A Stringy Mechanism for A Small Cosmological Constant

- X. Chen, Shiu, Sumitomo, Tye, arxiv:1112.3338, JHEP 1204 (2012) 026
- Sumitomo, Tye, arXiv:1204.5177
- Sumitomo, Tye, in preparation

Yoske Sumitomo IAS, The Hong Kong University of Science and Technology

Contents

- Motivation
- Moduli stabilization ~random approach~
- Moduli stabilization ~concrete models~
- Statistical approach
- More on product distribution
- Multi-moduli analyses
- Summary & Discussion

Motivation

Dark Energy

Late time expansion

Awarded Nobel Prize in 2011!

Acceleration

$$\frac{3\ddot{a}}{a} = -4\pi G(3p + \rho)$$
The universe is accelerating if $\rho < -3p$
or pressure-density ratio: $w \equiv \frac{p}{\rho} < -\frac{1}{3}$
Cosmological scale
EOM (Friedmann eq.)
 $H = \frac{\dot{a}}{a} = \sqrt{\frac{8\pi G\rho}{3}}$ for flat background
Observationally $\Omega_{\Lambda} \sim 0.7$ \longrightarrow DE domination
 $\rho_{0} = \frac{3H_{0}^{2}}{8\pi G}\Omega_{\Lambda} \sim 10^{-122}M_{P}^{4}$

Two possibilities

• For **cosmological constant** WMAP+BAO+SN suggests $w = -1.10 \pm 0.14$ (64% CL) for a flat universe $\Omega_k = -\frac{k}{a_0^2 H_0^2} = 0$

For time-varying DE

WMAP+BAO+H0+D∆t+SN suggests

$$w = w_0 + w_a(1 - a(t))$$

$$w_0 = -0.93 \pm 0.13$$

 $w_a = -0.41^{+0.72}_{-0.71}$ (68% CL)

e.g. Stringy Quintessence models

Stringy Landscape

There are many types of vacua in string theory, as a result of a variety of (Calabi-Yau) compactification.

 $ds_{10}^2 = ds_4^2 + ds_6^2$

A class of Calabi-Yau gives Swiss-cheese type of volume.

$$\mathcal{V}_6 = \gamma_1 (T_1 + \bar{T}_1) - \sum_{i=2} \gamma_i (T_i + \bar{T}_i),$$

E.g. workable models: [Denef, Douglas, Florea, 04]

• $\mathbb{P}^4_{[1,1,1,6,9]}$: $h^{1,1} = 2, h^{2,1} = 272$

•
$$\mathcal{F}_{11}$$
: $h^{1,1} = 3$, $h^{2,1} = 111$

•
$$\mathcal{F}_{18}$$
: $h^{1,1} = 5$, $h^{2,1} = 89$

All can be stabilized (a la KKLT), but in various way.

Any implication of multiple vacua?

Keys in this talk

Product distribution

We apply this mechanism for cosmological constant (CC)

Before proceeding...

I have to say

we **don't** solve cosmological constant problem completely.

But here,

we introduce a tool to make cosmological constant smaller, maybe up to a certain value.

"A Stringy Mechanism for A Small Cosmological Constant"

Moduli stabilization ~random approach~

Gaussian suppression on stability

Various vacua in string landscape

Aass matrix given randomly at extrema

How likely stable minima exist?

Positivity of mass matrix \longrightarrow Positivity of Hessian $\partial_{\phi_i} \partial_{\phi_j} V \Big|_{\min}$

Real/complex symmetric matrix

• Gaussian Orthogonal Emsemble
[Aazami, Easther, 05], [Dean, Majumdar, 08], [Borot, Eynard, Majumdar, Nadal, 10]

$$Z = \int dM_{ij} e^{-\frac{1}{2}\text{tr }M^2}, M = M^T$$

$$\mathcal{P} = \exp\left[-\frac{\ln 3}{4}N^2 + \frac{\ln(2\sqrt{3}-3)}{2}N - \frac{1}{24}\ln N - 0.0172\right]_{10^{-5}}^{10^{-7}}$$

$$\frac{\ln 3}{4} \sim 0.275, \frac{\ln(2\sqrt{3}-3)}{2} \sim -0.384$$

Hierarchical setup

• Assuming hierarchy between diag. and off-diag. comp.

13

Actual models are likely to have minima at AdS.

+ uplifting term toward dS vacua.

Hessian = A + B where A: diagonal positive definite with σ_A B: GOE with σ_B

Still Gaussianly suppressed, but a chance for dS

$$\mathcal{P} = a \ e^{-bN^2 - cN}$$

[X. Chen, Shiu, YS, Tye, 11]

When applying a model in type IIA, quite tiny chance remains.

