Conjugate Gradient Solver for SU(2)

 Staggered Fermion on GPU
Kenji Ogawa
 Chung Yuan Christian University

Seminar at Kobayashi-Maskawa Institute 4th March. 2013

Outline

Motivation

Staggered Fermion
Conjugate Gradient Solver
GPU Computation
Example
Summary and Comments

Motivation

$\mathrm{SU}(2)$ Gauge Theory with many flavor = Candidate of Beyond Standard Model (Walking Techni-Color)

Strongly Interacting System
=> Lattice Simulation is useful tool

HMC Simulation \& Measurement
=> Need to Solve Linear Equation s=Dx (x is unknown)
Conjugate Gradient or it's modification is widely used.
GPU is effective for sparse matrix calculation

Staggered Fermion

Way out of Nielsen Ninomiya No-go theorem

$S_{F}=\frac{1}{2} \sum_{n, \mu} \eta_{\mu}(n)\left[\bar{\chi}(n) U_{\mu}(n) \chi(n+\hat{\mu})-\bar{\chi}(n) U_{\mu}^{\dagger}(n-\hat{\mu}) \chi(n-\hat{\mu})\right]+M \sum_{n} \bar{\chi}(n) \chi(n)$ $\eta_{\mu}(n)=(-1)^{n_{1}+n_{2}+\cdots+n_{\mu-1}}$
=>
$\bar{S}_{F}=\frac{1}{2} \sum_{n, \mu}\left[\bar{\chi}(n) U_{\mu}^{\prime}(n) \chi(n+\hat{\mu})-\bar{\chi}(n) U_{\mu}^{\prime \dagger}(n-\hat{\mu}) \chi(n-\hat{\mu})\right]+M \sum_{n} \bar{\chi}(n) \chi(n)$

$$
U_{\mu}^{\prime}(n)=\eta_{\mu}(n) U_{\mu}(n)
$$

Hyper Cube (16 DOF)

$$
=>
$$

Considered as 4 dirac and "4 taste"

Even-Odd Preconditioning (Checkerboard)

Even Site:

(ix $+i y+i z+i t) \% 2=0$

$$
\left(\begin{array}{cc}
m & D_{E O} \\
D_{O E} & m
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
D_{O E} \frac{1}{m} & 1
\end{array}\right)\left(\begin{array}{cc}
m & 0 \\
0 & m-D_{O E} \frac{1}{m} D_{E O}
\end{array}\right)\left(\begin{array}{cc}
1 & D_{E O} \\
0 & 1
\end{array}\right)
$$

Inverse
$\left(\begin{array}{cc}m & D_{E O} \\ D_{O E} & m\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & -D_{E O} \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}m & 0 \\ 0 & \left.\begin{array}{cc}m-D_{O E} \frac{1}{m} D_{E O}\end{array}\right)^{-1}\left(\begin{array}{cc}1 & 0 \\ -D_{O E} \frac{1}{m} & 1\end{array}\right)\end{array}\right.$
Determinant

$$
\operatorname{det}\left(\begin{array}{cc}
m & D_{E O} \\
D_{O E} & m
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
m & 0 \\
0 & m-D_{O E} \frac{1}{m} D_{E O}
\end{array}\right)
$$

Conjugate Gradient $b=A x$

Initial Condition

$$
d_{0}=r_{0}=b-A x_{0}
$$

Iteration $\mathrm{i}=0, \mathrm{I}, 2, \ldots$

$$
\begin{array}{ccc}
x_{i+1}=x_{i}+\alpha_{i} d_{i} & 2 & \text { Solution } \\
d_{i+1}=r_{i+1}+\beta_{i+1} d_{i} \cdots & 5 \text { Update Direction } \\
r_{i+1}=r_{i}-\alpha_{i} A d_{i} & \cdots & 3
\end{array}
$$

Coefficients are

$$
\begin{align*}
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(d_{i}, A d_{i}\right)} \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \tag{4}
\end{align*}
$$

Conjugate Gradient $b=A x$

Initial Condition

$$
d_{0}=r_{0}=b-A x_{0}
$$

Iteration $\mathrm{i}=0, \mathrm{I}, 2, \ldots$

$$
\begin{array}{rlr}
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(d_{i}, A d_{i}\right)} & \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} & \text { Residual } \\
x_{i+1} & =x_{i}+\alpha_{i} d_{i} & \text { Solution } \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} & \\
d_{i+1} & =r_{i+1}+\beta_{i+1} d_{i} & \\
\text { Update Direction }
\end{array}
$$

