞�

n=−∞
f(pn)p −→ pn =

2πn

L
,

Then, do the iteration
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SU(3) gauge theory with 12 fundamental fermion
relation between             and           for various values ofm/ΛmP /Λ LΛ

LΛ = 12
LΛ = 16
LΛ = 20
LΛ = 25
LΛ = 30

We can obtain data
only for mp/Λ > O(0.1)

MH = L−1f (x)
where x = L m̂1/(1+γ∗)

Let’s do finite-volume scaling
by using these data

ˆ



SU(3) gauge theory with 12 fundamental fermion

Note:                   at IRFPγ∗ � 0.80

γeff = 0.5 ∼ 0.6 for mp/Λ > O(0.1)∼
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SU(3) gauge theory with 12 fundamental fermion

LΛ = 12
LΛ = 16
LΛ = 20
LΛ = 25
LΛ = 30

mP L

≡ L
�m

Λ

�1/(1+γ)

x

γ = 0.0

ˆ
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SU(3) gauge theory with 12 fundamental fermion

LΛ = 12
LΛ = 16
LΛ = 20
LΛ = 25
LΛ = 30

mP L

≡ L
�m
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�1/(1+γ)

x

γ = 0.1
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SU(3) gauge theory with 12 fundamental fermion

LΛ = 12
LΛ = 16
LΛ = 20
LΛ = 25
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SU(3) gauge theory with 12 fundamental fermion

LΛ = 12
LΛ = 16
LΛ = 20
LΛ = 25
LΛ = 30

mP L

≡ L
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γ = 0.3
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SU(3) gauge theory with 12 fundamental fermion
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SU(3) gauge theory with 12 fundamental fermion

LΛ = 12
LΛ = 16
LΛ = 20
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LΛ = 30
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SU(3) gauge theory with 12 fundamental fermion
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SU(3) gauge theory with 12 fundamental fermion
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SU(3) gauge theory with 12 fundamental fermion
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SU(3) gauge theory with 12 fundamental fermion

LΛ = 12
LΛ = 16
LΛ = 20
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SU(3) gauge theory with 12 fundamental fermion

LΛ = 12
LΛ = 16
LΛ = 20
LΛ = 25
LΛ = 30

mP L

≡ L
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x

γ = 1.0

ˆ
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SU(3) gauge theory with 12 fundamental fermion

LΛ = 12
LΛ = 16
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LΛ = 30
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SU(3) gauge theory with 12 fundamental fermion

LΛ = 12
LΛ = 16
LΛ = 20
LΛ = 25
LΛ = 30

mP L

≡ L
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x

γ = 2.0
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SU(3) gauge theory with 12 fundamental fermion

Note:                   at IRFPγ∗ � 0.80

γeff = 0.5 ∼ 0.6 for mp/Λ > O(0.1)∼

Scaling is good with        rather than γeff γ∗



SU(3) gauge theory with 12 fundamental fermion

Note:                   at IRFPγ∗ � 0.80

γeff = 0.5 ∼ 0.6 for mp/Λ > O(0.1)∼

Scaling is good with        rather than γeff γ∗

This is also an indication that the correction coming 
from a finite volume effect is negligible



SU(3) gauge theory with 12 fundamental fermion

Note:                   at IRFPγ∗ � 0.80

γeff = 0.5 ∼ 0.6 for mp/Λ > O(0.1)∼

Scaling is good with        rather than γeff γ∗

We have also confirmed similar results for Nf = 14, 16



Another question: 
  when the theory does not have an IRFP 
  (namely, in the chiral symmetry breaking phase ), 
  how and how much the scaling relation is violated?

We show two examples:
  SU(3),  9 flavor:  deeply broken
  SU(3),  11 flavor:  close to the critical flavor
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Summary

From the analytic form of relation between the bare quark mass and 
the physical quantity obtained from the SD equation, we showed the 
importance of the mass correction to the hyperscaling analysis

SD equation in a finite size spacetime was formulated, and finite-
volume scaling was studied by using numerical data in a self 
consistent manner



Summary

Possible scenarios (and possible confusions)

case 1: when the theory is deep in the hadronic phase

There is no confusion
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case 2: when the theory is in the hadronic phase, but close to
           the edge of the conformal window

One might observe approximate scaling 
behavior, and conclude that the theory is 
IR conformal...
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case 3: when the theory is in the conformal window, and data 
           are taken in a wide range of input bare mass

One might observe misalignment in the 
hyperscaling plot, because effective     is 
different for different mass regions... and 
those might look like not consistent with 
IR conformality
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Summary

case 4: when the theory is in the conformal window, and data 
           are taken in a rather small range of large bare mass
           region

One might observe good alignment in the 
hyperscaling plot, and obtain an effective 
value of    . However, it is very possible that 
mass corrections to the hyperscaling 
relations for different physical quantities are 
different, so one might obtain non-universal     
values of     for hyperscaling plots with 
different physical quantities...
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Summary

To judge the conformality, a combination of several analysis 
(ChPT,  running coupling,  etc.) is important

It might be natural that our comunity is confused by the 
hyperscaling results

Of course, the mass correction shown here might be just one of 
possible sources of confusion, but it is definitely important to 
keep this in mind especially when one’s simulations are limited in 
a large mass region