• Assuming more randomness in SUGRA at SUSY AdS

 $\mathcal{P} = e^{-bN^2}$

[Bachlechner, Marsh, McAllister, Wrase, 12]

Moduli stabilization ~concrete models~

Type IIB

Sources: H_3 , F_1 , F_3 , \tilde{F}_5 , dilaton, localized sources Metric: $ds_{10}^2 = e^{2A}ds_4^2 + e^{-2A}d\tilde{s}_6^2$

Calabi-Yau

Then EOM becomes [Giddings, Kachru, Polchinski, 02]

$$\tilde{\nabla}^{2}(e^{4A} - \alpha) = \frac{e^{2A}}{6 \operatorname{Im} \tau} |iG_{3} - *_{6}G_{3}|^{2} + e^{-6A} |\partial(e^{4A} - \alpha)|^{2} + (\text{local sources})$$
LHS=0 when integrating out positive contributions

 $e^{4A} = \alpha$, $iG_3 = *_6 G_3$: imaginary self-dual condition

where α is a function in \tilde{F}_5 , $G_3 = F_3 - \tau H_3$, $\tau = C_0 + i e^{-\phi}$

No-scale structure

Take a scaling: $\tilde{g}_{mn} \rightarrow \lambda \ \tilde{g}_{mn}$

 $e^{4A} = \alpha$, $iG_3 = *_6 G_3$: invariant

The other equations are also unchanged.

No-scale structure

superpotential $W_0 = \int G_3 \wedge \Omega$ is independent of Kahler

4D effective potential with $K = -3 \ln(T + \overline{T})$, $W_0 = \text{const}$

$$V = e^{K/M_P^2} \left(K^{IJ} D_I W_0 \ \overline{D_J W_0} - \frac{3}{M_P^2} |W|^2 \right) = 0$$

Kahler directions remain flat.

A bonus in type IIB

Hierarchical structure of mass matrix/potential helps to stabilize moduli at positive cosmological constant.

17

[X. Chen, Shiu, YS, Tye, 12]

Moduli stabilization with positive cosmological constant

- Fluxes Complex structure & dilaton
- Non-perturbative effect, α' -correction, localized branes

🛑 Kahler

[KKLT, 03], [Balasubramanian, Berglund, Conlon, Quevedo, 05], [Balasubramanian, Berglund, 04]...

KKLT

Non-trivial potential for Kahler is generated by NP-corrections.

E.g. Gluino condensation on D7-branes

D7-branes wrapping the four cycle: $W_{NP} = A e^{-\tilde{a} 8\pi^2/g_{D7}} = A e^{-aT}$

Together with the superpotential from fluxes: $W = W_0 + W_{NP}$

7/30/2012

3.20

Large Volume Scenario

[Balasubramanian, Beglund, Conlon, Quevedo, 05]

 α' -corrections can break no-scale structure too.

 $\mathcal{O}(\alpha'^3)$ -correction in type II action [Becker, Becker, Haack, Louis, 02]

19

$$K = -2\ln\left(\mathcal{V} + \frac{\xi}{2}\left(-i(\tau + \bar{\tau})\right)^{3/2}\right) - \ln(-i(\tau + \bar{\tau})) + \cdots$$

scales differently

E.g. $\mathbb{P}^{4}_{[1,1,1,6,9]}$ model (assuming complex sector is stabilized)

$$\mathcal{V} = \frac{1}{9\sqrt{2}} \left(t_1^{3/2} - t_2^{3/2} \right), \qquad W = W_0 + A_1 e^{-a_1 T_1} + A_2 e^{-a_2 T_2}$$

Solution: $W_0 \sim -20$, $A_1 \sim 1$, $t_1 \sim 10^6$, $t_2 \sim 3^{10^{-24}}$ $V_{\min} \sim -10^{-25}$: AdS vacua

 $\Rightarrow |W_0| \gg |W_{NP}|, \ \mathcal{V} \gg \xi$: naturally realized

Kahler uplifting

[Balasubramanian, Berglund, 04], [Westphal, 06], [Rummel, Westphal, 11], [de Alwis, Givens, 11]

Same setup as that of LVS

$$K = -2\ln\left(\mathcal{V} + \frac{\xi}{2}\right) + \cdots, \qquad \mathcal{V} = \gamma_1(T_1 + \overline{T}_1) - \sum_{i=2} \gamma_i(T_i + \overline{T}_i),$$
$$W = W_0 + A_1 e^{-a_1 T_1} + \sum_{i=2} A_i e^{-a_i T_i}$$
Interested in a region where this term plays a roll.

