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Motivation

SU(2) Gauge Theory with many flavor 
= Candidate of Beyond Standard Model 

(Walking Techni-Color) 

Strongly Interacting System
=> Lattice Simulation is useful tool

HMC Simulation & Measurement
=> Need to Solve Linear Equation  s = Dx (x is unknown) 

Conjugate Gradient or it’s modification is widely used.

GPU is effective for sparse matrix calculation



Staggered Fermion
Way out of Nielsen Ninomiya No-go theorem
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Even-Odd Preconditioning (Checkerboard)
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Conjugate Gradient

d0 = r0 = b−Ax0

αi =
(ri, ri)

(di, Adi)

xi+1 = xi + αidi

ri+1 = ri − αiAdi

βi+1 =
(ri+1, ri+1)

(ri, ri)

di+1 = ri+1 + βi+1di

Solution

Update Direction

Residual

Initial Condition

Iteration i=0,1,2, ...

Coefficients are
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b = Ax
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Example

αi =
(ri, ri)

(di, Adi)
xi+1 = xi + αidi

ri+1 = ri − αiAdi βi+1 =
(ri+1, ri+1)

(ri, ri)
di+1 = ri+1 + βi+1di

d0 = r0 = b−Ax0
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withb = Ax

(di, rj) = 0 for i < j (ri, rj) = 0 for i �= j

rN =0 This guarantees 



Comments on b=Ax

It needs efforts to find the solution.
On the other hand,

It is very easy to check the solution.

This property is crucial for Mixed Precision CG



Concept of
Mixed 

Precision Solver
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Defect Correction and Reliable Update

(di, rj) = 0 for i < j Is reset in defect correction

Convergence is faster for Reliable Update

Defect Correction
SP: CG Solver, with d0 = r0 

DP: Sum SP solution to DP solution 
DP: Calculate residual vector and set it as SP source 

Reliable Update
SP: CG Solver, without refreshing d0  
DP: Sum SP solution to DP solution 

DP: Calculate residual vector and set it as SP source 



GPU (Graphic Processor Units)

many core (~1000) works for SIMD 
(Single Instruction Multiple Data) simultaneously

Originally Developed for Video Gamers

Nvidia’s recent product have several level of memory 
with different size and access time to the computing cores



Coding with CUDA

CPU Code

for( int ii = 0 ; ii < n ; ii ++ )
{
a[ii] = b[ii] + c * d[ii];
...
}

operation 1

operation 2

operation 3

parallelize 
into 

“thread”s
and “block”s

...

ii=0
ii=1
a[ii]=...

ii=n-1

...

computing cores on GPU

Scheduler in GPU 
automatically assigns

 threads to cores in a effective way

Thread:
smallest unit 
of operation
in CUDA.

thread ID



Tuning of  GPU

Principle = Let processors works all time.
=> reduce the time to get / send data

Memory
Turn on/off L1 Cache, Texture, Shared Memory

Coallese
Reorder the data as GPU friendly 

Magic Number (depend on the architecture)
Warp, Block Size, ....

Reordering the Operation
Recycle the data on the cache as much as possible



Coallece

core (threads) 

global memory

2 access

8 access



Example of  Mixed Precision CG

=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc):   1.00000000E+00 
=== CG SINGLE PRECISION ===
----- S, T, U :   3.05123917E+09    2.17739184E+08    1.60231230E+07 
----- S, T, U :   2.67133362E+02    3.03177528E+01    8.18141556E+00 
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc):   3.75744317E-08 
=== CG SINGLE PRECISION ===
----- S, T, U :   9.14439850E+01    8.18142605E+00    2.74593925E+00 
----- S, T, U :   2.68391886E-04    2.98086998E-05    7.48642242E-06 
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc):   3.43825294E-14 
=== CG SINGLE PRECISION ===
----- S, T, U :   8.44834140E-05    7.48642378E-06    2.51462211E-06 
----- S, T, U :   3.13231913E-10    3.60102989E-11    1.46738698E-11 
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc):   6.73919755E-20 
=== CG SINGLE PRECISION ===
----- S, T, U :   1.67335437E-10    1.46738732E-11    4.63271088E-12 
----- S, T, U :   4.74928462E-16    5.84574362E-17    3.02788868E-17 
=== DOUBLE PRECISION ===
----- (vR,vR)/(vSrc,vSrc):   1.39060504E-25 
=== MIXED PRECISION CG CONVERGED ===
 Time-CG[sec]   1.340796 

L24^3T48 Lattice, Beta=2.7 ,  aM = 0.25, Naive Staggered

100 SP Iteration

(di, Adi) (ri, ri)(ri−1, ri−1)

“Tesla” is used



Summary and Comments

Special Thanks,  Aoyama-san (KMI)

1 GPU ~ 1 Node of Super Computer

SU(2) gauge theory 
=> Candidate of Beyond Standard Moded

Lattice Simulation
=> Large Part is Solving Linear Problem of  Dirac Operator

Speed up of Conjugate Gradient
Even Odd Preconditioning 

Mixed Precision
Defect Correction, Reliable Update


