Dynamical symmetry breaking in nonperturbative string theory

0

Tsunehide Kuroki (Division of String Theory and Mathematics, KMI) @KMI Topics, 2013/7/10

String theory as quantum gravity

Fundamental requirements of string theory:

- quantum gravity:
 - consistent quantum (field) theory
 - > determines space-time itself
 - reduced to the Einstein gravity
 - → four-dimensional Minkowski space (including its signature?),
 standard model of universe
- unified theory:
 - standard model of particle physics

Perturbative string as a candidate

- includes both gauge boson (open string), and graviton (closed string)
- (perturbatively) consistent quantum theory
- nonrenormalizability of gravity
 - \rightarrow extended object

(almost) unique ultimate theory respecting quantum theory (not Einstein gravity)

Virtues of perturbative string essence: local scale invariance on WS

- st-duality
 - > UV-finiteness
- perturbative QG

- > graviton in the spectrum (cf. QCD string)
- unification of external field & spectrum

> desirable as unified theory

Faults of perturbative string

- local scale invariance
- background EOM (Einstein eq.) $S = -T \int d^2 \sigma \sqrt{-h} h^{\alpha\beta} \partial_\alpha X^\mu \partial_\beta X^\nu G_{\mu\nu}(X)$ \rightarrow essentially perturbation theory on-shell (1st quantization) \geq anomaly \rightarrow ten dimensions (critical dim.) infinite # of perturbative vacua serious as quantum gravity \rightarrow nonpert. formulation: abandon local scale inv, even WS picture!

Nonpert. effect seen by perturbative string

large order behavior

$$F(g_s^2) = \sum_{n=-1}^{\infty} C_n g_s^{2n}, \qquad C_n \sim (2n)! C^{-2n} \quad (n \to \infty)$$

cf. field theory: $C_n \sim n! C^{-2n}$ $(n \to \infty)$ suggests nonpert. effect $F \sim e^{-C/g_s}$ in spite of closed SFT action [Shenker 1991] $S[\Psi] = \frac{1}{g_s^2} \int (\Psi K \Psi + \Psi^3 + \Psi^4 \cdots)$

cf.
$$S = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} \rightarrow F_{\text{inst}} \sim e^{-C/g^2}$$

D-branes as nonpert. effect (1)

- classical solution of closed SFT (soliton)
- black brane solution at low energy
- Dirichlet b.c. for open string
- st-duality
 - \rightarrow source of closed string

D-branes as nonpert. effect (2)

• dynamics: open string oscillation [Polchinski 1995]

 $\sim C/g_s$

action: open string disk amplitude

- tension $\sim C/g_s$
- result of st-duality:

large order behavior, nonpert. effect.: reflects difference from particle theory

Toward nonpert. formulation

- nonpert. effect does not always suggest nonpert. formulation itself
 (D-brane: within perturbation theory)
- existence of D-particle, D-instanton
 "quantization" of soliton
 - tractable thanks to st-duality:
 - (a kind of) gauge theory (not BH dynamics)

• string duality:

F-string ⇔ D-brane (as SG ⇔ MT) in some string theory, condensation of string ~ D-brane [花早石川黒松多 2004]

Candidates so far

• discretization of WS \rightarrow matrix model

$$S = N \mathrm{tr} \, \left(\frac{1}{2} \phi^2 + \frac{g}{4} \phi^4 \right)$$

critical pt.: + large-N lim. (double scaling lim.) \rightarrow smooth surface (ϕ : technical tool for WS)

• D-brane matrix model: Yang-Mills type gauge theory (target sp. pic.) $S = \int d^{p+1}x \left(-\frac{1}{4g^2} \operatorname{tr} \left(F_{\mu\nu}F^{\mu\nu} + D_{\mu}\phi^i D^{\mu}\phi^i + \cdots \right) \right)$

 $A_{\mu}(x)$: gauge field on brane, $\phi^{i}(x)$: position

Virtues & faults: WS discretization

virtues

reproduce all order perturbation theory
 nonpert. effect ~ eigenvalue at saddle

 \sim tunneling of eigenvalue

 \rightarrow WS boundary

 e^{-C/g_s}

nonpert. exact free energy (Painlevé eq.)

• faults

 \succ available only in $D \leq 2$ (noncritical string)

> no space-time SUSY

Virtues & faults: D-brane matrix model

virtues

captures D-brane dynamics (@ low energy) many examples:

force, scattering, decay, recombination...

- concrete example as (classical) gravity: AdS/CFT: [∃] region where closed string can be described by gauge theory (st-duality)
- target sp. symm. (sometimes nontrivially)
- faults

F-string DOF, scattering amp., st-duality

Why D-brane MM can contain gravity

D-brane MM \leftarrow quantization of massless open string DOF \rightarrow should be valid only for D-brane dynamics @ low energy far from <u>full nonpert. closed</u> string theory e.g.