Example $b=A x$ with $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right) \quad b=\binom{1}{0}$

$$
\begin{gathered}
d_{0}=r_{0}=b-A x_{0} \quad \alpha_{i}=\frac{\left(r_{i}, r_{i}\right)}{\left(d_{i}, A d_{i}\right)} \quad x_{i+1}=x_{i}+\alpha_{i} d_{i} \\
r_{i+1}=r_{i}-\alpha_{i} A d_{i} \quad \beta_{i+1}=\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \quad d_{i+1}=r_{i+1}+\beta_{i+1} d_{i} \\
\times 2
\end{gathered}
$$

$$
\left(d_{i}, r_{j}\right)=0 \text { for } i<j \quad\left(r_{i}, r_{j}\right)=0 \text { for } i \neq j
$$

This guarantees $\quad r_{N}=0$

Comments on $\mathrm{b}=\mathrm{Ax}$

It needs efforts to find the solution.
On the other hand,
It is very easy to check the solution.

This property is crucial for Mixed Precision CG

Defect Correction and Reliable Update

Defect Correction
SP: CG Solver, with $\mathrm{d}_{0}=\mathrm{r}_{0}$
DP: Sum SP solution to DP solution
DP: Calculate residual vector and set it as SP source

$$
\left(d_{i}, r_{j}\right)=0 \text { for } i<j \text { Is reset in defect correction }
$$

Reliable Update
SP: CG Solver, without refreshing d_{0} -
DP: Sum SP solution to DP solution
DP: Calculate residual vector and set it as SP source

Convergence is faster for Reliable Update

GPU (Graphic Processor Units)

Originally Developed forVideo Gamers many core (~1000) works for SIMD
(Single Instruction Multiple Data) simultaneously
Nvidia's recent product have several level of memory with different size and access time to the computing cores

Coding with CUDA

CPU Code

Tuning of GPU

Principle $=$ Let processors works all time. => reduce the time to get / send data

Memory
Turn on/off LI Cache, Texture, Shared Memory

Coallese
 Reorder the data as GPU friendly

Magic Number (depend on the architecture) Warp, Block Size,

Reordering the Operation
Recycle the data on the cache as much as possible

Coallece

global memory

Example of Mixed Precision CG

L24^3T48 Lattice, Beta=2.7, aM $=0.25$, Naive Staggered
 === DOUBLE PRECISION ===

----- (vR,vR)/(vSrc,vSrc): $1.00000000 \mathrm{E}+00$ $===\mathrm{CG}$ SINGLE PRECISION
---- S, T, U : 3.051239
---- S, T, U : 2.67133
$===$ DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc): 3.75744317E-08
=== CG SINGLE PRECISION ===
$\begin{array}{lllll}\text {----- S, T, U : } & 9.14439850 \mathrm{E}+01 & 8.18142605 \mathrm{E}+00 & 2.74593925 \mathrm{E}+00 \\ -----S, T, U & 2.68391886 \mathrm{E}-04 & 2.98086998 \mathrm{E}-05 & 7.48642242 \mathrm{E}-06\end{array}$
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc): $3.43825294 \mathrm{E}-14$
=== CG SINGLE PRECISION ===
----- S, T, U : 8.44834140E-05 7.48642378E-06 2.51462211E-06
_---- S, T, U : $3.13231913 \mathrm{E}-10 \quad 3.60102989 \mathrm{E}-11 \quad 1.46738698 \mathrm{E}-11$
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc): 6.73919755E-20
=== CG SINGLE PRECISION ===
----- S, T, U : $1.67335437 \mathrm{E}-10 \quad 1.46738732 \mathrm{E}-11 \quad 4.63271088 \mathrm{E}-12$
----- S, T, U : $4.74928462 \mathrm{E}-16 \quad 5.84574362 \mathrm{E}-17 \quad 3.02788868 \mathrm{E}-17$
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc): $1.39060504 \mathrm{E}-25$
=== MIXED PRECISION CG CONVERGED ===
Time-CG[sec] 1.340796

Summary and Comments

SU(2) gauge theory
=> Candidate of Beyond Standard Moded
Lattice Simulation
=> Large Part is Solving Linear Problem of Dirac Operator
Speed up of Conjugate Gradient
Even Odd Preconditioning
Mixed Precision
Defect Correction, Reliable Update
I GPU ~ I Node of Super Computer
Special Thanks, Aoyama-san (KMI)

