Computing system at Belle II experiment

K.Hayasaka (KMI, Nagoya Univ.)
A chief researcher for Tau-Lepton Data Analysis Laboratory

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe
Experiments before LHC era

Keys for the success of the experiment

Collider experiment with a not-so-huge data sample

We need
• good collider
• good detector

2013/12/11
KMI2013
Modern experiments

Keys for the success of the experiment

Collider experiment with a huge data sample

We need
• good collider
• good detector as well as
good computing system
Good computing system?

Computing system

- High rate data-taking
- Huge data
- Many users

High luminosity accelerator
Detector with many channels
Big collaboration
Good computing system?

Computing system

Many high performance CPUs
Huge size storage

High rate Data-taking
Huge data
Many users

High luminosity accelerator
Detector with many channels
Big collaboration
Good computing system?

Computing system

Many high performance CPUs
Huge size storage

Impossible to be supplied by only one site!

High rate Data-taking
Huge data
Many users

High luminosity accelerator
Detector with many channels
Big collaboration
Good computing system?

Computing system

Many high performance CPUs
Huge size storage

Only one solution is a grid (distributed) computing!

High rate Data-taking
Huge data
Many users

High luminosity accelerator
Detector with many channels
Big collaboration
Roughly say, by gathering computing resources over the world, unify them and make them look like only one computer!

→ *We can have high-performance CPU and huge storage.*

Why it is called GRID?

→ Analogy to Power Grid
 - Don’t care which power plant generates electricity
 - Once you plug your equipment, you can get the electricity
 - Follow the standard. Shape of plug, voltage, frequency.

→ Computing Grid
 - Don’t care which resource center processes your data
 - Once you plug your computer, you can get the processing power
 - Follow the standard. Communication protocols.
Finally, 50ab⁻¹ will be collected.

Vertical β function: 5.9 mm \rightarrow 0.27/0.30 mm (x20)
Beam current: 1.7/1.4 A \rightarrow 3.6/2.6 A (x2)
\Rightarrow $L = 2 \times 10^{34}$ cm⁻²s⁻¹ \rightarrow 8×10^{35} cm⁻²s⁻¹ (x40)

SVD: 4 DSSD lyrs \rightarrow 2 DEPFET lyrs + 4 DSSD lyrs
CDC: small cell, long lever arm
ACC+TOF \rightarrow TOP+A-RICH
ECL: waveform sampling, pure CsI for end-caps
KLM: RPC \rightarrow Scintillator + SiPM (end-caps)
Estimation depends on the accelerator performance. Resources will be assigned to each country to satisfy this demand with the weight which is proportional to No. of the students to get PhD.

CPU
- 500k HEP Spec

TAPE
- 200PB

DISK
- 200PB
Belle II computing model

Just a 2-layered structure (Main & local sites)

PNNL = Pacific Northwest National Laboratory
Software framework for Belle II GRID

Distributed Infrastructure with Remote Agent Control
- Software framework to provide the common interface for the different-type computing resources (LCG, OSG)

ARDA Metadata Grid Application
- Metadata server

gbasf2: Belle II analysis framework for GRID
This is an interface for Belle II GRID like basf2. Seamlessly, we can use Belle II GRID as usual analysis on the local computer.
Very recently, Italy (Pisa, Napoli, Torino, Frascati…), Canada, Australia joined. China, Taiwan, Russia, India will join.

No other Japanese university have joined…

However, FNAL and so on are not Belle II members, they allow us to use their resources.
Belle II MC campaign

By generating huge number of MC events, check the performance of our GRID system and train the expert for the operation.

1st MC campaign (2013 Feb.28-Mar.20)
• Joined 11 GRID sites (~40kHepSpec x day)
• Generated 60M BB events (3M events/day)

2nd MC campaign (2013 Jul.22-Sep.8)
• Joined 13 GRID sites (~700kHepSpec x day)
• Generated 560M BB events (11M events/day)

3rd MC campaign (2014 Feb)
• Just planned
EMI3 middleware has been installed:
WN: Intel Xeon E5-2690 (6cores) x2 x10
 (= 30HepSPEC x10)
SE: 250TB lustre storage with StoRM

Other grid components:
CREAM (CE), StoRM(SE), top/site BDII, ARGUS, WMS, L&B, PROX.
They are working on the **virtual machine** to realize strong tolerance using Red Hat High Availability:
Checking heart beat and change the host server if it has a problem.

Host server for VM (KVM):
Intel Xeon E5-2630L (6cores)x2 x 6

Hayasaka:
Belle II grid steering team
Representative of the universities in Japan
We have joined 2nd Belle II MC campaign from 12th Aug. After 1 week operation, we have achieved the 3rd biggest contribution! (10\% of the total amounts of CPU resources)

- Stable operation
- Belle II dedicated

During it, totally, 45,000 jobs have been processed.
KMI gird site is the only site operated by the Physicist while the other sites are operated by the IT professionals. We can directly observe the behavior of the GRID software and understand what happens:

• Proxy problem → Sometimes job fails without any clear reason. Due to the long wait, proxy is expired. By making proxy’s lifetime long, it is solved.

• DIRAC problem → Sometimes DIRAC misrecognize the number of waiting jobs. Due to it, even when no jobs is fulfilled to computing node, no more jobs is submitted. By increasing the number of waiting jobs, “no-job-running-time” cannot appear.
• Belle II experiment = high luminosity experiment with a huge data sample → Need good accelerator and detector as well as high-performance computing system
• Grid computing can satisfy the requirements.

• KMI Tau-Lepton Data Analysis Laboratory joins Belle II grid.

 Having not so big resources, but by stable operation, we have achieved the big contribution to Belle II.
• KMI Belle II grid site is the only site the physicists operate while the IT professional operates other sites.
 We have solved several problems for the operation.
• KMI will lead Japanese computing team as a representative of the universities in Japan.