less large volume than LVS, but still $|W_0| \gg |W_{NP}|$, $\mathcal{V} \gg \xi$

E.g. single modulus [Rummel, Westphal, 11]

$$V \sim -\frac{W_0 a_1^3 A_1}{2 \gamma_1^2} \left(\frac{2C}{9 x_1^{9/2}} - \frac{e^{-x_1}}{x_1^2} \right), \qquad C = \frac{-27 W_0 \xi a_1^{3/2}}{64 \sqrt{2} \gamma_1 A_1}, x_1 = a_1 t_1$$

When $W_0A_1 < 0$, the $C \propto \xi$ term contributes the uplifting.

KKLT vs Kahler uplifting

Backreaction of $\overline{D3}$? A singularity exists, but finite action Safe or not? [DeWolfe, Kachru, Mulligan, 08], [McGuirk, Shiu, YS, 09], [Bena, Giecold, Grana, Halmagyi, Massai, 09-12], [Dymarsky, 11],...

Statistical approach

Further approximation

$$\frac{V}{M_P^4} = -\frac{W_0 a_1^3 A_1}{2 \gamma_1} \left(\frac{C}{9 x_1^{9/2}} - \frac{e^{-x_1}}{x_1^2} \right), \qquad C = \frac{-27 W_0 \xi a_1^{\frac{3}{2}}}{64 \sqrt{2} \gamma_1^2 A_1}, \qquad x_1 = a_1 t_1$$
[Rummel, Westphal, 11]

23

The stability constraint with positive CC at stationery points:

Neglecting the parameters a_1, γ_1, ξ , the model is simplified to be

$$\Lambda = w_1 w_2 (c - c_0), \qquad c_0 \le c = \frac{w_1}{w_2} < c_1 \qquad (w_1 = -W_0, w_2 = A_1, c \propto C)$$

Stringy Random Landscape

Starting with the simplified potential:

[YS, Tye, 12]

$$\Lambda = w_1 w_2 (c - c_0), \qquad c_0 \le c = \frac{w_1}{w_2} < c_1$$

Since W_0 , A_1 are given model by model (various ways of stabilizing complex moduli), here we impose reasonable randomness on parameters.

 $w_1, w_2 \in [0, 1]$, uniform distribution (for simplicity)

Probability distribution function

$$P(\Lambda) = N_0 \int dc \int dw_1 dw_2 \,\,\delta(w_1 w_2 (c - c_0) - \Lambda) \,\,\delta\left(\frac{w_1}{w_2} - c\right)$$

 N_0 : normalization constant

Divergence in product distribution

When
$$z = w_1 w_2$$
,

$$P(z) = \int dw_1 dw_2 \, \delta(w_1 w_2 - z) = \frac{1}{2} \ln \frac{1}{z} \qquad \text{log divergence at } z = 0$$
With constraint? $\Lambda = w_1 w_2 (c - c_0), \qquad \underbrace{c_0 \leq c}_{\text{positivity}} = \frac{w_1}{w_2} \underbrace{< c_1}_{\text{stability}}$

$$\longrightarrow P(\Lambda) = \frac{c_1}{c_1 - c_0} \ln \frac{c_1 - c_0}{c_1 \Lambda} \qquad \text{still diverging!!}$$

Comparison to the full-potential (randomizing W_0 , A_1 without approx.)

Zero-ness of parameters

We assumed the parameters W_0 , A_1 passing through zero value, but is it true?

- E.g. T^6 model: $W_0 = \left(c_1 + \sum d_i U_i\right) \left(c_2 + \sum e_i U_i\right)S$ SUSY condition $W_0 = 2 (c_1 + c_2 s) \frac{\prod_k (d_k - e_k s)}{\sum_i (d_i + e_i s) \prod_{j \neq i} (d_j - e_j s)}$ $s = \operatorname{Re}(S)$ easy to be zero
- Brane position dependence of A_1 [Baumann, Dymarsky, Klebanov, Maldacena, McAllister, Murugan, 06] $A_1 = \hat{A}_1(U_i) (f(X_i))^{1/n}, \quad f(X_i) = \prod X_i^{p_i} - \mu^q$

 $f(X_i) = 0$ when D3-brane hits D7-brane (divisor, at μ)

known as Ganor zero

Comments on sum distribution

Sum distribution smooths out the divergence and moves the peak.

E.g.
$$z = x_1^{n_1} + x_2^{n_2} + \dots + x_p^{n_p}$$

- Each has divergent peak: $P(w_i = x_i^{n_i}) \propto w_i^{-1 + \frac{1}{n_i}}$
- Independent of each other, no correlations.

