
Conjugate Gradient Solver for SU(2)
Staggered Fermion on GPU

Kenji Ogawa
Chung Yuan Christian University

Seminar at Kobayashi-Maskawa Institute
4th March. 2013

Outline

Motivation
Staggered Fermion

Conjugate Gradient Solver
GPU Computation

Example
Summary and Comments

Motivation

SU(2) Gauge Theory with many flavor
= Candidate of Beyond Standard Model

(Walking Techni-Color)

Strongly Interacting System
=> Lattice Simulation is useful tool

HMC Simulation & Measurement
=> Need to Solve Linear Equation s = Dx (x is unknown)

Conjugate Gradient or it’s modification is widely used.

GPU is effective for sparse matrix calculation

Staggered Fermion
Way out of Nielsen Ninomiya No-go theorem

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

sin(x)

γ1

γ2

γ3

γ4

1

γ1γ2γ3γ4

SF =
1

2

�

n,µ

ηµ(n)
�
χ̄(n)Uµ(n)χ(n+ µ̂)− χ̄(n)U†

µ(n− µ̂)χ(n− µ̂)
�
+M

�

n

χ̄(n)χ(n)

ηµ(n) = (−1)n1+n2+···+nµ−1

=>

U �
µ(n) = ηµ(n)Uµ(n)

SF =
1

2

�

n,µ

�
χ̄(n)U �

µ(n)χ(n+ µ̂)− χ̄(n)U �†
µ (n− µ̂)χ(n− µ̂)

�
+M

�

n

χ̄(n)χ(n)

Hyper Cube (16 DOF)
=>

Considered as 4 dirac
and “4 taste” q(x) =

�

ρi

γρ1γρ2γρ3γρ4χ(x+ ρ)

Even-Odd Preconditioning (Checkerboard)

�
m DEO

DOE m

�
=

�
1 0

DOE
1
m

1

��
m 0
0 m−DOE

1
m
DEO

��
1 DEO

0 1

�

Even Site:
(ix + iy + iz + it) % 2 =0

Inverse

Determinant

�
m DEO

DOE m

�−1

=

�
1 −DEO

0 1

��
m 0
0 m−DOE

1
m
DEO

�−1 �
1 0

−DOE
1
m

1

�

det

�
m DEO

DOE m

�
= det

�
m 0
0 m−DOE

1
m
DEO

�

Conjugate Gradient

d0 = r0 = b−Ax0

αi =
(ri, ri)

(di, Adi)

xi+1 = xi + αidi

ri+1 = ri − αiAdi

βi+1 =
(ri+1, ri+1)

(ri, ri)

di+1 = ri+1 + βi+1di

Solution

Update Direction

Residual

Initial Condition

Iteration i=0,1,2, ...

Coefficients are

1

2

3

4

5

b = Ax

Conjugate Gradient

d0 = r0 = b−Ax0

αi =
(ri, ri)

(di, Adi)

xi+1 = xi + αidi

ri+1 = ri − αiAdi

βi+1 =
(ri+1, ri+1)

(ri, ri)

di+1 = ri+1 + βi+1di

Solution

Update Direction

Residual

Initial Condition

Iteration i=0,1,2, ...

b = Ax

Example

αi =
(ri, ri)

(di, Adi)
xi+1 = xi + αidi

ri+1 = ri − αiAdi βi+1 =
(ri+1, ri+1)

(ri, ri)
di+1 = ri+1 + βi+1di

d0 = r0 = b−Ax0

x1

x2

x0 r0 r1
d1

d0

A =

�
1 2
2 5

�
b =

�
1
0

�
withb = Ax

(di, rj) = 0 for i < j (ri, rj) = 0 for i �= j

rN =0 This guarantees

Comments on b=Ax

It needs efforts to find the solution.
On the other hand,

It is very easy to check the solution.

This property is crucial for Mixed Precision CG

Concept of
Mixed

Precision Solver

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.005
-0.004
-0.003
-0.002
-0.001

 0
 0.001
 0.002
 0.003
 0.004
 0.005
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

difference of
star and square

of above

difference of
star and square

of above

sum of square

Defect Correction and Reliable Update

(di, rj) = 0 for i < j Is reset in defect correction

Convergence is faster for Reliable Update

Defect Correction
SP: CG Solver, with d0 = r0

DP: Sum SP solution to DP solution
DP: Calculate residual vector and set it as SP source

Reliable Update
SP: CG Solver, without refreshing d0
DP: Sum SP solution to DP solution

DP: Calculate residual vector and set it as SP source

GPU (Graphic Processor Units)

many core (~1000) works for SIMD
(Single Instruction Multiple Data) simultaneously

Originally Developed for Video Gamers

Nvidia’s recent product have several level of memory
with different size and access time to the computing cores

Coding with CUDA

CPU Code

for(int ii = 0 ; ii < n ; ii ++)
{
a[ii] = b[ii] + c * d[ii];
...
}

operation 1

operation 2

operation 3

parallelize
into

“thread”s
and “block”s

...

ii=0
ii=1
a[ii]=...

ii=n-1

...

computing cores on GPU

Scheduler in GPU
automatically assigns

 threads to cores in a effective way

Thread:
smallest unit
of operation
in CUDA.

thread ID

Tuning of GPU

Principle = Let processors works all time.
=> reduce the time to get / send data

Memory
Turn on/off L1 Cache, Texture, Shared Memory

Coallese
Reorder the data as GPU friendly

Magic Number (depend on the architecture)
Warp, Block Size,

Reordering the Operation
Recycle the data on the cache as much as possible

Coallece

core (threads)

global memory

2 access

8 access

Example of Mixed Precision CG

=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc): 1.00000000E+00
=== CG SINGLE PRECISION ===
----- S, T, U : 3.05123917E+09 2.17739184E+08 1.60231230E+07
----- S, T, U : 2.67133362E+02 3.03177528E+01 8.18141556E+00
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc): 3.75744317E-08
=== CG SINGLE PRECISION ===
----- S, T, U : 9.14439850E+01 8.18142605E+00 2.74593925E+00
----- S, T, U : 2.68391886E-04 2.98086998E-05 7.48642242E-06
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc): 3.43825294E-14
=== CG SINGLE PRECISION ===
----- S, T, U : 8.44834140E-05 7.48642378E-06 2.51462211E-06
----- S, T, U : 3.13231913E-10 3.60102989E-11 1.46738698E-11
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc): 6.73919755E-20
=== CG SINGLE PRECISION ===
----- S, T, U : 1.67335437E-10 1.46738732E-11 4.63271088E-12
----- S, T, U : 4.74928462E-16 5.84574362E-17 3.02788868E-17
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc): 1.39060504E-25
=== MIXED PRECISION CG CONVERGED ===
 Time-CG[sec] 1.340796

L24^3T48 Lattice, Beta=2.7 , aM = 0.25, Naive Staggered

100 SP Iteration

(di, Adi) (ri, ri)(ri−1, ri−1)

“Tesla” is used

Summary and Comments

Special Thanks, Aoyama-san (KMI)

1 GPU ~ 1 Node of Super Computer

SU(2) gauge theory
=> Candidate of Beyond Standard Moded

Lattice Simulation
=> Large Part is Solving Linear Problem of Dirac Operator

Speed up of Conjugate Gradient
Even Odd Preconditioning

Mixed Precision
Defect Correction, Reliable Update

