Possible Resolution to the Direct Photon Puzzle

Kobayashi-Maskawa Institute

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe for the Origin of Particles and the Universe Department of Physics, Nagoya University

H-lab (Quark-Hadron Theory Group) Chiho NONAKA

In collaboration with

Kazunori ITAKURA (KEK) and Hirotsugu FUJII (Tokyo U.)

May 10, 2017@KMI topics

What is the QGP?

Quark-Gluon Plasma

• Quarks and gluons at extreme conditions

High temperature and/or high density

Т

What is the QGP?

Quark-Gluon Plasma

- Quarks and gluons at extreme conditions
 - Early Universe

Т

What is the QGP?

Quark-Gluon Plasma

• Quarks and gluons at extreme conditions

Т

- Relativistic Heavy Ion Collisions : Little Bang

What is the sQGP?

Quark-Gluon Plasma

• Quarks and gluons at extreme conditions

Relativistic Heavy Ion Collisions

Т

Heavy Ion Collisions

Heavy Ion Coll STAR@RHIC	isions@C	QM2017	ALICE@LHC 2017
	p+p,		Perfe () works) Perfe () works) Distance Perfe () works) Distance Perfe () works) Distance Perfe () works) Distance Perfe () works) Distance Perfe () works) Distance Perfe () works) Perfe () works) Distance Perfe () works) Perfe () works) Perf
Au+Au(Beam Energy Scan) 7.7, 11.5, 19.8, 27, 39	u+Au, He+Au U+U, Au+Au, 200	Pb+Pb 2760	Pb+Pb 5020 GeV
	RHIC	LHC	$\sqrt{s_{NN}}$

QGP Production?

Development of hydrodynamic model

The state-of-the-art hydrodynamic model

+ photon production processes except decay photons

The results are smaller than experimental data at RHIC and LHC C. NONAKA

The state-of-the-art hydrodynamic model

+ photon production processes except decay photons

The results are smaller than experimental data at RHIC and LHC C. NONAKA

Photon Production in HIC

Radiative Recombination $e^- + p \rightarrow H + \gamma$ with Itakura and Fujii

- A fundamental process in plasma physics and astrophysics
- Photon emission is necessary to compensate energy difference between initial (continuum) state and final (bound) state in "free-bound" transition

Examples:

- glow discharge
- "recombination" in the early universe
- continuum spectrum from Nebula

Similar processes in nuclear reaction in the sun <u>pp chain</u> $D + p \rightarrow {}^{3}He + \gamma$ ${}^{3}He + {}^{4}He \rightarrow {}^{7}Be + \gamma$, etc <u>CNO cycle</u> $p + {}^{12}C \rightarrow {}^{13}N + \gamma$ $p + {}^{13}C \rightarrow {}^{14}N + \gamma$, etc

Radiative Recombination in QGP

Possible resolution to the direct photon puzzle

- FLOW: Photon emission at hadronization process
 - Photon's flow is as strong as hadrons' flow.
- **YEILD**: A photon is produced from pairing of hadrons
 - Radiative recombination brings enhancement of photon yield.

Radiative Recombination in QGP

- Non perturbative process
- Not possible to use the inverse process
- Not equilibrium process

Recombination

- Baryon/Meson rations

. NONAKA

- Nuclear modification factors
- Quark number scaling in elliptic flow

 $\sqrt{s_{NN}}=200~{\rm GeV}$

Caveat: Braking of quark number scaling is observed at LHC.

Recombination

– Baryon/Meson rations

C. NONAKA

- Nuclear Modification factors
- Quark number scaling in elliptic flow
- Entropy and energy conservation

ReCo with Photon Emission

Resonance-like state is produced through the recombination model.

Photons are emitted from decay of the resonance particle.

$$E_{\gamma} \frac{dN_{\gamma}}{d^{3}k_{\gamma}} = \mathcal{K} \int dM_{*} \rho(M_{*}) \int d^{3}P \left(\frac{dN_{M_{*}}}{d^{3}P}\right) \left(\mathcal{E}_{\gamma} \frac{dn_{\gamma}(M_{*}, P)}{d^{3}k_{\gamma}}\right)$$

Spectral function of resonance state

Centrality Dependence @RHIC

Photon's P_T Spectra @ RHIC

Overall factor κ =0.2 is determined at central collision.

$$T_{eff}^{M,\gamma} = \left(1 \pm \frac{M^2}{M_*^2}\right) \sqrt{\frac{1+v_T}{1-v_T}} T_h \quad \frac{T_{eff}^M}{T_{eff}^\gamma} = \frac{M_*^2 + M^2}{M_*^2 - M^2} \sim 1.1 \quad \begin{array}{c} \sim 1.06 \\ \text{(numerical calculation)} \end{array}$$

- P_T spectra photon from 2 to 5 GeV show good agreement with experimental data.
- Photon's effective temperature decreases with increasing M_{*}.
 C. NONAKA

- Photon's v₂ is as large as meson's v₂.
- Small momentum difference is consistent with scaling ($T^M/T^{\gamma}=1.06$)

$$v_2^M(k) \sim v_2^{M_*} \left(\frac{M_*^2}{M_*^2 + M^2}k\right) \quad v_2^{\gamma}(k^{\gamma}) \sim v_2^{M_*} \left(\frac{M_*^2}{M_*^2 - M^2}k^{\gamma}\right)$$

Violation of quark number scaling appears in high P_T region

Photon's P_T Spectra and v₂ @LHC

 $\begin{array}{ll} \mbox{Transverse flow} & v_T=0.65 \\ \mbox{Hadronization temperature} & T_h=155 \ {\rm MeV} \\ \mbox{Fugacity} & \gamma_{u,d}=\gamma_{\bar{u},\bar{d}}=1 \end{array}$

- High-energy heavy ion collisions at RHIC and LHC
 - Experimental data and the QCD phase diagram
 - Development of hydrodynamic model
- We propose a possible resolution to the photon puzzle
 - Radiative recombination
 - Large yield and v₂ of γ
 - Energy conservation in the recombination model
- Working in progress
 - Include other resonance-like states
 - Effects of baryon
 - Check the violation of quark number scaling
 - Dileptons