 \Rightarrow But uncorrelated summation gives $P(z) \propto z^{-1+\sum_{n_i}^1}$.

When all $n_i = 2$, and $x_i \in \text{normal distribution}$,

$$P(z) = \frac{e^{-p/2}z^{-1+p/2}}{2^{p/2}\Gamma(p/2)}$$

known as Chi-squared distribution

7/30/2012

Bousso-Polchinski

4-form quantization

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{M_P^2} R - \Lambda_{\text{bare}} - \frac{Z}{2 \times 4!} F_4^2 \right)$$
$$\longrightarrow \Lambda = \Lambda_{\text{bare}} + \frac{1}{2} \sum_{i=1}^{J} n_i^2 q_i^2$$

Assume randomness in Bousso-Polchinski;

 n_i : random integer, $0 \le q_i \le 1$: uniform,

 $-100 \le \Lambda_{\text{bare}} \le 0$: uniform

But... Moduli fields couple each term

$$\Lambda \sim -W_0 A_1 \left(\frac{C}{9x_1^{9/2}} - \frac{e^{-x_1}}{x_1^2} \right)$$
correlation generated via stabilization

Multi-moduli analyses

Multi-moduli stabilization

[Sumitomo, Tye, in preparation]

7/30/2012

Again, we work in the region: $|W_0| \gg |W_{NP}|$, $\mathcal{V} \gg \xi$.

Assuming stabilization of complex structure moduli and dilaton at higher energy scale,

$$\begin{split} \frac{V}{M_P^4} &= -\frac{A_1 W_0 a_1^3}{2 \gamma_1} \left(\frac{2C}{9\tilde{\mathcal{V}}^3} - \frac{x_1 e^{-x_1}}{\tilde{\mathcal{V}}^2} - \sum_{i=2} \frac{B_i x_i e^{-x_i}}{\tilde{\mathcal{V}}^2} \right),\\ \tilde{\mathcal{V}} &= x_1^{3/2} - \sum_{i=2} \delta_i x_i^{3/2}, \ x_i = a_i t_i, \ C = \frac{-27 W_0 \xi a_1^{3/2}}{64\sqrt{2}\gamma_1 A_1}, \ B_i = \frac{A_i}{A_1}, \ \delta_i = \frac{\gamma_i a_i^{3/2}}{\gamma_1 a_1^{3/2}} \end{split}$$

• Now we have $N_K \times N_K$ mass matrix.

All upper-left sub-determinants are positive (Sylvester's criteria). N_K extremal equations + N_K stability constraints

• Stability at positive CC requires $B_i > 0$.

Uplifting is controlled by the first term.

Cosmological moduli problem

38

Reheating for BBN: $T_r \ge \mathcal{O}(10) \text{ MeV}$ $T_r \sim \sqrt{M_P \Gamma_{\phi}}, \ \Gamma_{\phi} \sim \frac{m_{\phi}^3}{M_P}$

 $m_{\phi} \geq \mathcal{O}(10) \text{ TeV} \sim 10^{-15} M_P$

What happens in lightest (physical) moduli mass?

More peaked parameters

So far we assumed uniform distribution for W_0 , A_i . But realistic models have a number of complex moduli and others.

Different distributions for W_0, A_i

Consider the effect of multiple independent parameters.

$$W_0 = -w_1 w_2 \cdots w_n, \qquad A_i = y_1^{(i)} y_2^{(i)} \cdots y_n^{(i)}$$
$$0 \le w_i \le 15^{\frac{1}{n}}, \ 0 \le y_j^{(i)} \le 1, \text{ all obey uniform distribution.}$$

Now,

$$P(W_0) = \frac{1}{15(n-1)!} \left(\ln \frac{15}{|W_0|} \right)^{n-1}, \quad \prod_{i=1}^{n-1} P(A_i) = \frac{1}{(n-1)!} \left(\ln \frac{1}{A_i} \right)^{n-1}$$
See how CC is affected by "n"

7/30/2012

Cosmological constant

40

We cannot simply consider effect of the coefficient.