IIB matrix model … D(-1)-brane (0d) [IKKT 1997] Matrix theory … D0-brane (1d MQM) [BFSS 1997] Matrix string th. … D-string (2d SYM) [DVV 1997] AdS/CFT (strongest) … D3-brane (4d SYM) [Maldacena 1998]

Key: symmetries (1)

- SUSY
 - e.g. IIBMM
 - > maximal SUSY: graviton multiplet
 - "emergent" 10d gravity
 - (remnant of st-duality)

$$\phi^{i} = \begin{pmatrix} & & \text{int} \\ \hline \text{int} & & \end{pmatrix}$$
$$\phi^{9} = \begin{pmatrix} 0 & & \text{int} \\ \hline \text{int} & & r \end{pmatrix}$$

 $\xrightarrow{} \phi^9$

 r^6

one-loop in gauge th. in background \rightarrow

Key: symmetries (2)

 isometry & conformal symmetry > AdS_5/CFT_4 : SO(4,2) \succ other symm. ((broken) chiral symm. ...) \rightarrow ensure validity low energy effective action (w/ small # of parameters) (Note: even if symmetries do not agree, some quantities can be well described by their peculiarity (universality, BPS, \cdots)) usually, only very special closed string can be reproduced …

(Maybe) Promising candidates

• IIBMM

> D(-1)-brane low energy effective action

> WS formulation of Schild gauge

$$\begin{split} S_n &= -\int d^2\sigma \, e \left[\frac{1}{e^n} \left\{ -\frac{T^2}{2} \underbrace{\left(\epsilon^{\alpha\beta} \partial_\alpha X^\mu \partial_\beta X_\mu \right)^2}_{2 \det_{\alpha\beta}(\partial_\alpha X^\mu \partial_\beta X_\mu)} \right\}^{\frac{n}{2}} + n - 1 \right] \\ n &= 1: \qquad \text{NG} \qquad S = -m \int ds \sqrt{-\dot{X}^2} \\ n &= 2: \qquad \text{Schild} \qquad S = -\frac{1}{2} \int ds \left(\frac{1}{e} (-m^2 \dot{X}^2) + e \right) \\ \text{gauge fix:} \quad \to S = -\frac{T^2}{2} \int d^2\sigma \left\{ X^\mu, X^\nu \right\}^2 \\ \quad \to S = \beta \operatorname{tr}_N \left[A^\mu, A^\nu \right]^2: \text{ Od SYM} \end{split}$$

0-dim. SYM can be regarded as
▶ D(-1)-brane low energy effective action
▶ matrix reg. of F-string in Schild gauge

- c = 1 matrix reloaded [McGreevy Verlinde 2003]
 - > MQM: WS discretization

of D = 2 string

- $S = \beta \int dt \operatorname{tr} \left(\frac{1}{2} \dot{U}(t)^2 V(U(t)) \right)$ with $\beta \to \beta_c, \quad N \to \infty$
- LEEE of unstable D0-brane

Strings from Tachyons:

The c = 1 Matrix Reloaded

John McGreevy and Herman Verlinde

Department of Physics, Princeton University, Princeton, NJ 08544

Abstract

We propose a new interpretation of the c=1 matrix model as the world-line theory of N unstable D-particles, in which the hermitian matrix is provided by the non-abelian open string tachyon. For D-branes in 1+1-d string theory, we find a direct quantitative match between the closed string emission due to a rolling tachyon and that due to a rolling eigenvalue in the matrix model. We explain the origin of the double-scaling limit, and interpret it as an extreme representative of a large equivalence class of dual theories. Finally, we define a concrete decoupling limit of unstable D-particles in IIB string theory that reduces to the c=1 matrix model, suggesting that 1+1-d string theory represents the near-horizon limit of an ultra-dense gas of IIB D-particles.

Should perturbative string be realized?

- D-brane MMs (SYMs): difficult to reproduce pert. string amplitude
- → they must realize F-string, st-duality? they should contain 10d gravity? recall def. of quantum gravity: well-defined quantum th. + 4-dim. EH @ LE (cf. LGT: allows weak coupling exp.)
 desirable:

1/N-expansion = perturbative exp. of F-string
 double scaling limit = nonperturbative string theory
 (cf. noncritical string)

SUSY DW MM ← new e.g. of "desirable" one

Dynamical symmetry breaking in nonpert. string theory in "desirable" scenario.

- > 1/N-expansion: perturbative (w.r.t. g_s) exp. symm. (in particular SUSY) is inevitable
- > double scaling limit: nonpert. string theory
 - \rightarrow two standard models @ LE
 - \rightarrow no symmetries!
- ... MM or SYM with symm. preserved @ all orders in 1/N-exp. but gets broken in the DSL

Examples of DSB (1)

- rotational symm. in IIBMM: 0-dim. SYM
 S = 1/g² tr (-1/4 [A_μ, A_ν]² + 1/2 ψ̄Γ^μ[A_μ, ψ])
 manifest SO(10) symm.
 eigenvalues of A_μ : space-time pts
 → originally 10-dim. flat sp.

 mean field approx.
- mean field approx. (adding $M_{\mu} \text{tr} (A_{\mu}A_{\mu})$) $\rightarrow T_{\mu\nu} = \left\langle \frac{1}{N} \text{tr} (A_{\mu}A_{\nu}) \right\rangle$: 10 eigenvalues

→ four-dim. space "emerges" dynamically

Example of DSB (2)

• SUSY DW MM:

[T.K. Sugino 2013] [Endres T.K. Sugino Suzuki]

$$S = N \operatorname{tr} \left(\frac{1}{2} B^2 + i B (\phi^2 - \mu^2) + \bar{\psi} (\phi \psi + \psi \phi) \right)$$

w/ nilpotent SUSY's we have recently shown that: \succ in $N \rightarrow \infty$ this MM reproduces several types of tree level two-point functions of 2D type IIA superstring theory: reproduce perturbative string (although in 0-dim.!) \geq SUSY's are broken in the DSL via an isolated eigenvalue as $\, \sim \, e^-$

Virtues & faults of our model

virtues

reproduces tree level string amplitude

- \rightarrow expected st-duality
- > SUSY is preserved at all orders in 1/N-exp.
- First e.g. of dynamical & nonperturbative breaking of SUSY in string theory

faults

Ioses <u>both</u> WS picture & D-brane picture
 poor target space and fields
 breaking of nilpotent SUSY is significant?