 $\frac{V}{M_{P}^{4}} = -\frac{A_{1}W_{0}a_{1}^{3}}{2\gamma_{1}} \left(\frac{2C}{9\tilde{\mathcal{V}}^{3}} - \frac{x_{1}e^{-x_{1}}}{\tilde{\mathcal{V}}^{2}} - \sum_{i=2}\frac{B_{i}x_{i}e^{-x_{i}}}{\tilde{\mathcal{V}}^{2}}\right)$ Dynamics also affects. The result: $\langle \Lambda \rangle_{N_{\kappa}=1} = 4.7 \times 10^{-3} n^{0.080} e^{-1.40 n}$ $\langle \hat{\Lambda} \rangle$ Red: $N_{K} = 1$ $\langle \Lambda \rangle_{N_K=2} = 3.7 \times 10^{-3} n^{0.97} e^{-1.49 n}$ 0.001 Blue: $N_K = 2$ 10-5 $\langle \Lambda \rangle_{N_K=3} = 3.4 \times 10^{-3} n^{1.5} e^{-1.55 n}$ Green: $N_{K} = 3$ 10-7 More than the effect of 10-9 the coefficient! $\langle A_1 W_0 \rangle \sim 15 \ e^{-1.39 \ n}$ 5 10

Moduli mass

We worry about the cosmological moduli problem.

41

 $\langle m_{\min}^2 \rangle_{N_K=1} = 0.18 \, n^{0.14} e^{-1.40 \, n}$ $\langle m_{\min}^2 \rangle_{N_K=2} = 0.061 \, n^{0.73} e^{-1.56 \, n}$ $\langle m_{\min}^2 \rangle_{N_K=3} = 0.039 \, n^{1.2} e^{-1.66 \, n}$ Compare with CC

 $\langle \Lambda \rangle \propto e^{-1.40 n}, e^{-1.49 n}, e^{-1.55 n}$

Suppression in mass is getting larger as increasing N_K .

also suggests

Estimation

Using the estimated functions, we get

$N_K(=h^{1,1})$	1	2	3
$\langle \Lambda \rangle \sim 10^{-122} M_P^4$	<i>n</i> ~ 197	<i>n</i> ~ 188	<i>n</i> ~ 182
$\langle m^2 \rangle \sim 10^{-30} M_P^2$	$n \sim 48$	$n \sim 44$	$n \sim 42$

n: number of product in W_0 , A_i

Rather considerable number, e.g.

• $\mathbb{P}^4_{[1,1,1,6,9]}$: $h^{1,1} = 2$, $h^{2,1} = 272$ • \mathcal{F}_{11} : $h^{1,1} = 3$, $h^{2,1} = 111$

and the other moduli (e.g. brane position, open string) come in a complicated way, like

• $A_1 = \hat{A}_1(U_i) (f(X_i))^{1/n}, \ f(X_i) = \prod X_i^{p_i} - \mu^q$

While, without help of product distribution in W_0 , A_i

 $N_K \sim 10100$ for $\langle \Lambda \rangle \sim 10^{-122} M_P^4$, $N_K \sim 1350$ for $\langle m^2 \rangle \sim 10^{-30} M_P^2$

Mass matrix

Physical mass matrix is a linear combination of $\partial_{x_i} \partial_{x_j} V|_{\min}$.

Assuming uniformly distributed $-15 \le W_0 \le 0$, $0 \le A_i \le 1$,

$$\left< \left| \partial_{x_i} \partial_{x_j} V \right|_{\min} \right| \right> \sim 10^{-3} \times \begin{pmatrix} 7 & 4 & \cdots & \cdots & 4 \\ 4 & 60 & 1 & \cdots & 1 \\ \vdots & 1 & \ddots & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 4 & 1 & \cdots & 1 & 60 \end{pmatrix}$$
 some hierarchical structures

Though off-diagonal comp. are relatively suppressed, eigenvalue repulsion gets more serious when increasing N_K .

e.g. 2 × 2 matrix:
$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} \implies \lambda_{\pm} = \frac{1}{2} \left(a + c \pm \sqrt{(a - c)^2 + 4b^2} \right)$$

The lowest mass eigenvalue is generically suppressed more than CC.

Summary & Discussion

Summary & Discussion

• Stringy Random Landscape

We may expect that stringy motivated models have the following properties:

- Product of parameters
- Correlation of each term by dynamics

 \Rightarrow Both works for smaller CC.

- A number of Kahler moduli Correlation makes CC smaller. But the effect is modest.
- A number of complex moduli and other moduli
 Those are likely to produce more peakiness in parameters
 Interesting to see detailed effect in concrete models

Summary & Discussion

A potential problem

Lightest moduli mass is suppressed simultaneously.

Cosmological moduli problem before reaching $\Lambda \sim 10^{-122} M_P^4$.

Other than "product" and "correlation" effect, "eigenvalue repulsion" also makes the value smaller.

This is presumably a generic problem when taking statistical approach without fine-tuning.

Once finding a way out, the stringy mechanism naturally explain why CC is so small.

Thermal inflation, coupling suppression to SM, or some other corrections may help?